

General life-history theory

Nordic Marine Academy course on *Modelling marine populations from physics to evolution* **10-16.10.2005 Espegrend, Norway**

Outline

Definition and the classic setting **QThe classic questions** Applications of life history theory in marine context (or lack of)

Fisheries-induced life-history evolution

Part I - Basics

Life history theory

- … tries to explain how evolution designs organisms to achieve reproductive success (Stearns 2000)
- Life history evolution: … the major features of a life cycle, principally age distribution of birth and death rates, growth rates, and the size of offspring (Stearns 1992)
- Understanding origin and maintenance of life history diversity (Roff 1992)
- \Box Understanding, not mere description the field has always been very much influenced by modelling & theory!

Life history theory

Life-history traits

- **Age and size at maturation, reproductive effort,** offspring size, growth, …
- Mostly single traits, occasionally vector/functionvalued traits (reaction norms)
- \Box It is assumed that evolution "optimises" life histories, respecting trade-offs and constraints that determine what is feasible
- Evolutionary optimality used to refer to trait maximising a fitness measure – nowadays optimality mostly refers to unbeatability

Euler-Lotka equation

□ Original, continuous time

$$
\int_{\alpha}^{\omega} l_x m_x e^{-rx} dx = 1 \quad \left[\text{or} \int_{\alpha}^{\omega} l_x m_x \lambda^{-x} dx = 1 \right]
$$

Discrete time equivalent

$$
\sum_{\alpha}^{\omega} l_x m_x e^{-rx} = 1 \quad \left[\text{or} \sum_{\alpha}^{\omega} l_x m_x \lambda^{-x} = 1 \right]
$$

 $\Box f_x$ = survival to age x, m_x = fecundity at age x, $r =$ intrinsic rate of increase

Euler-Lotka equation

QIntrinsic rate of increase r gives population's instantaneous growth rate, once it has reached stable age distribution

 \Box Thus, for viable populations necessarily $r \geq 0$

Classic thinking ("optimisation paradigm"): population (type) that has the highest r will eventually outnumber its competitors \rightarrow r as a fitness measure

Cole's paradox (1954)

- \square A semelparous annual plant produces b offspring that survive until next season and dies
- An immortal iteroparous plant produces b^* offspring that survive until next season
- Which one takes over?

$$
\sum_{\alpha}^{b} l_{x} m_{x} e^{-rx} = b e^{-r} = 1
$$

\n
$$
\Rightarrow r = \ln(b)
$$

$$
\sum_{a}^{\infty} l_{x} m_{x} e^{-rx} = b^{*} e^{-r} + b^{*} e^{-2r} + b^{*} e^{-3r} + ... = 1
$$

\n
$$
\Leftrightarrow b^{*} e^{-r} (1 + e^{-r} + e^{-2r} + ...) = 1
$$

\n
$$
\Leftrightarrow b^{*} e^{-r} \frac{1}{1 - e^{-r}} = 1
$$

\n
$$
\Rightarrow r = \ln(b^{*} + 1)
$$

Why do perennials exist?

$$
r_{annual} > r_{perennial} \text{ if } b > b^* + 1
$$

- **Thus, annuals are at advantage if they** can produce just one more offspring
- As annuals avoid investment to survival after maturity, this should be easily achieved
- How come there are perennials?

Gadgil & Bossert (1970): newborn survival p_0 <1 favours perennials Charnov & Schaffer (1973): annuals favoured if $b > b^* + p_1/p_0$ What about density dependence?

A simpler alternative? Reproductive ratio

A.k.a. basic reproductive number, expected lifetime reproductive success Continuous time

$$
R_0 = \int_{\alpha}^{\omega} l_x m_x dx
$$

QDiscrete time equivalent

$$
R_{0}=\sum_{\alpha}^{\omega}l_{x}m_{x}
$$

A simpler alternative? Reproductive ratio

- $\Box R_0$ gives population's growth *ratio* on generation basis
- Thus, for viable populations necessarily $R_{0}^{} \geq 1$

□An alternative fitness measure? \Box While $r = 0 \Leftrightarrow R_0 = 1 r_1 > r_2$ does not necessarily mean $R_{\rm 0,1}^{} > R_{\rm 0,2}^{}$

$$
R_0 = \sum_{\alpha}^{\omega} l_x m_x = p_0 b
$$

$$
R_0 = \sum_{\alpha}^{\infty} l_x m_x = p_0 b^* + p_0 p_1 b^* + p_0 p_1^2 b^* + \dots
$$

\n
$$
\Leftrightarrow R_0 = p_0 b^* (1 + p_1 + p_1^2 + \dots)
$$

\n
$$
\Rightarrow R_0 = p_0 b^* \frac{1}{1 - p_1}
$$

A new paradox?

 \square Assuming that R_0 is the proper fitness measure, annuals favoured if $b > b^*$ /(1- ρ_1)

 \square Assuming that r is the proper fitness measure, annuals favoured if $b > b^\star$ + $\rho_{\text{\tiny{l}}}$ / $\rho_{\text{\tiny{0}}}$

□Both results cannot be true!

 \square Conventional wisdom: use r in increasing and $R_{\rm 0}$ in stationary populations

Another paradox?

 \Box In the long run, viable populations cannot be neither growing nor decreasing, on average: $r = 0$ and $R_0 = 1$ What to optimise when the fitness measures are so constrained?

Solution

□Source of problems: population feedbacks ignored

Tool: ESS/invasion analysis (=adaptive dynamics)

□Solution: it all depends on how feedback work [Mylius & Diekmann, 1995]

- Think that we evaluate a fitness measure in a specific environment **E**v as functions of the evolving trait x, e.g., $r(x,E_y)$ or $R_0(x,E_y)$
- \Box The optimisation paradigm suggests that this gives you the evolutionarily optimal trait (but does not tell you which fitness measure to use)

18

- \Box The effect of density-dependence is to reduce r and R_0 until the maximum value is exactly r =0 and $R_{0}^{} = 1$ – the ecological equilibrium
- \square Then the maxima of these fitness measures correspond to exactly the same trait value – this never happens otherwise

- **□** Generally, the effect of density dependence is to change both the shape and level of the fitness curve
- Therefore, "optimal" trait in one specific environment will usually not correspond to the optimum in the ecological equilibrium
- \square Thus, optimisation paradigm is generally not expected to work

Q However, there are notable exceptions!

- \Box If density dependence acts such as to affect reproductive success multiplicatively $(R_0(x, \mathbf{E}))$ = $f(E)R_0(x,E_0)$, the shape of $R_0(x,E)$ is independent of **E**
- \Box In this case, optimising $R_0(x,E)$ in just any specific **E** will give the evolutionary optimum.
- \Box In this case, optimising r (x , **E**) will not work

- \Box If density dependence acts such as to affect mortality rate uniformly across all ages, the shape of $r(x,E)$ is independent of **E**
- In this case, optimising r (x,**E**) in just any specific **E** will give the evolutionary optimum.
- \Box In this case, optimising $R_0(x,E)$ will not work

- \Box Optimising r or $R_{\!0}$ in a specific environment is valid, but implies specific assumptions on density dependence
- Theory guarantees that for 1-dimensional environmental feedback (…), there always exists a valid fitness measure, optimising which in just any environment gives you the evolutionary optimum
- **QTheory also guarantees that** for 1-dimensional environmental feedback, no robust polymorphisms are possible
- For >1-dimensional environmental feedback, simple optimisation will not work

Classic questions

Semelparity vs. iteroparity

□ Cole's paradox \square Annuals win if $b > b^*$ /(1- $\rho_{\scriptscriptstyle\parallel}$) [max of $R_{\scriptscriptstyle\parallel}$] \Box Iteroparity – don't put all eggs in one basket Fish examples: eels, Pacific salmon, lamprey =species with long spawning migration Atlantic silverside (annual), capelin?

Pink salmon

Semelparous, maturing always at age 2 years

- Isolated odd and even year populations spawning in the same river, often with different abundance
- **QLarge-scale synchrony**
- Straying as a risk spreading strategy?

salmon affects life history of Alaskan sockeye salmon

Early versus late maturation

■ For fish-like life history, age at maturation has major impact on later demography

Early versus late maturation

QBenefits of early maturation

- **Higher chance of reaching maturation**
- **QBenefits of late maturation**
	- Larger size at a given age (access to a larger range of prey; growing over vulnerable size range)
	- **Example 1 Engler Size gives higher fecundity, once** mature

Details matter: age-, size- vs. state-dependent mortality

Courtesy Anna Gårdmark & Ulf Dieckmann, unpubl.

… but not all details

 \Box Data from 30 species of fish (k, M, a_{mat})

- □ Simple model assuming determinate growth and maximisation of $R_{\rm 0}$
- ■Results probably driven by mortality

Size versus number of offspring

Simple energetic trade-off: many small or few large offspring

Clutch and egg size in cichlids

Size versus number of offspring

Whales: 1Elasmobranchs: fewsome tens**QMany fish and bivalves:**

- \sim 10-100 thousand
- Ocean sunfish: 300 million

Within-species variation

 \Box In fish, egg size~larval fitness ■In fish, egg size often shows adaptive (?) plasticity

Determinate vs. indeterminate growth

Indeterminate growth: growth continuing past maturation

- Indeterminate growth: cold-blooded vertebrates, many invertebrates (e.g., molluscs, crustaceans)
- Determinate growth: warm-blooded vertebrates, many invertebrates

Indeterminate growth is paradoxical in view of simple models

- ■Related to the general life history problem: allocation of resources between growth and reproductive effort (and maintenance)
- **OSimple models suggest that** determinate growth is evolutionarily optimal – growth to "optimal" adult size

Factors favouring indeterminate growth

OSeasonality

- Diminishing return from reproductive investment
- **Q**[production and survival rates that both increase/decrease with size]

OSimple optimisation model shows very little growth after maturation

■Size-specific survival and production rates do not yield observed levels of growth after maturation

□ Costs of reproduction can yield plenty of growth after maturation

□ Seasonality was not considered

Part II – applications of life history theory in the marine context

Beverton's legacy

Building on Beverton's legacy: life history variation and fisheries management (2003 AFS meeting, Quebec)

- **Example history dynamics**
- **ELife history statics**

Raymond J.H. Beverton and Sidney J. Holt On the Dynamics of **Exploited Fish Populations**

Beverton's legacy

Increasing natural mortality in Norwegian spring-spawning herring after ~10 spawning seasons [Beverton et al. 2004]

Beverton's legacy

Life-history statics (invariants)

- **Close relations among life history parameters** \rightarrow dimensionless numbers
- **From across populations within species to** higher taxonomic levels (?)
	- Instantaneous natural mortality rate \times age at maturation \sim constant [1.5-3.3]
	- Instantaneous natural mortality rate / von Bertalanffy growth coefficient \sim constant [1.5]
	- Length at maturation / asymptotic maximum length
		- \sim constant $[0.4 0.8]$

QLet's play orange roughy!

- **Maturation at age** 20 year \rightarrow ln(α)~3
- $\blacksquare \rightarrow \mathsf{In}(\mathsf{M})\mathtt{\sim}\text{-}2.6$
- $\blacksquare \rightarrow M \sim 0.075$ ⁻¹ or $s - 0.93$

Simple models can predict invariants that are not too far from the observed (Charnov, Jensen, …)

 \Box There is some tendency to regard lifehistory invariants as fundamental biological laws, rather than descriptive, empirical laws

$\Box A$ warning note – strong invariance may be spurious

■ Nee et al. Science 2005, with a Perspective by de Jong

How to use life history data to support managing marine ecosystems?

■ Simple model with only fecundity, age at maturation and total mortality as inputs

□ Barndoor skate

■ Casey & Myers 1998. Near extinction of a large, widely distributed fish. **Science**

Orange roughy again

\Box Recipe for a fisheries collapse?

- Maturation at age ~20 years (life span >100 years?)
- Natural mortality rate -0.05 yr⁻¹
- **Sustainable exploitation** level (gu)estimated to be 5-10% of virgin biomass

5454

KET WITH LB (16.02) 0.45

Demographic correlates to responses to exploitation

□Simple demographic response □Not all species are equally affected

Demographic correlates to responses to exploitation

Quarge species of rays in the Irish Sea tend to decline most

Demographic correlates to responses to exploitation

 \Box Trend in abundance in the North Sea correlated with life-history traits

Use of life-history information on routine fisheries stock assessments

Life-history information is mostly not used

- \Box The goal is to estimate abundance cohortwise, without attention to other attributes than age
- Most assessment models are thus agestructured, but not length- nor maturitystructured.

Use of life-history information on routine fisheries stock assessments

■Size-at-age & maturity-at-age is used to estimate spawning stock biomass

■Maturity data often rather fictional

 \square Spawning stock biomass \rightarrow recruitment

Usually, SSB-R relationship is so noisy that it is of no use in estimating recruitment. Therefore closed life cycle models cannot be used.

"Fleksibest" model for northeast Arctic cod

- Process-oriented, closed life-cycle
- Age-, length-, and maturity-structured
- Maturation reaction norm parameters as input
- Growth parameters estimated/input

Fisheries-induced evolution

61 "…a stock-raiser would never think of selling his fine cattle and keeping only the runts to breed from." "The salmon would certainly deteriorate in size … if only the smaller ... [are] allowed to breed."

Fisheries-induced evolution

- □ Lesson from animal breeding: strong selection causes rapid genetic changes
- Additional insight from life-history theory: selectivity not necessary - just any change in mortality causes life-history evolution
- \Box Fishing=mortality
	- Overall increase in mortality (often F>M)
	- **Selective**

Trends in world fisheries

Figure 19

Global trends in the state of world marine stocks since 1974

The State of World Fisheries and Aquaculture 2004, FAO 2004

Fisheries-induced evolution

- Life history traits: age and size at maturation, growth rate, reproductive effort…
- ■Behavioural traits: gear avoidance behaviour, risk proneness…

Morphological traits: body shape… Physiological traits: metabolic rate, growth efficiency…

64

Fisheries-induced evolution in the lab

Edley & Law 1988: Sizeselective harvest of Daphnia

□David Conover & colleagues: Sizeselective harvest of Atlantic silverside [Conover & Munch, Science 2002]

Design of fishing experiment

 \square Six populations founded from NY fish90% harvest applied on day 190 \Box Prediction: body size, growth rate and harvested biomass will evolve in opposition to the size bias of the harvest regime

Selection response

Selection response

Selection response

Beyond the direct selection response

Response=slower somatic growth rate

□Mechanisms?

Correlated changes in other traits

Reproductive traits

Growth physiology

Behavior

Morphology

Conover et al.

Egg size 18% higher vol. in small-size harvested stocks Fecundity 2-fold higher in small-size harvested stocks Length at hatch 7% longer in small-size harvested stocks Larval survival 3-fold higher in small-size harvested lines Larval growth rate 20% higher in small-size harvested lines

Food consumption rate 44% higher in small-size harvested stocks Growth efficiency 54% higher in small-size harvested stocks

Foraging Small-size harvested fish are more risky foragers

Vertebrae number Higher in small-size harvested stocks

