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ABSTRACT

We describe a novel method to estimate the probabilities of maturing at age as a function of
size; these probabilities can often be interpreted as probabilistic reaction norms for age and size
at maturation. Such estimations are useful for describing the maturation process independently
of the processes of growth and mortality, and they can also help to disentangle phenotypic
plasticity from evolutionary changes in maturation. The estimation method can be used when
mature and immature individuals are representatively sampled over two consecutive seasons,
even when maturing individuals are not distinguished. Confidence intervals are derived for the
reaction norm parameters using a bootstrap approach. Using simulated data, the method is
shown to be asymptotically unbiased and robust to moderate violations of the main simplifying
assumptions. However, it is relatively sensitive to small sample sizes: the method is not robust
when fewer than about 100 individuals (mature and immature) are sampled from a cohort at a
certain age. The method is illustrated by an application to Georges Bank cod stock (Gadus
morhua) but can be used for any type of organism.

Keywords: maturation dynamics, phenotypic plasticity, probability of maturing, reaction norm,
robustness assessment.

INTRODUCTION

Maturation is one of the most important ontogenetic transitions in an individual’s life. It
marks the start of the reproductively active part of the life cycle. Maturation has an effect
on growth through changes in energy allocation and behaviour. Maturation also influences
mortality risk later in life, both because of behavioural changes and the growth-mediated
effect on size-dependent mortality. Knowledge of how environmental factors influence age
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and size at maturation is consequently essential for understanding how populations react to
anthropogenic and natural changes in their environment. Furthermore, fitness is sensitive to
change in age and size at maturation because of the above-mentioned effects on fertility,
growth and mortality (Roff, 1992; Stearns, 1992). Consequently, understanding the causes
and the consequences of variations in age and size at maturation is of great importance for
both demographic and evolutionary studies.

Age and size at maturation are clearly not independent traits – that is, change in
one generally results in a correlated change in the other (Roff, 1992; Stearns, 1992). The
co-dependence of maturation on age and size is described by the reaction norm for age and
size at maturation, which, in its original, deterministic form, gives the combinations of age
and size at which maturation occurs (Stearns and Koella, 1986). In general, reaction norms
describe how one genotype can give rise to distinct phenotypes when exposed to different
environmental conditions (Fig. 1A). In particular, the reaction norm for age and size at
maturation describes how variability in growth conditions, reflected by variations in size-
at-age, influences maturation (Fig. 1B). Note that variations in environment appear only
indirectly as variations in growth in this reaction norm description. As a consequence, the
reaction norm terminology is only warranted for the population level descriptions when
variations in growth are mostly caused by environmental rather than genetic differences
between individuals.

In real data, age and size at maturation tend not to be confined to a single curve but
instead show varying degrees of scatter. This variability is not accounted for by the original
maturation reaction norm concept of Stearns and Koella (1986). To deal with the inherent
stochasticity in the maturation process, Heino et al. (2002b) proposed a refined probabilistic
definition for the maturation reaction norm. According to this definition, the reaction norm
is defined as the probability an immature individual, which has survived and grown until
a certain age and size, matures during a certain age interval. This probability changes with
age and size and, in most cases, increases with size (Stearns, 1992). In this paper, we operate
in the domain of the probabilistic definition.

Probabilistic reaction norms are best illustrated by their contour lines – for example, by
the midpoint, which is the size at which the probability of maturing, conditional on being
alive at this age, is 50% at a certain age. This is not to be confused with age or size at which
50% of individuals are mature; these quantities describe the structure of the population
with respect to maturity at age or size, not the maturation process itself (Heino et al.,
2002b). The probabilistic reaction norm for age and size at maturation can be estimated
with simple logistic regression if representative data describing the age and size of both
newly matured and immature individuals are available (Heino et al., 2002a). However, for
many populations the data describing the size and age of either immature or newly matured
individuals are missing. The first case may arise when immature and mature parts of the
population are spatially segregated. In this case, it may still be possible to estimate the
reaction norm by reconstructing the missing data (Heino et al., 2002a). The second case
arises when the newly matured individuals cannot easily be distinguished from those that
matured earlier. This typically occurs when data are collected in snapshots and single
individuals cannot be followed over time.

In this paper, we present a novel method to estimate reaction norms for age and size
at maturation. The specific advantage of the method is that it can be applied even when
data on age and size at maturation are unavailable. Instead, the new method is based on
comparing proportions of mature individuals at age and size at two consecutive time
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Fig. 1. Interpretation of reaction norms for age and size at maturation. ‘Classic’ reaction norms
describe the phenotypic response of an organism to environmental variability (A). Reaction norms for
age and size at maturation (Stearns, 1992) give the combinations of age and size at which individuals
mature (B). The interpretation of this curve as a reaction norm is based on the assumption that
differences in growth curves are mediated by environmental variations. Points on the left (right) of the
reaction norm correspond to high (low) growth rates presumably achieved in favourable (unfavour-
able) environmental conditions. Classically, all individuals are considered to mature exactly when their
growth curve hits the reaction norm. Yet maturation is a complex process that depends on factors not
taken into account by age and size. Consequently, the size at maturation for a given age is variable.
This stochasticity is taken into account by the probabilistic extension (C) of the reaction norm for age
and size at maturity (Heino et al., 2002b). In this case, the reaction norm for age and size at matur-
ation is defined by the probability of maturing at age and size, conditional on having not yet matured
and being alive.
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intervals (e.g. seasons). In other words, the method requires two ‘snapshots’ of data from
a population, and the maturity status, age and size of the sampled individuals to be
determined. As no direct information on the actual maturation events is required, the
method is ideally suited for studying temporal and geographical variations in maturation.
We first show how probabilistic reaction norms can be estimated with our novel method. We
then evaluate the robustness of the method to its simplifying assumptions and sampling
errors. Finally, as an example, we apply the method to Atlantic cod (Gadus morhua) on
Georges Bank.

THE NEW ESTIMATION METHOD

In this section, we derive our method to estimate reaction norms for age and size at
maturation. We present an outline of the method, followed by a detailed description of the
various steps in the estimation procedure.

Our method is based on estimated proportions of mature individuals as functions of age
and size. We will adopt the convention of referring to these proportions as ‘maturity ogives’,
which is a term commonly used in fisheries science. For the sake of clarity, we assume that
growth and survival are identical among immature and maturing individuals within an age
class. Furthermore, growth is assumed to be independent of size within an age class. These
assumptions are critically evaluated later (see the Discussion); the assumptions could also
be relaxed if the necessary data were available. For generality, we use the term ‘size’
throughout the paper. In practice, the measured variable is often the body length, but it
could also be weight or any other variable measuring the accumulation of biomass
through life.

Deriving the probability of maturing from maturity ogives

The aim of the method is to estimate probability of maturing as a function of both age and
size for a certain cohort of individuals. However, the idea of the method is easier to grasp by
first ignoring size – that is, by considering how probability of maturing at a certain age is
calculated from an age-specific maturity ogive. This calculation is then extended to account
for size as well as age.

The proportion of mature individuals at a certain age a is the sum of the proportion
mature in the previous age and the contribution from the influx of newly matured indi-
viduals. The latter is the product of the proportion of immature individuals that could
potentially mature and the probability of maturing at age a. Thus, as noted by Heino et al.
(2002a), we have:

o(a) = o(a − 1) + (1 − o(a − 1))m(a)

where o(a) is the proportion of individuals, which are alive at age a, that are mature (or, in
other words, the probability of being mature conditional on being alive), and m(a) is the
probability of maturing at age a conditional on being alive at this age. For the sake of
simplicity we refer, throughout the paper, to m (and maturation reaction norms) as the
probability of maturing, but it must be emphasized that it is the probability of maturing
conditional on being both immature and alive. It must be highlighted that this equation
is strictly valid only if mature and immature individuals have the same survival rates
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(see below and the Appendix). By rearranging this equation, the age-specific probability of
maturing can be expressed as a function of maturity ogives:

m(a) =
o(a) − o(a − 1)

1 − o(a − 1)
(1)

Extension of equation (1) to account for both age and size is straightforward, requiring
only two amendments. First, one needs to consider maturity ogives that give the
probabilities of being mature as a function of both age and size (s), denoted by o(a,s).
Second, in the indexing for size, one needs to consider how the size of an individual changes
between age a − 1 and a. Here we assume that all individuals within an age class have
identical annual growth increments, ∆s(a). Thus, the age- and size-specific analogue of
equation (1) is

m(a,s) =
o(a,s) − o(a − 1, s − ∆s(a))

1 − o(a − 1, s − ∆s(a))
(2)

This equation corresponds to the intuitive idea that to derive the probability of maturing at
age a, we have to: (1) subtract the number of individuals that were already mature at age
(a − 1) from the number of individuals that are now mature; (2) divide the result by the
number of individuals that were not mature at age (a − 1) to achieve a probability; and (3)
take into account the growth of individuals.

Calculation of maturation probabilities with equation (2) relies on two simplifying
assumptions (see the Appendix): immature and mature individuals of a given size have the
same age-specific growth and survival rates. Based on these assumptions, to calculate the
reaction norm for age and size at maturation, one needs to estimate two factors: maturity
ogives at age and size, o(a,s), and growth rates at age, ∆s(a).

The precision of the reaction norm estimation could potentially be improved if growth
could be estimated as a function of both age and size. However, estimating the size
dependence of growth is often not possible with available data, which only allow for the
estimation of growth rates as population scale averages. Similarly, it would be a priori
desirable to take into account the inter-individual variability in growth. Preliminary
analyses have shown that taking the standard deviation of growth into account modifies
only marginally the reaction norm estimations. Thus, only the simpler method is presented
here. Moreover, preliminary tests showed that the estimation method is not very sensitive to
growth estimations.

Estimation procedure

In the previous subsection, we introduced the principle for calculating the maturation
reaction norm when age- and size-specific maturity ogives and age-specific growth
increments are known. In this subsection, we present an estimation procedure typically
consisting of several steps: (i) estimation of a statistical model describing age- and
size-specific maturity ogives; (ii) estimation of a statistical model describing age-specific
growth; (iii) calculation of maturation reaction norm by plugging the estimated ogives and
growth increments into equation (2); (iv) derivation of a simple parametric representation
for the reaction norm just calculated; and (v) calculation of confidence intervals for reaction
norm parameters.
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Estimation of age- and size-based maturity ogive

Maturity ogives at age and size are estimated using annual samples, collected at a time when
age and maturity status can be determined. The most elementary approach is to compute
the percentages of individuals that are mature separately for each age and size class.
However, a more robust approach is to use some parametric function with size and age as
explanatory variables. Here we use logistic regression models (Collett, 1991). Although
there is no particular mechanistic underpinning to the choice of logistic regression models,
experience shows they fit the data well (Jørgensen, 1990; O’Brien, 1999); other types of
curves can readily be used if they fit particular data better than the logistic curve.

Since the reaction norm that we want to derive is the property of a given population at a
given time, probabilities of being mature are to be computed separately for different
cohorts. No a priori assumption is made on the effect of age on maturation. Consequently,
the following model is fitted independently for each cohort and age:

logit(o) = In � o

1 − o� = c0 + s × c1 (3)

where logit(o) is the logit link function and c0 and c1 are the parameters to be estimated. The
estimated model is then used to calculate probabilities of being mature for any age or size
that are required when applying equation (2). The estimated model allows also inter- and
extrapolation to size classes where actual observations are missing; such predictions,
however, may not be robust.

Estimation of growth rate

Growth rates can be estimated using any available method. The simplest way is to use the
same data set as for the ogive estimation: with annual samples of aged and sized individuals,
one can compute a mean size at age for each cohort. Growth rate at age for each cohort
is then estimated by subtracting the means of consecutive years. Alternatively, growth
increments can be estimated from growth trajectories of individuals when such data are
available.

Calculation of the maturation reaction norm

When the probabilities of being mature and growth rates have been estimated, the
probabilities of maturing within the observed range of ages and sizes are calculated using
equation (2). These probabilities constitute ‘raw’ reaction norms. Note that the use of
equation (2) may occasionally lead to unrealistic results: the computed probability
of maturing may decrease with size, or may even become negative. These problems are
particularly prone to occur when the sample size is low and probabilities of being mature
are very high or very low. One may need to conclude that the data are too few and noisy to
allow the estimation of the reaction norm for particular age and cohort combinations.

Derivation of parameters summarizing the maturation reaction norm

The raw reaction norms are fully determined by the parameters of the estimated statistical
models for the maturity ogives and the annual growth increments. However, the probability
of maturing generally increases with size (Stearns, 1992), and often displays a sigmoid
dependence on size; fitting a logistic regression model provides a simple parameterization
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for the reaction norm. Moreover, such parameterizations may facilitate comparisons of the
reaction norms among different cohorts or populations. Here we use the following logistic
model for each cohort and each age to parameterize the reaction norm:

logit(m) = d0 + s × d1 (4)

These models fully describe the reaction norm; however, it can be useful to summarize
the information for illustrative purposes or for comparison of the maturation of different
cohorts or ages. One possibility is to display contours on which the probability of maturing
takes particular values – for example, the midpoint (size at which m = 0.5) or the quartiles
(m = 0.25 and m = 0.75). The reaction norm midpoint, denoted by S50, is calculated by
replacing m by 0.5 in equation (4):

S50 =
−d0

d1

The quartiles are calculated similarly:

S25 =
−ln(3) − d0

d1

S75 =
ln(3) − d0

d1

We emphasize that the midpoint is usually not the size at which 50% of individuals of a
cohort actually mature. The midpoint specifies the size at which the probability to mature is
50%, with no reference to abundance of the cohort at that size class. At young ages, most (or
even all) individuals may be much smaller than that size, which would mean that only a
small (or even null) proportion of a cohort is expected to mature at these ages (see Fig. 2).

The size at which probability of maturation is 50% (S50) is not to be confused with the
so-called L50, the size at which 50% of individuals are mature. The latter is frequently used
in fisheries science to describe the maturity state of populations with respect to length
(Chen and Paloheimo, 1994; O’Brien, 1999). In contrast to the reaction norm midpoint,
L50 is usually not age-specific.

Estimation of confidence intervals

The estimation procedure presented above does not yield directly applicable measures
of uncertainty in parameter estimates of the reaction norm. Furthermore, no statistical
inference can be based directly on the final logistic regressions that describe the reaction
norms. The problem arises from the fact that the probabilities of maturing are not directly
based on observed data. Instead, they are computed with a complex non-linear function of
growth rates and maturity ogives, which are predictions from another statistical model. We
solve this problem by using bootstrap techniques to derive confidence intervals for the
reaction norms (Manly, 1991); bootstrap confidence intervals are derived by resampling the
observed samples. To construct a bootstrapped sample for each age and cohort, individuals
are chosen at random with replacement. The final bootstrapped sample contains the same
number of observations as in the original sample. The resulting resampled data set is used
to estimate the maturity ogives and growth rates and then to derive the reaction norms of
the different cohorts and their parameters. The resampling is repeated 1000 times, and the
distribution of the estimated parameters is used to derive confidence intervals with the first
percentile method (Manly, 1991).
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ROBUSTNESS OF THE ESTIMATION METHOD

It is important to ascertain the validity of our method when it is applied to empirical data.
Is it robust to low sampling sizes? Is it robust to the violation of the assumption that
immature and mature individuals have the same growth and survival rates? To answer these
questions we use simulated data. Maturation dynamics is simulated using a known prob-
abilistic reaction norm, and the resulting data sets are then used to estimate the reaction
norm with our method. Below, we first describe how artificial data sets are built, and then
present two types of robustness tests: robustness to small sample size and robustness to the
simplifying assumptions used to derive equation (2).

Building artificial data sets

The maturation dynamics used in our robustness assessment is motivated by the example
of the Georges Bank cod stock, which is presented in the next section. We assume in the
simulations a very large initial cohort size (Ncohort = 100,000). The chosen value for the
cohort size is much smaller than in reality, but this choice does not influence the robustness

Fig. 2. Sensitivity of the estimation method to small sample sizes. Theoretical reaction norms for age
and size at maturation as well as the estimated midpoints (P(maturing) = 0.5) and the quartiles are
displayed (P(maturing) = 0.25 and P(maturing) = 0.75) for four different sample sizes at age: 500, 250,
100 and 50. Thin horizontal lines denote the reaction norms that are used to produce the data. Bold
curves correspond to the estimated reaction norm midpoints together with 95% bootstrapped con-
fidence intervals. Dashed curves correspond to the quartiles. Dotted lines are the mean estimated
growth curves.
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assessment as long as the cohort size is large enough to avoid any significant demographic
stochasticity (Caswell, 2001). Data are generated allowing individuals to mature according
to a given probabilistic reaction norm for age and size at maturation and to grow
deterministically. Growth is modelled using the von Bertalanffy model. We assume that
at age 1 year, length is normally distributed. Parameters K = 0.12 year−1, L∞ = 148.1 cm
and t0 = −0.616 year estimated for Georges Bank cod (Penttila and Gifford, 1976)
give mean length at age 1 year of 26.1 cm. Length at the next age is calculated with
the von Bertalanffy model with parameter L∞ adjusted such that the growth trajectory
passes through the individual’s current size; this ensures a constant coefficient of
variation in length as long as growth does not change at maturation. Each year a
fixed number of individuals are sampled (Nsample); the sample size will be varied in the
subsequent robustness tests. The estimated reaction norms for the Georges Bank cod are
close to horizontal; for illustrative purposes, we use a horizontal reaction norm with
all midpoint values equal to 50 cm (size at which the probability of maturing is 0.5) and
an inter-quartile range of 10 cm. The following procedure is used to generate the artificial
data sets:

1. The size (s) distribution of immature individuals, nI(s,a), at the first considered age
(a = 1) is generated for the Ncohort individuals. Sizes are randomly picked from a
normal distribution with mean length 26.1 cm and standard deviation 5 cm. The size
distributions of mature individuals, nM(s,a), are initially empty.

2. The probability of maturing is determined using the reaction norm. Maturing
individuals are chosen randomly according to this probability and are then transferred to
the size distribution nM(s,a). Non-maturing individuals are kept in the immature size
distribution nI(s,a).

3. Nsample individuals are chosen randomly from the two pooled distributions (nM(s,a) and
nI(s,a)). They constitute the output data for one age.

4. Immature and mature individuals survive with probabilities σI(s) and σM(s). Unless
otherwise stated, we always considered σI(s) = σM(s) = 0.85. The exact value of survival
does not matter as long as enough individuals survive to avoid sampling errors.

5. Immature and mature individuals grow according to the von Bertalanffy model.
Unless otherwise stated, mature and immature growth rates are considered equal. The
distributions thus obtained give size structure of the population at the next age – that is,
nM(s,a + 1) and nI(s,a + 1).

Each iteration of steps 2–5 generates data for one age. Iterations are repeated until the
immature and mature size distributions at age 5 have been computed and sampled. The final
output data set is then composed of Nsample mature and immature individuals at each age,
which is the type of data required by the method described above (see pp. 662–665). Five
replicate data sets are computed for each robustness test to determine whether errors in
estimations are systematic or not. Differences between the theoretical and the estimated
reaction norm are assessed using the midpoint (S50), the inter-quartile range (S75–S25) and
the slope of the linear midpoint–age regression as descriptive statistics. The mean and the
mean absolute error for these three parameters are displayed in Tables 1 and 2. We also
analysed the shape of the estimated reaction norm using the quadratic coefficient obtained
by quadratic age–midpoint regression.
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Results of the robustness tests

To determine whether the method is valid and to establish the required sample size, we first
check for the existence of any systematic bias and a possible link between such bias and the
sample size. Six sample sizes are used: 1000, 500, 250, 100, 50 and 30. At large sample sizes
(500 and 1000) sampling errors are minimal, and estimated reaction norms are very similar
to the theoretical ones (Table 1, Fig. 2). Errors in the estimated midpoints, inter-quartile
ranges and slopes increase when sample size decreases, but there is no systematic bias: these
quantities are stochastically underestimated or overestimated due to sampling errors. As
shown in Fig. 2, large errors are more likely to arise for ages at which few individuals mature
(at points of the reaction norms that are away from the intersection with the mean growth
curve) than for ages at which most individuals mature. This can lead to large errors in the
estimated slope at low sample size, although the shape of the central part of the reaction
norm is correct (see Fig. 2, sample size = 100). When sample size is low (50 or 30) it is often
impossible to compute the reaction norm midpoint for ages at which few individuals
actually mature. These problems result from the fact that at ages where few individuals
mature, either immature (age 5) or mature (age 1) individuals are so rare that they are
unlikely to be sampled. Samples that contain very few immature or maturing individuals do
not contain enough information to robustly estimate the parameters of logistic regressions
that are used to describe the maturity ogive.

The bootstrap approach provides 95% confidence intervals for the midpoint estimations
(Fig. 2). Confidence intervals are generally less than 5 cm wide when the sample size is high
enough. They are always the narrowest at age 3, when the majority of individuals mature
(see estimated growth curve on Fig. 2). They are wider at age 1. At low sample sizes (n = 50)
confidence intervals are so wide that the validity of the estimation is questionable. This is

Table 1. Robustness of the estimation method to small sample size

Average
midpoint

Average
inter-quartile

range Slope

Mean Error Mean Error Mean Error

Actual reaction norm 50.0 10.0 0

Estimated reaction norm
A. Sample size 1000 49.6 1.5 10.4 2.2 0.8 0.8
B. Sample size 500 50.4 1.7 10.4 1.8 −0.5 0.9
C. Sample size 250 49.7 3.6 11.4 3.2 −2.2 2.8
D. Sample size 100 47.6 4.0 9.2 2.6 1.4 1.4
E. Sample size 50 49.8 6.2 9.6 6.2 4.1 8.2
F. Sample size 30 49.1 8.9 17.6 10.0 −7.9 7.9

Note: For each robustness test, corresponding to a different sample size at age, three properties of the estimated
reaction norm are assessed: (a) The reaction norm midpoint that describes for each age the size at which the
probability of maturing reaches 50%. Displayed values are averaged over all ages. (b) The inter-quartile range
describes for each age the size interval within which the probability of maturing rises from 25% to 75%. Again,
displayed values are averaged over ages. (c) The reaction norm slope obtained by linear age–midpoint linear
regression. Mean values are computed over five simulated replicate data sets and are displayed together with their
error measured as the mean absolute difference between estimated and actual values.
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not unexpected given that sampling error depends on sample size. Moreover, the use of
bootstrap becomes itself problematic. As explained above in the estimation procedure
section, maturity ogives are validly estimated when enough mature and immature
individuals with enough variability in their size are sampled at each age. When the observed
data set is resampled in the bootstrap procedure, there is no guarantee that the qualitative
properties of the original data set are retained. For example, bootstrap samples might
contain only immature or mature individuals even when the original sample contains both
immature and mature individuals. When sample size decreases, convergence problems
and high standard deviations for estimated parameters are more likely. This leads to wide
confidence intervals for the reaction norm midpoints, and to non-normal bootstrapped
distributions (the confidence intervals are highly skewed towards values that are higher than
the observed value; see Fig. 2, sample size 50). In extreme cases (at very low sample size, or
at ages where few individuals mature), it is not even possible to compute the reaction norm
for some bootstrapped data sets. For example, for sample size 50 and age 5 (Fig. 2), only
79 replicates out of 1000 bootstrapped samples led to a successful estimation of the reaction
norm midpoint. The validity of the confidence interval is thus highly questionable.

We then assess the robustness of the estimation method to the two assumptions required
to derive maturing probabilities (equation 2): immature and mature individuals have
identical growth and survival rates. We thus generated data sets assuming that mature
individuals have a higher survival rate than immature individuals (0.75 σI(s) = σM(s)), or vice
versa (σI(s) = 0.75 σM(s)). Alternatively, we generate data sets assuming that mature growth
rate is 25% higher or smaller than immature growth rate. Finally, the joint effect of
the violation of the two simplifying assumptions is tested. An artificial data set is built
assuming that mature individuals grow 25% slower than immature individuals, and
that mature individuals have a higher survival rate than immature individuals (0.75
σI(s) = σM(s)), and vice versa (σI(s) = 0.75 σM(s)).

When the sample size is very large (n > 500), the violation of the assumption of equal
growth rates or equal survival probabilities is inconsequential: the bias in the estimated
reaction norms is negligible. Significant biases arise only when samples are small. Absolute
errors in the midpoints, in the inter-quartile range and in the slope increase when sample
size decreases from 500 to 100 (in most cases they roughly double). Errors, especially in the
reaction norm slope, are slightly higher when the hypothesis of equality between mature
and immature growth rates is violated, than when the hypothesis of equality between
mature and immature mortality rates is violated (Table 2, comparison between rows A-B
and C-D). The violation of these two assumptions at the same time does not lead to higher
estimations errors: biases are not cumulative (Table 1, comparison between rows A-B-C-D
and E). Higher mortality after maturation results in overestimating the midpoints and to
positive reaction norm slopes, while it is the reverse for lower mortality after maturation.
Higher or lower growth rate after maturation does not lead to a consistent over- or under-
estimation of the reaction norm midpoint and slope across sample sizes (comparison of the
Table 2 cells for n = 100 and n = 500). The violation of the two hypotheses (either considered
separately or not) leads to an overestimation of the inter-quartile range (just one exception).

The robustness tests do not indicate any significant systematic bias in the shape of
the estimated reaction norm. Yet six artificial data sets out of 80 led to a statistically
significantly convex reaction norm. Furthermore, when curvature is not significant, the
estimated reaction norms tend to be slightly convex when judged visually (Fig. 2, n = 100).
This issue is due again more to problems of sample size than to the estimation method
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itself: estimated reaction norms are sometimes slightly convex because estimation problems
arise at low sample size and at ages where few individuals mature. Thus, the reaction norm
midpoints tend to be underestimated at age 1 and age 5 and the reaction norms are
slightly convex.

APPLICATION TO THE GEORGES BANK COD

As an illustrative example, we use our new method to estimate the reaction norm for age
and size at maturation for the Georges Bank stock of Atlantic cod (Gadus morhua); a full
analysis is presented elsewhere (Barot et al., in press). The data are obtained from the spring
bottom trawl survey conducted by the Northeast Fisheries Science Center along the
northeast coast of the USA (Azarovitz, 1981; O’Brien, 1999). Sampling of fish in the catch
is stratified by length, such that age, sex and maturity status are determined from a fixed
number of fish from each length class. An average of 299 fish (ages 1–5 years) are sampled
each year in this way. We estimate maturity ogives and growth rates and compute
probabilities of maturing at age and size using the methods described above. We do not take
length stratification of the sampling into account, as preliminary analyses showed that it
had only a minor influence on the estimations (cf. Morgan and Hoenig, 1997). To increase

Table 2. Robustness of the estimation method to the violation of the simplifying biological
assumptions

Average
midpoint

Average
inter-quartile

range Slope
Sample

size Mean Error Mean Error Mean Error

Actual reaction norm 50.0 10.0 0

Estimated reaction norm
A. Higher mortality after 500 51.7 3.1 11.2 2.4 0.2 0.7

maturation 100 54.6 6.4 13.0 5.0 2.6 3.0
B. Lower mortality after 500 49.8 1.6 9.8 2.0 −0.1 0.6

maturation 100 49.3 4.2 12.0 5.4 −1.7 2.1
C. Higher growth rate 500 49.1 2.0 10.8 3.0 1.0 1.0

after maturation 100 51.8 4.0 10.0 4.0 −2.1 2.6
D. Lower growth rate 500 52.1 2.9 12.6 3.4 −1.6 2.4

after maturation 100 52.4 5.7 11.4 4.4 −4.8 5.6
E. Combination of 500 49.8 2.3 11.2 3.0 0.3 1.3

factors 100 50.2 3.5 11.0 3.4 1.5 1.6

Note: The results are displayed as in Table 1 (the same three properties are used to describe the estimated reaction
norms, mean and absolute mean error are given). For each robustness test, artificial data sets are used using a
sample size at age of 500 and 100 individuals (respectively the first and second figure in each cell). Higher mortality
after maturation (A) is realized assuming survival probabilities σM/σI = 0.75, while lower mortality after maturation
(B) is realized assuming σM/σI = 1/0.75. Higher growth rate after maturation (C) is implemented multiplying the
original growth rate by 1.25, while lower growth rate (D) is obtained multiplying the growth rate by 0.75. The
cumulative effect (E) of the violations of the two hypotheses used to compute the probabilities of maturing is
tested assuming at the same time that growth and survival rates decrease after maturation.
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sample sizes, males and females are pooled, as differences in maturation between the sexes
were small in this stock.

Computing the probability of maturing proved generally to be unsuccessful when there
were less than 10 mature individuals, or less than 10 immature individuals sampled at age
for a given cohort. For this reason computing the probability of maturing for ages 1 and 5
when few individuals are maturing is not possible. Moreover, estimating maturity ogives
using a logistic regression also requires that sampled mature and immature individuals have
sufficiently contrasting sizes at the considered ages. We conclude that to safely compute
the reaction norms the estimation has to meet the following conditions: (1) the logistic
regression for the ogive is statistically valid (convergence of the estimation process, and low
standard errors for the estimated parameters); (2) the probabilities of maturing, computed
using the estimated maturity ogives, are increasing with size; (3) the observed size range
allows computing the midpoint of the reaction norm by interpolation, or by extrapolation
using another logistic regression if the midpoint is not too far from the observed range. As a
consequence of these requirements, it is possible to compute the probability of maturing at
age and size for ages 2, 3 and 4 and only in a few cohorts.

Figure 3 displays the estimated probability of maturing at age 3 years for two cohorts
(1969 and 1983) and the fitted logistic regression curve. It describes the way these curves are
used to compute the reaction norm midpoints – that is, the link between the probability of
maturing at a given age as a function of size and the reaction norm for age and size at
maturation. As an example, Fig. 4 displays the midpoints of the reaction norm for age
3 years and the cohorts 1969, 1975, 1980, 1983 and 1996, as well as the corresponding
inter-quartile ranges. Small sample sizes preclude computation of midpoints for the other
cohorts. Bootstrapped 95% confidence intervals are also displayed for the reaction norm
midpoints. Midpoints vary between 38.9 and 48.9 cm. The confidence intervals for these
midpoints are all between 5 and 7 cm wide. Inter-quartile ranges ranged between 8 and

Fig. 3. Application of the estimation method for Georges Bank cod stock. Probability of maturing
at age 3 computed as a function of size for cohorts 1969 and 1983. �, raw estimations of the
probabilities of maturing computed in the observed size range; — , fitted logistic regression curves.
Thin solid lines (dotted) indicate how the reaction norm midpoints (quartiles) can be graphically
determined.
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14 cm. That means that an increase of about 10 cm in size-at-age would increase the
probability of maturing from 0.25 to 0.75.

DISCUSSION

Our results show that the reaction norm for age and size at maturation can be robustly
estimated from age- and size-specific maturity ogives and age-specific annual growth
increments. Thus, reaction norm estimation only requires representative yearly samples of
individuals for which maturity status, age and length are determined. The method provides,
therefore, an estimation of the reaction norm for age and size at maturation when newly
matured individuals cannot be distinguished from those that have matured during earlier
seasons – an obstacle that prevents direct estimation with simple logistic regression (Heino
et al., 2002b). The method presented here thus complements the method of Heino et al.
(2002a), which permits the estimation of maturation reaction norms when immature
individuals have not been observed.

Numerical robustness tests have proved the general validity of the method in the sense
that there are no systematic errors. The method is relatively robust to the violation of
the main simplifying assumptions: identical growth and mortality rates for mature and
immature individuals at a certain age. Moreover, if data are available to estimate the
difference in mature and immature survival rates, this difference can be taken into account
in the reaction norm estimation (see equation A1 in the Appendix). One drawback of the
method is that it does not allow for standard statistical inference; since the estimation
method is based on a non-linear equation combining results from two statistical models,
it is not possible to directly derive confidence intervals for the reaction norm parameters.
However, a bootstrap method is available to derive confidence intervals for the reaction
norm midpoints.

The validity of the estimations, as always, depends on the quality of the data. The
robustness of our method decreases significantly when sample sizes are low. Results become

Fig. 4. Application of the estimation method for Georges Bank cod stock. Reaction norm midpoints
together with a bootstrapped 95% confidence interval and quartiles (dots) computed at age 3 for
cohorts 1969, 1975, 1980, 1983 and 1996. For the other documented cohorts it is not possible to
estimate the reaction norm midpoints due to low sample sizes (see text for a detailed explanation).
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unreliable when less than about 100 individuals are sampled at age. Sampling error in small
samples may seriously influence estimation of the maturity ogives and, consequently, it may
not be possible to obtain feasible estimates of the probability of maturing. A sample size of
100 individuals at age is the bare minimum that applies when the ratio of immature to
mature individuals in the sample is not very extreme. Larger samples are needed when size
at age is not variable, and for ages where very few individuals are maturing. The latter case
inevitably arises at ages corresponding to very early or late maturation relative to popula-
tion average, constraining the characterization of the maturation reaction norm over the
whole range of maturation ages.

Sample sizes required by the reaction norm estimation method presented in this paper are
so large that they are likely to restrict the use of the method in its simplest form. For
example, for the Georges Bank cod the reaction norm can only be estimated for a few
solitary cohorts. The problem of insufficient sample size can, to a certain extent, be
surmounted by combining data. The first option is to combine data ‘laterally’, from samples
collected at the same time: combining males and females, different ages, or samples from
different locations. The other option is to combine samples collected in consecutive seasons.
Data can be powerfully combined by estimating the maturity ogives and growth increments
with statistical models that use all the available data, but in which some of the interactions
between the explanatory variables (e.g. age, size, cohort and sex) have been omitted. This
allows a more robust estimation of maturation reaction norms with small samples, which
comes at the cost of having to make some simplifying assumptions about the dependence
of reaction norms on various explanatory variables. This extension to the basic method
introduced in this paper has turned out to be effective, and has been pursued in a number of
fish stocks: Georges Bank, the Gulf of Maine and northern (eastern Newfoundland) stocks
of Atlantic cod (Barot et al., in press; Olsen et al., 2004), plaice Pleuronectes platessa
(Grift et al., 2003) and American plaice Hippoglossoides platessoides (S. Barot et al.,
unpublished).

Simplifying assumptions of our method call for careful evaluation. In particular, the
assumption that growth and survival rates are not influenced by maturation may appear
far-fetched. Life-history theory predicts that reproduction results in a decrease in growth
and/or survival rates because energy allocation to reproduction starts to compete with
allocation to growth and maintenance (Roff, 1992; Stearns, 1992). Yet it is difficult to
demonstrate such a pattern with field data. This might be due either to practical problems
or to interacting processes generally not taken into account in life-history evolution models,
such as behaviour. For Georges Bank cod, there is no evidence for a somatic cost of
reproduction (Trippel et al., 1995): it seems that fast growing immature individuals maintain
fast growth after maturation. Similarly, demonstrating that adults have higher mortality
than juveniles is difficult due to the lack of sufficiently accurate survival data. In fish,
mortality change at maturation could be due to spawning migrations or other behavioural
changes. Georges Bank cod, however, do not show marked spawning migration, although
mortality could change due to the spawning behaviour. Nevertheless, the estimation method
is relatively robust even to large differences between mature and immature fish survival
(Table 2). For these reasons, we do not expect the estimated reaction norms (Fig. 3) to be
strongly biased.

We have interpreted the estimated probabilities of maturing at age and size in Georges
Bank cod as maturation reaction norms. This interpretation is strictly valid only if
variations in size-at-age are mostly caused by differences in the environment experienced
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by individual fish, rather than genetic differences among them. However, variation in
growth may also be partially genetic (Conover and Schultz, 1995; Wootton, 1998; Imsland
and Jónsdóttir, 2002), although the relative importance of genetic factors in explaining
population-level variation in natural populations is seldom known. The presence of strong
genetic effects in growth does not jeopardize estimations of maturation probabilities,
although it complicates their interpretation. In any case, the value of estimations of matur-
ation probabilities is not contingent only on the reaction norm interpretation. An attractive
property of probabilistic maturation reaction norms is the separation of the maturation
process from those of growth and mortality: because the probability of maturation
is expressed as being conditional on age and size and on being alive, the process of
maturation is separated from the processes of growth and survival that determine the
probability of reaching that age and size (Heino et al., 2002b).

Stearns and Crandall (1984) and Stearns and Koella (1986) have suggested that reaction
norms for age and size at maturation can be used to separate genetic and phenotypically
plastic effects on maturation. Variations in growth conditions are likely to be responsible for
the bulk of phenotypically plastic within- and among-population differences in maturation
in the wild. As mentioned above, the maturation reaction norm is not influenced directly
by growth variations. Because reaction norms are genetically determined properties
of individuals, the estimation of maturation reaction norms allows the disentanglement of
genetic and plastic components of maturation.

The separation of genetic and plastic components of maturation is particularly relevant
for understanding changes in maturation widely observed in commercially exploited fish
stocks. Most commonly, maturation occurs earlier and earlier (Rijnsdorp, 1989; Jørgensen,
1990; Morgan et al., 1994; Godø and Haug, 1999; O’Brien, 1999). Three main hypotheses
are advocated to explain the decrease in age at maturation (Law, 2000). First, faster body
growth could trigger earlier maturation when density-dependent effects on growth are
relaxed with decreasing population size. Second, some long-term climatic trends
(e.g. a more favourable temperature regime) could have triggered a change in the
maturation. These two hypotheses thus involve only phenotypic plasticity. Third,
maturation traits could have evolved in response to selection pressures caused by fishing
mortality. This explanation, therefore, implies genetic changes in maturation. Knowing
whether changes in the maturation dynamic are easily reversible (plasticity) or not (genetic
changes) is indispensable for the long-term management of fish stocks.

Estimations of age- and size-dependent maturation probabilities have applications other
than the disentanglement of genetic and plastic components of maturation mentioned
above. In general, the maturation reaction norm allows characterization of the maturation
process in a manner that is not confounded by the processes of growth and survival (Heino
et al., 2002b). Estimations of maturation reaction norms can therefore greatly advance our
understanding of the environmental influences on the maturation process. Note that the
commonly used probability of being mature (i.e. the maturity ogive) does not describe the
maturation process itself; rather, it describes the state of a population. Furthermore, the
need to extend the classical age-structured population models to account for size structure is
gaining currency in the literature (Claessen et al., 2000; De Leo and Gatto, 2001; Frøysa
et al., 2002). In the context of fisheries stock assessments, age- and size-structured models
can be used to predict a stock’s reproductive potential under different scenarios of future
growth and mortality regimes: What is the proportion of reproducing individuals? What
is their age- and size-distribution? The latter point is considered increasingly important
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(Murawski et al., 2001), as it is becoming recognized that the realized fecundity may
depend, in addition to the size of reproducing individuals, on their age distribution: at the
same size, older females would produce more or better quality eggs than younger
females (Trippel, 1998, 1999). In this context, the proper description of the age- and
size-dependence of the maturation process is indispensable.

The estimation method can be applied to any type of population as soon as the
population is sampled at least two times and individuals can be aged. Ageing is often
possible by studying growth patterns in hard structures (e.g. growth rings in woody plants
and in animals with calcified structures). Sample size requirements may seem more
restrictive, although these can partially be augmented by combining data across several
cohorts. When designing a new study, power analyses could be used to determine an
optimal sampling effort. Among existing data, sample size requirements are probably most
often met in the fisheries context where regular surveys often provide ample data. Never-
theless, the method offers potential for gaining new insight in many other studies
that compare age and size at first reproduction in different populations and/or in a single
population at different times and that use traditional ways to describe maturation and
disentangle phenotypic and genetic differences. The maturation reaction norms could then
be estimated, for example, to analyse spatial and temporal variations in maturation of red
deer (Langvatn et al., 1996), life-history variations in two lizard populations (Rohr, 1997),
sexual dimorphism in tortoise (Lagarde et al., 2001), or metamorphosis and maturation
in amphibians (Scott, 1990; Miaud et al., 1999). However, the method presented here is
probably not the most efficient one when individual recognition and non-destructive
determination of maturity status are possible, for example when tagged individuals
are followed, or in mark–recapture studies. With such data, maturing individuals can be
identified, allowing for more straightforward estimation methods.

Taken together, the statistical method we have developed is likely to be useful to
address the following types of questions: Can age and size at maturation evolve in a few
generations? Are the differences in maturation between two populations purely phenotypic?
What are the demographic consequences of the decrease in age and size at maturation in a
given population?
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APPENDIX 1: DETAILED CALCULATIONS OF THE PROBABILITY OF MATURING

A mathematical link between o(a,s) (the probability of being mature at age a and size s) and m(a,s)
(the probability of maturing at age and size) has to be derived. To do so, the survival rates of immature
and mature individuals (σI, σM), as well as their growth rates (∆sI, ∆sM), must be taken into account.
Since individuals that are mature at age a are either newly mature individuals or individuals that
matured earlier and have survived until age a,

o(a,s) =
individual already mature at age (a − 1) + newly mature individuals

individual already mature at age (a − 1) + newly mature individuals + immatures at age a

Developing this expression and noting NI and NM, the respective numbers of mature and immature
individuals, and sM = s − ∆sM, sI = s − ∆sI, the size of mature and immature individuals at age a − 1,
we get:

o(a,s) =

[σM(a − 1,sM)NM(a − 1,sM) + σM(a − 1,sM)NI(a − 1,sM)m(a,sM)] ÷

[σM(a − 1,sM)NM(a − 1,sM) + σM(a − 1,sM)NI(a − 1,sM)m(a,sM) +

σI(a − 1,sI)NI(a − 1,sI) (1 − m(a,sI))]

Note that this formula is derived under the hypothesis that individuals that mature in the focal year
and individuals that matured earlier have the same growth and survival rates, which justifies the
expression for the number of newly mature individuals (second terms of the numerator and
denominator).

Noting NT(a,s), the total number of individuals at age a and size s, we have NM(a,s) = NT(a,s)o(a,s)
and NI(a,s) = NT(a,s)(1 − o(a,s)). Dividing the denominator and the numerator of the fraction by
NT(a − 1,sM) leads to:
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o(a,s) =

[σM(a − 1,sM)o(a − 1,sM) + σM(a − 1,sM)(1 − o(a − 1,sM))m(a,sM)] ÷

[σM(a − 1,sM)o(a − 1,sM) + σM(a − 1,sM)(1 − o(a − 1,sM))m(a,sM) +

σI(a − 1,sI) (1 − o(a − 1,sI))
NT(a − 1,sI)

NT(a − 1,sM)
 (1 − m(a,sI))]

To find an expression of m(a,s) as a function of o(a,s), another assumption must be made unless
two unknown terms remain on the right-hand side of the equation, i.e. m(a,sI) and m(a,sM). Assuming
that immature and mature individuals have the same growth rates at a given size, which results in sI

and sM being equal to a common value s* (then, we also have ∆sM = ∆sI = ∆s*), we obtain:

o(a,s) =

[σM(a − 1,s*)o(a − 1,s*) + σM(a − 1,s*) (1 − o(a − 1,s*))m(a,s*)] ÷

[σM(a − 1,s*)o(a − 1,s*) + σM(a − 1,s*) (1 − o(a − 1,s*))m(a,s*) +

σI(a − 1,s*) (1 − o(a − 1,s*))(1 − m(a,s*))]

After some algebra and r denoting the ratio, σM(a − 1,s*)/σI(a − 1,s*), we obtain:

m(a,s) =
o(a,s) + o(a − 1,s*) (o(a,s)(r − 1) − r)

1 + o(a − 1,s*) (o(a,s)(r − 1) − r)
(A1)

Making a last assumption – that is, that immature and mature individuals of a given size have the
same survival rates (r = 1) – leads to:

m(a,s) =
o(a,s) − o(a − 1,s − ∆s*)

1 − o(a − 1,s − ∆s*)

Barot et al.678


