Dispersal and population connectivity

Per Jonsson Tjärnö Marine Biological Laboratory Göteborg University

NMA course, Bergen 2005

Population dynamics

- Recruitment may depend on <u>local</u> demographic processes
- Or it can also depend on import from other sub-populations acting as a <u>meta-population</u>

Do populations show metapopulation dynamics?

Open or closed populations?

Population connectivity has implications for:

- Population dynamics
- Community structure
- Genetic differentiation
- Evolution of local adaptations
- Speciation
- Management of exploited resources
- Design of Marine Protected Areas (MAP)

Design of MAP may be critical

Local recruitmentRegional effect

What determines connectivity

• Coastal circulation (also small scale)

- Spawning (timing, duration, fertilization)
- Larval duration
- Larval behaviour (swimming and settling)
- Mortality

larval stage: hours - weeks

Traditional view of dispersal

• Long-range dispersal \approx larval duration x off-coast flow speed

- Limited local recruitment
- Open populations
- Low potential for genetic differentiation
- Low potential for local adaptations

Populations may be more closed

- Unexpected genetic structure (blue mussels)
- Local recruitment (marking of larval fish)
- Local adaptations (macro-algae)

Populations acting as sources or sinks

isolation by distance

highly connected larval pool

"stepping stones"

How can connectivity be predicted?

- Marking recapture (fish larvae)
- Genetic differentiation (barnacles)
- Drift drouges (e.g. coupled to GPS)
- Model coastal circulation (with flow measurements)

Spatially explicit modeling

Model the coastal circulation in space and time

 Use the velocity field to move virtual larvae from release to settlement

Case study: a set of breakwaters in a simple hydrodynamic setting?

Objectives

- Test dispersal models of different complexity
- Expore effects of larval vertical behaviour
- Compare predictions of connectivity with distribution patterns and genetic differentiation

Naive model

- Model organism: Patella caerulea
- Length of free-swimming larval period: 12 days
- Typical north/south current velocity: 6 cm/s
- Potential north/south dispersal: ca 60 km

Less naive model

Building a circulation model

 Hydrodynamic model solving time-dependent nonlinear equations of continuity and momentum conservation (MIKE, DHI)

Model requires:

bathymetry

D driving data (wind, tide)

boundary conditions (net flux, freshwater etc)

C calibration and validation (current measurements)

Bathymetry

Output from hydrodynamic model

Dispersal model

- Virtual larvae of Patella caerulea are released from each breakwater

- Settlement during competency on breakwaters is recorded

Dispersal tracks

Dispersal distance

-4 -2 0

Distance (km)

2

4

6

Effect of larval behaviour

Number of larvae

-10

-8

-6

Local recruitment

Conclusions

Coastal circulation leads to asymmetric dispersal

- Larval behaviour may be important
- Temporal variability may be high
- Connectedness varied greatly for the studied breakwaters

Use of spatially explicit dispersal models

- Do they predict anything useful? Still a general lack of validation.
- Often complex models but may serve as benchmarking for simpler models
- Future hydrodynamic models can have finer spatial resolution
- A general lack of knowledge about larval biology

In collaboration with

- Andreas Sundelöf, Göteborg University
- Laura Airoldi, University of Bologna

