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Abstract. In this paper we develop a dynamical theory of coevolution in
ecological communities. The derivation explicitly accounts for the stochastic
components of evolutionary change and is based on ecological processes at
the level of the individual. We show that the coevolutionary dynamic can be
envisaged as a directed random walk in the community’s trait space. A quant-
itative description of this stochastic process in terms of a master equation is
derived. By determining the first jump moment of this process we abstract the
dynamic of the mean evolutionary path. To first order the resulting equation
coincides with a dynamic that has frequently been assumed in evolutionary
game theory. Apart from recovering this canonical equation we systematically
establish the underlying assumptions. We provide higher order corrections
and show that these can give rise to new, unexpected evolutionary effects
including shifting evolutionary isoclines and evolutionary slowing down of
mean paths as they approach evolutionary equilibria. Extensions of the
derivation to more general ecological settings are discussed. In particular we
allow for multi-trait coevolution and analyze coevolution under nonequilib-
rium population dynamics.

Key words: Coevolution — Stochastic processes — Mutation-selection systems —
Individual-based models — Population dynamics — Adaptive dynamics

1 Introduction

The self-organisation of systems of living organisms is elucidated most success-
fully by the concept of Darwinian evolution. The processes of multiplication,
variation, inheritance and interaction are sufficient to enable organisms to
adapt to their environments by means of natural selection (see e.g. Dawkins
1976). Yet, the development of a general and coherent mathematical theory of
Darwinian evolution built from the underlying ecological processes is far from



complete. Progress on these ecological aspects of evolution will critically de-
pend on properly addressing at least the following four requirements.

1. ¹he evolutionary process needs to be considered in a coevolutionary
context. This amounts to allowing feedbacks to occur between the evolutionary
dynamics of a species and the dynamics of its environment (Lewontin 1983). In
particular, the biotic environment of a species can be affected by adaptive
change in other species (Futuyma and Slatkin 1983). Evolution in constant or
externally driven environments thus are special cases within the broader co-
evolutionary perspective. Maximization concepts, already debatable in the
former context, are insufficient in the context of coevolution (Emlen 1987;
Lewontin 1979, 1987).

2. A proper mathematical theory of evolution should be dynamical. Although
some insights can be gained by identifying the evolutionarily stable states or
strategies (Maynard Smith 1982), there is an important distinction between
non-invadability and dynamical attainability (Eshel and Motro 1981; Eshel 1983;
Taylor 1989). It can be shown that in a coevolutionary community comprising
more than a single species even the evolutionary attractors generally cannot be
predicted without explicit knowledge of the dynamics (Marrow et al. 1996).
Consequently, if the mutation structure has an impact on the evolutionary
dynamics, it must not be ignored when determining evolutionary attractors.
Furthermore, a dynamical perspective is required in order to deal with evolution-
ary transients or evolutionary attractors which are not simply fixed points.

3. ¹he coevolutionary dynamics ought to be underpinned by a microscopic
theory. Rather than postulating measures of fitness and assuming plausible
adaptive dynamics, these should be rigorously derived. Only by accounting
for the ecological foundations of the evolutionary process in terms of the
underlying population dynamics, is it possible to incorporate properly both
density and frequency dependent selection into the mathematical framework
(Brown and Vincent 1987a; Abrams et al. 1989, 1993; Saloniemi 1993). Yet,
there remain further problems to overcome. First, analyses of evolutionary
change usually cannot cope with nonequilibrium population dynamics (but
see Metz et al. 1992; Rand et al. 1993). Second, most investigations are aimed
at the level of population dynamics rather than at the level of individuals
within the populations at which natural selection takes place; in consequence,
the ecological details between the two levels are bypassed.

4. ¹he evolutionary process has important stochastic elements. The process
of mutation, which introduces new phenotypic trait values at random into the
population, acts as a first stochastic cause. Second, individuals are discrete
entities and consequently mutants that arise initially as a single individual are
liable to accidental extinction (Fisher 1958). A third factor would be demo-
graphic stochasticity of resident populations; however, in this paper we
assume resident populations to be large, so that the effects of finite population
size of the residents do not have to be considered (Wissel and Stöcker 1989).
The importance of these stochastic impacts on the evolutionary process has
been stressed by Kimura (1983) and Ebeling and Feistel (1982).
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Only some of the issues above can be tackled within the mathematical
framework of evolutionary game dynamics. This field of research focuses
attention on change in phenotypic adaptive traits and serves as an extension
of traditional evolutionary game theory. The latter identifies a game’s payoff
with some measure of fitness and is based on the concept of the evolutionarily
stable strategy (Maynard Smith and Price 1973). Several shortcomings of the
traditional evolutionary game theory made the extension to game dynamics
necessary. First, evolutionary game theory assumes the simultaneous avail-
ability of all possible trait values. Though one might theoretically envisage
processes of immigration having this feature, the process of mutation typically
will only yield variation that is localized around the current mean trait value
(Mackay 1990). Second, it has been shown that the non-invadability of a trait
value does not imply that trait values in the vicinity will converge to the
former (Taylor 1989; Christiansen 1991; Takada and Kigami 1991). In conse-
quence, there can occur evolutionarily stable strategies that are not dynam-
ically attainable, these have been called ‘Garden of Eden’ configurations
(Hofbauer and Sigmund 1990). Third, the concept of maximization, underly-
ing traditional game theory, is essentially confined to single species adapta-
tion. Vincent et al. (1993) have shown that a similar maximization principle
also holds for ecological settings where several species can be assigned a single
fitness generating function. However, this is too restrictive a requirement
for general coevolutionary scenarios, so in this context the dynamical per-
spective turns out to be the sole reliable method of analysis.

We summarize the results of several investigations of coevolutionary
processes based on evolutionary game dynamics by means of the following
canonical equation

d

dt
s
�
"k

�
(s) ·

�
�s�

�

¼
�
(s�
�
, s) �s�

�
"s

�

. (1.1)

Here, the s
�
with i"1, . . . , N denote adaptive trait values in a community

comprising N species. The ¼
�
(s�
�
, s) are measures of fitness of individuals with

trait value s�
�
in the environment determined by the resident trait values s,

whereas the k
�
(s) are non-negative coefficients, possibly distinct for each

species, that scale the rate of evolutionary change. Adaptive dynamics of the
kind (1.1) have frequently been postulated, based either on the notion of
a hill-climbing process on an adaptive landscape or on some other sort of
plausibility argument (Brown and Vincent 1987a, 1987b, 1992; Rosenzweig
et al. 1987; Hofbauer and Sigmund 1988, 1990; Takada and Kigami 1991;
Vincent 1991; Abrams 1992; Marrow and Cannings 1993; Abrams et al. 1993).
The notion of the adaptive landscape or topography goes back to
Wright (1931). A more restricted version of equation (1.1), not yet allowing for
intraspecific frequency dependence, has been used by Roughgarden (1983).
It has also been shown that one can obtain an equation similar to the
dynamics (1.1) as a limiting case of results from quantitative genetics (Lande
1979; Iwasa et al. 1991; Taper and Case 1992; Vincent et al. 1993; Abrams et al.
1993).
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In this paper we present a derivation of the canonical equation that
accounts for all four of the above requirements. In doing this we recover the
dynamics (1.1) and go beyond them by providing higher order corrections to
this dynamical equation; in passing, we deduce explicit expressions for the
measures of fitness ¼

�
and the coefficients k

�
. The analysis is concerned with

the simultaneous evolution of an arbitrary number of species and is appropri-
ate both for pairwise or tight coevolution and for diffuse coevolution
(Futuyma and Slatkin 1983). We base the adaptive dynamics of the
coevolutionary community on the birth and death processes of individuals.
The evolutionary dynamics are described as a stochastic process, explicitly
accounting for random mutational steps and the risk of extinction of
rare mutants. From this we extract a deterministic approximation of the
stochastic process, describing the dynamics of the mean evolutionary path.
The resulting system of ordinary differential equations covers both the
asymptotics and transients of the adaptive dynamics, given equilibrium popu-
lation dynamics; we also discuss an extension to nonequilibrium population
dynamics.

The outline of the paper is as follows. Section 2 provides a general
framework for the analysis of coevolutionary dynamics. The relationship of
population dynamics to adaptive dynamics is discussed in a coevolutionary
context and we describe the basic quantities specifying a coevolutionary
community. For the purpose of illustration we introduce a coevolutionary
predator—prey system that serves as a running example to demonstrate most
of the ideas in this paper. In Sect. 3 we derive the stochastic representation of
the coevolutionary process, explaining the notion of a trait substitution
sequence and giving a dynamical description of these processes in terms of
a master equation. In Sect. 4 we utilize this representation in combination
with the stochastic concept of the mean evolutionary path in order to con-
struct a deterministic approximation of the coevolutionary process. From this
the canonical equation (1.1) is recovered and we demonstrate its validity up to
first order. This result is refined in Sect. 5 by means of higher order correc-
tions, where a general expression for the adaptive dynamics is deduced
allowing for increased accuracy. The higher order corrections give rise to new,
unexpected effects which are discussed in detail. We also provide the conditions
that must be satisfied for making the canonical equation exact and explain in
what sense it can be understood as the limiting case of our more general process.
In Sect. 6 we extend our theoretical approach to a wider class of coevolution-
ary dynamics by discussing several generalizations such as multiple-trait
coevolution and coevolution under nonequilibrium population dynamics.

2 Formal framework

Here we introduce the basic concepts underlying our analyses of coevolution-
ary dynamics. Notation and assumptions are discussed, and the running
example of predator—prey coevolution is outlined.
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2.1 Conceptual background

The coevolutionary community under analysis is allowed to comprise an
arbitrary number N of species, the species are characterized by an index
i"1, . . . , N. We denote the number of individuals in these species by n

�
, with

n"(n
�
, . . . , n

�
). The individuals within each species can be distinct with

respect to adaptive trait values s
�
, taken from sets SK

�
and being either continu-

ous or discrete. For convenience we scale the adaptive trait values such that
SK
�
L(0, 1). The restriction to one trait per species will be relaxed in Sect. 6.2,

but obtains until then to keep notation reasonably simple.
The development of the coevolutionary community is caused by the

process of mutation, introducing new mutant trait values s�
�
, and the process of

selection, determining survival or extinction of these mutants. A formal
description will be given in Sects. 2.2 and 3.2; here we clarify the concepts
involved. The change of the population sizes n

�
constitutes the population

dynamics, that of the adaptive trait values s
�

is called adaptive dynamics.
Together these make up the coevolutionary dynamics of the community. We
follow the convention widely used in evolutionary theory that population
dynamics occurs on an ecological timescale that is much faster than the
evolutionary timescale of adaptive dynamics (Roughgarden 1983). Two im-
portant inferences can be drawn from this separation.

First, the timescale argument can be used in combination with a principle
of mutual exclusion to cast the coevolutionary dynamics in a quasi-monomor-
phic framework. The principle of mutual exclusion states that no two adaptive
trait values s

�
and s�

�
can coexist indefinitely in the population of species

i"1, . . . , N when not renewed by mutations; of the two trait values event-
ually only the single more advantageous one survives. For the moment we
keep this statement as an assumption; in Sect. 6.1 we will have built up the
necessary background to clarify its premisses. Together with the timescale
argument we conclude that there will be one trait value prevailing in each
species at almost any point in time. This is not to say that coexistence of
several mutants cannot occur at all: we will regard an evolving population as
quasi-monomorphic, if the periods of coexistence are negligible compared to
the total time of evolution (Kimura 1983). The adaptive state of the co-
evolutionary community is then aptly characterized by the vector
s"(s

�
, . . . , s

�
) of prevailing or resident trait values and the state space of the

coevolutionary dynamics is the Cartesian product of the monomorphic trait
space SK "X�

���
SK
�
LR� and the population size space NK "X�

���
NK

�
"Z�

�
.

When considering large population sizes we may effectively replace NK
�
"Z

�
by NK

�
"R

�
.

Second, we apply the timescale argument together with an assumption of
monostable population dynamics to achieve a decoupling of the population
dynamics from the adaptive dynamics. In general, the population dynamics
could be multistable, i.e. different attractors are attained depending on initial
conditions in population size space. It will then be necessary to trace the
population dynamics �

��
n is size space NK simultaneously with the adaptive
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dynamics �
��

s in trait space SK . This is no problem in principle but it makes the
mathematical formulation more complicated; for simplicity we hence assume
monostability. Due to the different timescales, the system of simultaneous
equations can then be readily decomposed. The trait values s or functions
thereof can be assumed constant as far as the population dynamics �

��
n are

concerned. The population sizes n or functions F thereof can be taken
averaged when the adaptive dynamics �

��
s are considered, i.e.

FM (s)" lim
���

1

¹ · �
�

�

F(s, n(s, t)) dt (2.1)

where n (s, t) is the solution of the population dynamics �
��

n with initial
conditions n (s, 0) which are arbitrary because of monostability. With the help
of these solutions n(s, t) we can also define the region of coexistence SK

�
as that

subset of trait space SK that allows for sustained coexistence of all species

SK
�
"�s3SK � lim

���

n
�
(s, t)'0 for all i"1, . . . , N� . (2.2)

If the boundary �SK
�
of this region of coexistence is attained by the adaptive

dynamics, the coevolutionary community collapses from N species to a
smaller number of N� species. The further coevolutionary process then has to
be considered in the corresponding N�-dimensional trait space. There can also
exist processes that lead to an increase in the dimension of the triat space, see
e.g. Sect. 6.1.

2.2 Specification of the coevolutionary community

We now have to define those features of the coevolutionary community that
are relevant for our analysis in terms of ecologically meaningful quantities.

We first consider the process of selection. In an ecological community the
environment e

�
of a species i is affected by influences that can be either internal

or external with respect to the community considered. The former effects are
functions of the adaptive trait values s and population sizes n in the commun-
ity; the latter may moreover be subject to external effects like seasonal forcing
which render the system non-autonomous. We thus write

e
�
"e

�
(s, n, t) . (2.3)

The quantities b�
�
and dI

�
are introduced to denote the per capita birth and death

rates of an individual in species i. These rates are interpreted stochastically as
probabilities per unit time and can be combined to yield the per capita
growth rate fI

�
"b�

�
!dI

�
of the individual. They are affected by the trait value

s�
�
of the individual as well as by its environment e

�
, thus with equation (2.3) we

have
b�
�
"b�

�
(s�
�
, s, n, t) and dI

�
"dI

�
(s�
�
, s, n, t) . (2.4)

Since we are mainly interested in the phenomenon of coevolution — an effect
internal to the community — in the present paper we will not consider the extra
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time-dependence in equations (2.4) which may be imposed on the environment
by external effects.

We now turn to the process of mutation. In order to describe its properties
we introduce the quantities �

�
and M

�
. The former denote the fraction of births

that give rise to a mutation in the trait value s
�
. Again, these fractions are

interpreted stochastically as probabilities for a birth event to produce an
offspring with an altered adaptive trait value. These quantities may depend on
the phenotype of the individual itself,

�
�
"�

�
(s
�
) , (2.5)

although in the present paper we will not dwell on this complication. The
quantities

M
�
"M

�
(s
�
, s�

�
!s

�
) (2.6)

determine the probability distribution of mutant trait values s�
�

around the
original trait value s

�
. If the functions M

�
and �

�
are independent of their first

argument, the mutation process is called homogeneous; if M
�
is invariant under

a sign change of its second argument, the mutation process is called symmetric.
With equilibrium population sizes nL (s) satisfying fI

�
(s
�
, s, nL (s))"0 for all

i"1, . . . , N, the time average in equation (2.1) is simply given by
FM (s)"F(s, nL (s)). In particular we thus can define

fM
�
(s�
�
, s)"fI

�
(s�
�
, s, nL (s)) (2.7)

and analogously for b�
�

and dM
�
. We come back to the general case of

nonequilibrium population dynamics in Sect. 6.3.
We conclude that for the purpose of our analysis the coevolutionary

community of N species is completely defined by specifying the ecological
rates b�

�
, dI

�
and the mutation properties �

�
, M

�
. An explicit example is

introduced for illustration in Sect. 2.3. We will see that our formal framework
allows us to deal both with density dependent selection as well as with
interspecific and intraspecific frequency dependent selection.

2.3 Application

To illustrate the formal framework developed above, here we specify a co-
evolutionary community starting from a purely ecological one. The example
describes coevolution in a predator—prey system.

First, we choose the population dynamics of prey (index 1) and predator
(index 2) to be described by a Lotka—Volterra system with self-limitation in
the prey

d

dt
n
�
"n

� · (r�!� · n�!� · n�
) ,

(2.8)
d

dt
n
�
"n

� · (!r
�
#� · n�

)
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where all parameters r
�
, r

�
, �, � and � are positive. These control parameters of

the system are determined by the species’ intraspecific and interspecific inter-
actions as well as by those with the external environment.

Second, we specify the dependence of the control parameters on the
adaptive trait values s"(s

�
, s

�
)

� (s
�
, s

�
)/u"c

� ·� (s
�
, s

�
)

� (s
�
, s

�
)/u"exp(!	�

�
#2c

� · 	� · 	�
!	�

�
) , (2.9)

�(s
�
)/u"c

�
!c

� · s�
#c

� · s��
with 	

�
"(s

�
!c

	
)/c



and 	

�
"(s

�
!c

�
)/c

�
; r

�
and r

�
are independent of s

�
and s

�
. The constant u can be used to scale population sizes in the community.

For the sake of concreteness s
�

and s
�

may be thought of as representing the
body sizes of prey and predator respectively. According to the Gaussian
functions � and �, the predator’s harvesting of the prey is most efficient at
(s
�
"c

	
, s

�
"c

�
) and, since c

�
'0, remains particularly efficient along the line

(s
�
, s

�
"s

�
), i.e. for predators having a body size similar to their prey. Accord-

ing to the parabolic function �, the prey’s self-limitation is minimal at
s
�
"c

�
/2c

�
. Details of the biological underpinning of these choices are dis-

cussed in Marrow et al. (1992).
Third, we provide the per capita birth and death rates for a rare mutant

trait value s�
�

or s�
�

respectively,

b�
�
(s�
�
, s, n)"r

�
,

dI
�
(s�
�
, s, n)"� (s�

�
) · n�

#� (s�
�
, s

�
) · n�

,

b�
�
(s�
�
, s, n)"�(s

�
, s�

�
) · n�

,

dI
�
(s�
�
, s, n)"r

�
.

(2.10)

These functions are the simplest choice in agreement with equations (2.8) and
can be inferred by taking into account that mutants are rare when entering the
community.

Fourth, we complete the definition of our coevolutionary community by
the properties of the mutation process,

�
�
,

M
�
(s
�
, �s

�
)" 1

�2
 · ��

· exp �!
1

2
�s�

�
/��

�� ,

�
�
,

M
�
(s
�
, �s

�
)" 1

�2
 · ��

· exp �!
1

2
�s�

�
/��

�� .

(2.11)

The standard numerical values for all parameters used in subsequent simula-
tions are given in Table 1.

Although the coevolutionary community defined by (2.10) and (2.11)
captures some features of predator—prey coevolution, other choices for the
same purpose or for entirely different ecological scenarios could readily be
made within the scope of our approach. Many features of the model presented
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Table 1. The default parameter values for the coevolutionary predator—prey community

will be analyzed in the course of this paper; additional discussion is provided
in Marrow et al. (1992, 1996) and Dieckmann et al. (1995).

3 Stochastic representation

In this section we establish the stochastic description of the coevolutionary
dynamics. The central idea is to envisage a sequence of trait substitutions as
a directed random walk in trait space determined by the processes of mutation
and selection.

3.1 Stochastic description of trait substitution sequences

The notion of the directed random walk is appropriate for three reasons. First,
the current adaptive state of the coevolutionary community is represented by
the vector s"(s

�
, . . . , s

�
) composed of the trait values prevalent in each

species. This is due to the assumption of quasi-monomorphic evolution
discussed in the last section. So a trait substitution sequence is given by the
dynamics of the point s in N-dimensional trait space (Metz et al. 1992).
Second, these dynamics incorporate stochastic change. As already noted in
the Introduction, the two sources for this randomness are (i) the process of
mutation and (ii) the impact of demographic stochasticity on rare mutants.
Third, the coevolutionary dynamics possess no memory, for mutation and
selection depend only on the present state of the community. The trait
substitution sequence thus will be Markovian, provided that s determines the
state of the coevolutionary system. To meet this requirement for realistic
systems, a sufficient number of traits may need to be considered, see Sect. 6.2.

By virtue of the Markov property the dynamics of the vector s is described
by the following equation

d

dt
P (s, t)"� [w(s � s�) ·P (s�, t )!w (s� � s ) · P(s, t)] ds� . (3.1)
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Here P(s, t) denotes that probability that the trait values in the coevolutionary
system are given by s at time t. Note that P (s, t) is only defined on the region of
coexistence SK

�
. The w (s� � s ) represent the transition probabilities per unit time

for the trait substitution s P s�. The stochastic equation above is an instance
of a master equation (see e.g. van Kampen 1981) and simply reflects the fact
that the probability P(s, t) is increased by all transitons to s (first term) and
decreased by all those from s (second term).

Transition probabilities per unit time

We now turn to the definition of the transition probabilities per unit time.
Since the change dP in the probability P(s, t) is only considered during the
infinitesimal evolutionary time interval dt, it is understood that only
transitions corresponding to a trait substitution in a single species have
a nonvanishing probability per unit time. This is denoted by

w (s� � s)" �
�
���

w
�
(s�
�
, s) ·

�


	��
	9�

	 (s�
	
!s

	
) (3.2)

where 	 is Dirac’s delta function. For a given s the ith component of this sum
can be envisaged in the space of all s�!s as a singular probability distribution
that is only nonvanishing on the ith axis. The derivation of w

�
(s�
�
, s ), the

transition probability per unit time for the trait substitution s
�
P s�

�
, comes in

three parts.

1. Mutation and selection are statistically uncorrelated. For this reason the
probability per unit time w

�
for a specific trait substitution is given by the

probability per unit time M
�
that the mutant enters the population times

the probability S
�
that it successfully escapes accidental extinction

w
�
(s�
�
, s)"M

�
(s�
�
, s ) ·S

�
(s�
�
, s) . (3.3)

2. The processes of mutation in distinct individuals are statistically uncor-
related. Thus the probability per unit time M

�
that the mutant enters the

population is given by the product of the following three terms.
(a) The per capita mutation rate �

�
(s
�
) · b�

�
(s
�
, s) for the trait value s

�
. The

term b�
�
(s
�
, s ) is the per capita birth rate of the ith species in the

community determined by the resident trait values s, and �
�
(s
�
) denotes

the fraction of births that give rise to mutations in the species i.
(b) The equilibrium population size nL

�
(s) of the ith species.

(c) The probability distribution M
�
(s
�
, s�

�
!s

�
) for the mutation process in

the trait s
�
.

Collecting the results above we obtain

M
�
(s�
�
, s )"�

�
(s
�
) · b�

�
(s
�
, s ) · nL

�
(s) · M

�
(s
�
, s�

�
!s

�
) (3.4)

for the probability per unit time that the mutant enters the population.
3. The process of selection determines the mutant’s probability S

�
of escaping

initial extinction. Since mutants enter as single individuals, the impact of

588 U. Dieckmann, R. Law



demographic stochasticity on their population dynamics must not be
neglected (Fisher 1958). We assume, however, that the equilibrium popula-
tion sizes nL

�
are large enough for there to be negligible risk of accidental

extinction of the established resident population. Two consequences stem
from this.
(a) Frequency-dependent effects on the population dynamics of the mutant

can be ignored when the mutant is rare relative to the resident.
(b) The actual equilibrium size of the mutant after fixation is not important

as long as it is large enough to exceed a certain threshold. Above this
threshold the effect of demographic stochasticity is negligible (Wissel
and Stöcker 1991).

The probability that the mutant population reaches size n starting from
size 1 depends on its per capita birth and death rates, b and d. Based on
the stochastic population dynamics of the mutant (Dieckmann 1994) and
on statement (a) above, this probability can be calculated analytically. The
result is given by [1!(d/b)]/[1!(d/b)
] (Bailey 1964; Goel and Richter-
Dyn 1974). We exploit statement (b) above by taking the limit n PR. The
probability S

�
of escaping extinction is then given by

S
�
(s�
�
, s )"�

1!dM
�
(s�
�
, s )/b�

�
(s�
�
, s)

0

for dM
�
(s�
�
, s )/b�

�
(s�
�
, s)(1

for dM
�
(s�
�
, s )/b�

�
(s�
�
, s)71

(3.5)

"b� 
�
�

(s�
�
, s) · ( fM

�
(s�
�
, s ))

�

where the function ( . . . )
�

: x Px · �(x), the product of the identity and
the Heaviside function, leaves positive arguments unchanged and maps
negative ones to zero. It follows from equation (3.5) that deleterious
mutants (with a per capita growth rate smaller than that of the resident
type) have no chance of survival but even advantageous mutants (with a
greater per capita growth rate) experience some risk of extinction, see Fig. 1.

We conclude that the transition probabilities per unit time for the trait
substitutions s

�
P s�

�
are

w
�
(s�
�
, s )"�

�
(s
�
) · b�

�
(s
�
, s) · nL

�
(s) · M

�
(s
�
, s�

�
!s

�
) · b� 
�

�
(s�
�
, s ) · ( fM

�
(s�
�
, s))

�
. (3.6)

This expression completes the stochastic representation of the mutation-
selection process in terms of the master equation.

3.3 Applications

The information contained in the stochastic representation of the coevoution-
ary dynamics can be used in several respects.

First, we can employ the minimal process method (Gillespie 1976) to obtain
actual realizations of the stochastic mutation-selection process. We illustrate
this method by means of our example of predator—prey coevolution.
The two-dimensional trait space SK of this system is depicted in Fig. 2a. The
dashed line surrounds the region of coexistence SK

�
. Within this region

Coevolutionary dynamics based on stochastic ecological processes 589



Fig. 1. Invasion success of a rare mutant. The probability S
�
(s�
�
, s) of a mutant population

initially of size 1 with adaptive trait value s�
�
in a community of monomorphic resident

populations with adaptive trait values s to grow in size such as to eventually overcome the
threshold of accidental extinction is dependent on the per capita growth and death rates,
fM
�
(s�
�
, s ) and dM

�
(s�
�
, s), of individuals in the mutant population. Deleterious mutants with

fM
�
(s�
�
, s )(0 go extinct with probability 1 but even advantageous mutants with fM

�
(s�
�
, s )'0

have a survival probability less than 1. Large per capita deaths rates hinder invasion success
while large per capita growth rates of the mutant favor it

different trait substitution sequences (s
�
(t), s

�
(t)) are displayed by continuous

lines. Note that trait substitution sequences starting from the same initial
states (indicated by asterisks) are not identical. This underlines the unique,
historical nature of any evolutionary process. But, although these paths are
driven apart by the process of mutation, they are kept together by the
directional impact of selection.

Second, the latter observation underpins the introduction of a further
concept from stochastic process theory. By imagining a large number r of trait
substitution sequences s�(t)"(s�

�
(t), . . . , s�

�
(t)), with k"1, . . . , r, starting

Fig. 2a. Stochastic representation of
the adaptive dynamics: trait substitu-
tion sequences as defined by equa-
tions (3.1), (3.2) and (3.6). Ten directed
random walks in trait space for each
of five different initial conditions (in-
dicated by asterisks) are depicted by
continuous lines. The discontinuous
oval curve is the boundary of the
region of coexistence. The coevolu-
tion of both species drives the trait
values towards a common equilib-
rium sL . The parameters of the co-
evolutionary predator—prey com-
munity are given in Table 1
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Fig. 2b. Stochastic representation of
the adaptive dynamics: mean paths as
defined by equation (3.7). Ten trait
substitution sequences for each of the
five different initial conditions (in-
dicated by asterisks) are combined to
obtain estimates for the mean paths,
depicted by continuous lines. The
jaggedness of the lines is caused by
the finite number of ten trait substitu-
tion sequences. The discontinuous
oval curve is the boundary of the
region of coexistence. The parameters
of the coevolutionary predator-prey
community are as in Fig. 2a

Fig. 2c. Deterministic approxima-
tion of the adaptive dynamics: phase
portrait as defined by equations
(4.12). The deterministic trajectories
which correspond to the trait substi-
tution sequences in Fig. 2a and to the
mean paths in Fig. 2b are depicted by
continuous lines (initial conditions
are indicated by asterisks). Other
trajectories have been added to sup-
plement the phase portrait. The struc-
ture of the evolutionary flow in trait
space thereby becomes visible. The
discontinuous oval curve is the
boundary of the region of coexistence.
The dotted curves are the inner evolu-
tionary isoclines of the two species
(straight line: predator, curved line:
prey). The parameters of the co-
evolutionary predator—prey com-
munity are as in Fig. 2a

from the same initial state, it is straightforward to apply an averaging process
in order to obtain the mean path �s� (t) by

�s� (t)" lim
���

1

r
·

�
�
���

s�(t) . (3.7)

The construction of these mean paths is illustrated in Fig. 2b. Since the mean
path obviously summarizes the essential features of the coevolutionary pro-
cess, it is desirable to obtain an explicit expression for its dynamics. This issue
will be addressed in the next two sections.
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4 Deterministic approximation: first order

We now derive an approximate equation for the mean path of the co-
evolutionary dynamics. In this section we obtain a preliminary result and
illustrate it by application to predator—prey coevolution. The argument in this
section will be completed by the results of Sect. 5.

4.1 Determining the mean path

The mean path has been defined above as the average over an infinite number
of realizations of the stochastic process. Equivalently, we can employ the
probability distribution P (s, t) considered in the last section to define the mean
of an arbitrary function F (s) by �F(s)� (t)"� F (s) ·P (s, t) ds. In particular we
thereby obtain for the mean path

�s� (t)"� s · P(s, t) ds . (4.1)

The different states s thus are weighted at time t according to the probability
P(s, t) of their realization by the stochastic process at that time. In order to
describe the dynamics of the mean path we start with the expression

d

dt
�s� (t)"� s ·

d

dt
P(s, t) ds , (4.2)

and utilize the master equation to replace �
��

P (s, t). One then finds with some
algebra

d

dt
�s� (t)"� � (s�!s) · w (s� � s) ·P (s, t) ds�ds . (4.3)

By exploiting the delta function property of w (s� � s), see equation (3.2), and
introducing the so called kth jump moment of the ith species

a
��
(s)"� (s�

�
!s

�
)� · w

�
(s�
�
, s ) ds�

�
(4.4)

with a
�
"(a

��
, . . . , a

��
) we obtain

d

dt
�s� (t)"�a

�
(s)� (t) . (4.5)

If the first jump moment a
�
(s) were a linear function of s, we could make

use of the relation �a
�
(s)�"a

�
(�s�) giving a self-contained equation for

the mean path

d

dt
�s� (t)"a

�
(�s� (t)) . (4.6)
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However, the coevolutionary dynamics typically are nonlinear so that the
relation �a

�
(s)�"a

�
(�s�) does not hold. Nevertheless, as long as the devi-

ations of the stochastic realizations from the mean path are relatively small or,
alternatively, the nonlinearity is weak; the equation above provides a very
good approximation to the dynamics of the mean path. A quantitative
discussion of this argument is provided in van Kampen (1962) and Kubo
et al. (1973). To distinguish between the mean path itself and that actually
described by equation (4.6), the latter is called the deterministic path (Serra
et al. 1986).

4.2 Deterministic approximation in first order

We can now calculate the deterministic path of the coevolutionary dynamics
by substituting (3.6) into (4.4) and the result into (4.6). Since from now on we
concentrate on this deterministic approximation we will cease denoting it by
angle brackets � . . . �. So we obtain

d

dt
s
�
"�

�
(s
�
) · b�

�
(s
�
, s ) · nL

�
(s) ·

�R
�
(s)

(s�
�
!s

�
) · M

�
(s
�
, s�

�
!s

�
) · b� 
�

�
(s�
�
, s ) · fM

�
(s�
�
, s) ds�

�
, (4.7)

where, as an alternative to employing the function ( . . . )
�

in the integrand, we
have restricted the range of integration in (4.7) to s�

�
3R

�
(s) with

R
�
(s)"�s�

�
3SK

�
� fM

�
(s�
�
, s)'0� . (4.8)

Note that the process of mutation causes the evolutionary rate of s
�
to be

dependent on the per capita growth and birth rates of all possible mutant trait
values s�

�
. This dependence is manifested both by the integrand of (4.7) and in

the range of integration (4.8). In order to transform the global coupling into
a local one we apply a Taylor expansion to fM

�
(s�
�
, s ) and b� 
�

�
(s�
�
, s ) · fM

�
(s�
�
, s) about

s�
�
"s

�
. Higher orders in these expansions are discussed in Sect. 5; in this

section we will use the results only up to first order

fM
�
(s�
�
, s)"��

�
fM
�
(s
�
, s ) · (s�

�
!s)#O[(s�

�
!s

�
)�] (4.9)

and

b� 
�
�

(s�
�
, s ) · fM

�
(s�
�
, s)"b� 
�

�
(s
�
, s ) · ��

�
fM
�
(s
�
, s ) · (s�

�
!s )#O[(s�

�
!s

�
)�] . (4.10)

We have exploited the condition fM
�
(s
�
, s )"0 above, for the population dy-

namics of the resident species are assumed to be at equilibrium. Since derivat-
ives of the ecological rate functions will be used throughout this paper, we
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apply the abbreviated notations

��
�
fM
�
" �

�s�
�

fM
�
, �

�
fM
�
" �

�s
�

fM
�

(4.11)

and analogously for all functions taking the arguments (s�
�
, s ). From (4.8) and

(4.9) we can infer that the range R
�
(s) of integration in this first order result is

either (s
�
, #R) or (!R, s

�
), depending only on the sign of ��

�
fM
�
(s
�
, s ). If we

assume the mutation process to be symmetric, we obtain the same result in
both cases by substituting (4.10) into (4.7)

d

dt
s
�
"1

2
·�

�
(s
�
) · ��

�
(s
�
) · nL

�
(s) · ��

�
fM
�
(s
�
, s ) (4.12)

where

��
�
(s
�
)"��s�

�
· M

�
(s
�
,�s ) d�s

�
, (4.13)

denotes the second moment of the mutation distribution M
�
. Since the first

moment of M
�
vanishes due to symmetry, the second moment of this distribu-

tion equals its variance.
The set of equations (4.12) provides a first order, deterministic approxima-

tion of the coevolutionary dynamics. The rate of evolution in the trait s
�
is

determined by two factors.

1. The first terms in equation (4.12) represent the influence of mutation. This
product is affected by the fraction �

�
(s
�
) of mutations per birth and by the

variance ��
�
(s
�
) of the mutation distribution M

�
. For homogeneous muta-

tion processes these terms are constant. The third factor nL
�
(s) is the equilib-

rium population size. All these three terms make up the evolutionary rate
coefficient which is non-negative and serves to scale the rate of evolutionary
change.

2. The last factor accounts for the impact of selection. The function

��
�
fM
�
(s
�
, s )" �

�s�
�

f
�
(s�
�
, s ) �s�

�
"s

�

" lim
�s

�
P0

1

�s
�

· [ fM
�
(s
�
#�s

�
, s )!fM

�
(s
�
, s)] (4.14)

" lim
�s

�
P0

1

�s
�

· fM
�
(s
�
#�s

�
, s)

which we call the selection derivative (Marrow et al. 1992), indicates the
sensitivity of the per capita growth rate of a species to a change in the trait
value s

�
. It is a measure of the selection pressure generated by the environ-

ment through the ecological interactions. Consequently, this factor deter-
mines the direction of adaptive change. When the selection derivative of fM

�
is positive (negative), an increase (a decrease) of the trait value s

�
will be

advantageous in the vicinity of the resident trait value.
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The sign of the selection derivative evidently carries important information on
the dynamical structure of the mutation-selection process; yet, in Marrow et
al. (1996) we demonstrate that this information in general is not sufficient to
predict evolutionary attractors.

By means of equation (4.12) we have recovered the canonical equation (1.1)
from the stochastic ecological processes underlying the adaptive dynamics.
For the evolutionary rate coefficients we obtain k

�
(s)"�

� · �
�
(s
�
) ·��

�
(s
�
) · nL

�
(s).

In addition, we have shown the appropriate measure of fitness to be given by
the per capita growth rate of a rare mutant evaluated while resident popula-
tion sizes are at equilibrium, ¼

�
(s�
�
, s )"fM

�
(s�
�
, s).

4.3 Applications

The deterministic approximation (4.12) readily allows us to calculate phase
portraits of the adaptive dynamics. The application to predator—prey coevolu-
tion is depicted in Fig. 2c. The evolutionary trajectories given by the deter-
ministic paths coincide with the mean paths calculated from the stochastic
process itself, see Fig. 2b. In Fig. 3 phase portraits of the predator—prey system
are displayed that correspond to other choices of parameters. We see that the
coevolutionary dynamics can either lead to extinction of one species (Fig. 3a),
approach one of several coevolutionary stable states (Fig. 3b), or it can give
rise to continuous, in particular cyclic, coevolutionary change (Fig. 3c); see
Dawkins and Krebs (1979) for a discussion of the ecological and evolutionary
implications and Dieckmann et al. (1995) for a detailed investigation of the
cyclic regime.

However, some caveats are necessary for understanding the validity of any
deterministic approximation of a stochastic process. First, if the adaptive
dynamics turn out to be multistable (as in Fig. 3b), it will be possible for trait
substitution sequences to exhibit jumps between the existing basins of attrac-
tion. This must be kept in mind while applying the deterministic approxima-
tion to initial states very close to the basin boundary. Figure 4a illustrates this
point. In principle, large fluctuations between the multiple stable states them-
selves can happen. However, the latter will typically be associated with
extremely small probabilities per unit time, which are negligible on ecological
and even on evolutionary timescales; moreover, when the mutation distribu-
tions are bounded, such large jumps become impossible altogether. Second, if
the flow of the dynamical system describing the deterministic path is expand-
ing, i.e. trajectories are diverging (as in some regions of Fig. 3b), the deviations
of the stochastic realizations from the mean path can grow too fast for the
identification of the deterministic path with the mean path to be reliable
(see Fig. 4b). Note that the construction of phase portraits based on the
deterministic path is useful in any case, since these allow qualitative predic-
tions of the stochastic dynamics by considering the combined process of
movement along the trajectories accompanied by jumps between them. For
illustration compare Figs. 2a and 2c, see also Fig. 4b. Third, if the attractors of
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Fig. 3a–c. Deterministic approxima-
tion of the adaptive dynamics: phase
portraits. The deterministic trajecto-
ries are depicted by continuous lines.
Three qualitatively distinct outcomes
of two-species coevolution are illus-
trated. a Evolutionary extinction (the
coevolution of both species drives the
trait values towards a boundary isoc-
line where the predator becomes ex-
tinct). b Evolutionary multistability
(depending on initial condition the
coevolution of both species drives the
trait values towards one of two equi-
libria which are separated by
a saddle). c Evolutionary cycling (the
coevolution of both species eventual-
ly forces the trait values to undergo
sustained oscillatory change). The
discontinuous oval curve in each fig-
ure is the boundary of the region of
coexistence. The dotted curves are the
inner evolutionary isoclines of the
two species (straight lines: predator,
curved lines: prey). The parameters of
the coevolutionary predator—prey
community are as in Table 1, except
for: c

�
"1, c

�
"3, c

�
"0, c

�
"0 and

�
�
"10
	 (Fig. 3a); c

�
"1, c

�
"3,

c
�
"10 and �

�
"10
	 (b); c

�
"0.11,

c
�
"3, c

�
"10 and �

�
"10
	 (c)
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Fig. 4a, b. Descriptive capacity of the
stochastic representation. Ten di-
rected random walks in trait space
with a common initial condition are
depicted in each figure by continuous
lines. a The set of trait substitution
sequences splits permanently into two
separate bundles as the initial condi-
tion is close to an existing basin
boundary (depicted as a curve of dots
and dashes). b The splitting of the set
of trait substitution sequences into
two separate bundles is only tempor-
ary and is caused by the existence of
an expanding flow (shown as thin
curves) in a region that contains the
initial condition. Deterministic de-
scriptions of the dynamics of the
mean path cannot capture these fea-
tures. The discontinuous oval curve
in each figure is the boundary of the
region of coexistence. The parameters
of the coevolutionary predator—prey
community for a are as in Fig. 3b, and
for b as in Fig. 2c except for
�
�
"10
	

the adaptive dynamics turn out to have dimensions other than 0 (as in
Fig. 3c), the deterministic approximation in principle cannot predict aspects
of the asymptotic mean dynamics of the stochastic process tangential to the
attractor. The reason is that the tangential fluctuations are not balanced by
counteracting forces. In consequence, for example, the asymptotic mean phase
of stochastic limit cycle dynamics is not defined, though the asymptotic mean
period is accurately described (Dieckmann et al. 1995).

In addition to investigating the coevolutionary dynamics by
means of phase portraits, much insight is gained by applying techniques
from bifurcation analysis to the deterministic approximation (4.12). The effects
of varying different ecological parameters, which have an impact on the
adaptive dynamics, can then be systematically explored (Dieckmann et al.
1995).
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5 Deterministic approximation: higher orders

The first order result that we have obtained in Sect. 4 for the adaptive
dynamics is not always sufficient. In this section we will enhance the determin-
istic approximation by accounting for the higher order corrections. In particu-
lar, two interesting consequences, the shifting of evolutionary isoclines and the
phenomenon of evolutionary slowing down will be discussed.

5.1 Deterministic approximation in higher orders

The process of mutation has induced a global coupling in the adaptive
dynamics (4.7). To substitute it precisely by a local one, an infinite number of
orders in the Taylor expansions of fM

�
(s�
�
, s ) and b� 
�

�
(s�
�
, s ) · fM

�
(s�
�
, s ) about s�

�
"s

�
is required. The jth order results are given by

fM
�
(s�
�
, s )" 	

�
���

(s�
�
!s

�
)� ·

1

k!
· ���

�
fM
�
(s
�
, s)#O[(s�

�
!s

�
)	��] (5.1)

and

b� 
�
�

(s�
�
, s ) · fM

�
(s�
�
, s)" 	

�
���

(s�
�
!s

�
)� ·

1

k!
·

�
�

��
�
k

l � · ��

�

fM
�
(s
�
, s) · ���



�
b� 
�
�

(s
�
, s )

#O[(s�
�
!s

�
) 	��] . (5.2)

Again we have already accounted for fM
�
(s
�
, s)"0. Substituting (5.2) into (4.7)

yields the result for the deterministic approximation of the coevolutionary
dynamics in jth order

d

dt
s
�
"�

�
(s
�
) · nL

�
(s) ·

	
�
���

m
���� �

(s ) ·
1

k!
·

�
�

��
�
k

l � · ��

�

fM
�
(s
�
, s ) · ���



�
b� 
�
�

(s
�
, s)

(5.3)

with

m
��
(s)"�R

�
(s)

(s�
�
!s

�
)� ·M

�
(s
�
, s�

�
!s

�
) ds�

�
. (5.4)

The range of integration in (5.4) is given by substituting (5.1) into (4.8)

R
�
(s)"�s��3SK

�
�

	
�
���

(s�
�
!s

�
)� ·

1

k!
· ���

�
fM
�
(s
�
, s )'0� . (5.5)

The interpretation of the adaptive dynamics (5.3) is analogous to that given
for (4.12) in Sect. 4.2. The m

��
(s) are called the kth mutation moments of the ith

species. They actually coincide with the kth moments of the mutation distribu-
tion M

�
only if the range of integration R

�
(s) is (!R, #R). However, as (5.5)
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indicates, this is generically not the case. Even in the first order result the
range of integration was restricted to either (s

�
, #R) or (!R, s

�
) and the

situation gets more complicated now that higher orders are considered.
Notice that in the derivation above we did not require any symmetry proper-
ties of the mutation process so the result (5.3) is independent of this assump-
tion.

The corrections arising from the higher order result (5.3) in comparison to
the first order result (4.12) can be small for two reasons.

1. The ratios of the per capita growth and birth rates, fM
�
(s�
�
, s ) and b� 
�

�
(s�
�
, s),

can be almost linear, i.e. they can possess only weak nonlinearities in
s�
�
around s

�
. In this case the ith derivatives ��

�
(b� 
�

�
fM
�
) (s

�
, s) with i72 are

small compared to the first order derivative.
2. Moreover, the mutation distributions M

�
can be narrow, i.e. they may have

only small variances. Then the higher order mutation moments m
��
(s) are

negligible compared to the second order moment.

We conclude that in either limit — that of vanishing nonlinearity or that of
vanishing variance — the first order result (4.12) of the adaptive dynamics
becomes an exact representation of the deterministic path. The virtue of the
dynamics (4.12) is its simplicity combined with good accuracy as long as one
of the two conditons above is met. The virtue of the dynamics (5.3) is its
generality, as it covers the coevolutionary dynamics of mutation-selection
systems allowing both for nonlinearities in the ecological rates and for finite
mutational steps as well as for asymmetric mutation processes. However, it
should be kept in mind that both results describe the dynamics of the
deterministic path; conditions for it to coincide with the mean path have been
discussed in Sect. 4.1. To illustrate the importance of the higher order correc-
tions in specific circumstances we now investigate two consequences. Both
effects, the shifting of evolutionary isoclines and the phenomenon of evolu-
tionary slowing down, only become visible in the deterministic dynamics
when second and higher order correction terms are considered.

5.2 Shifting of evolutionary isoclines

Given expression (5.3) which describes the coevolutionary dynamics beyond
the first order result, we can now analyze the conditions under which evolu-
tion in single traits or in the whole community comes to a halt.

The evolutionary s
�
-isoclines are defined as those manifolds in trait space

SK on which �
��

s
�
"0 holds. The intersection of all isoclines coincides with the

set of fixed points of the adaptive dynamics. In a first step we analyze the
location of the evolutionary isoclines considering only infinitesimal mutational
steps, in accordance with assumptions usually made in the literature (see e.g.
Reed and Stenseth 1984; Taylor 1989). The result (4.12) is then exact, and we
infer that the evolutionary s

�
-isoclines are given by the union of manifolds on

which either the selection derivative ��
�
fM
�
(s
�
, s) or the population size nL

�
(s)
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vanishes. We refer to the former as inner isoclines (these are subsets of SK
�
) and

call the latter boundary isoclines (as they are subsets of �SK
�
). Since extinction of

one species terminates the coevolutionary process of the N-species system, we
concentrate on the inner isoclines. These can be classified as below (Metz et al.
1994).

1. Inner isoclines on which ���
�

fM
�
(s
�
, s )(0 holds are called 	-stable or non-

invadable.
2. Inner isoclines whose points satisfy ���

�
fM
�
(s
�
, s )!��

�
fM
�
(s
�
, s )(0 are called

m-stable or convergent.
3. Inner isoclines characterized by ���

�
fM
�
(s
�
, s)#��

�
fM
�
(s
�
, s)(0 are said to be

not mutually invadable.

The notions of 	- and m-stability are due to Taylor (1989) the other names
have been used by Metz et al. (1994). For illustration, the evolutionary
isoclines of the predator-prey system are given in Figs. 2c, 3 and 4, the dotted
curve corresponding to the prey, the dotted straight line to the predator. The
conditions above can be slightly generalized in order to account also for those
cases where the right hand side of the inequalities vanishes; for brevity this
issue will not be covered here.

Now we consider the second order result. According to equation (5.5) the
range of integration here is given by R

�
(s)"�s�

�
3SK

�
� (s�

�
!s

�
) · ��

�
fM
�
(s
�
, s)#

(s�
�
!s

�
)� · �� · ���

�
fM
�
(s
�
, s)'0�. For ��

�
fM
�
(s
�
, s )"0 this range either vanishes or

extends to (!R, #R), depending on the sign of ���
�

fM
�
(s
�
, s ). Thus if an inner

s
�
-isocline is non-invadable, the mutation moment m

	�
(s), see equation (5.4),

and in consequence the second order correction in equation (5.3) drops out
owing to the vanishing integration range. If the inner s

�
-isocline is invadable,

the same conclusion holds true for symmetric mutation distributions since
m

	�
(s) now coincides with the vanishing third moment of those distributions.

For asymmetric mutation distribution we already in second order get a shift-
ing of invadable inner evolutionary isoclines. For symmetric mutation distri-
butions, however, the evolutionary isoclines of the second order result match
those already established by the first order result. In both cases the inner
isoclines are determined by the vanishing of the selection derivative,
��
�
fM
�
(s
�
, s )"0.

This simple picture changes when we consider the adaptive dynamics in
terms of the third and higher order results. We first examine the case of
invadable evolutionary s

�
-isoclines. Since in general the integration range is

now no longer symmetric, the odd mutation moments do not vanish, and
neither do the even mutation moments. Further, the second and higher order
derivatives ��


�
fM
�
(s
�
, s ) and the first and higher order derivatives ���



�
b� 
�
�

(s
�
, s )

in equation (5.3) usually contribute. The third and higher order corrections
therefore cause a displacement of the invadable inner evolutionary isoclines.
These displacements are quantitative deviations from the first order result.
But the higher order corrections can give rise even to qualitative discrepan-
cies. Consider a manifold in trait space on which ��

�
fM
�
(s
�
, s)"���

�
fM
�
(s
�
, s)"0

but ��	
�

fM
�
(s
�
, s )90 hold. In terms of the first order result (4.12) this manifold
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would be called an evolutionary s
�
-isocline. In terms of the more general

higher order result (5.3) we notice that this manifold is not an isocline at all, for
the evolutionary rate �

��
s
�
, though probably being small, does not vanish here.

The deviations are not so dramatic for non-invadable s
�
-isoclines. Here the

range of integration cannot contain the resident trait value s
�
. The displace-

ment of the isocline thus will only be significant, if the mutation distribution
M

�
(s
�
, s�

�
!s

�
) extends considerably beyond that zero s�

�
of fM

�
(s�
�
, s ) which is

closest to the zero at s
�
itself. In general however, inner evolutionary isoclines

are no longer determined by the vanishing of the selection derivative.
We summarize that the shift of inner evolutionary isoclines owing to the

finiteness of mutational steps is a second or third order effect, depending on
the symmetry of the mutation distribution. This shift is illustrated for the case
of predator—prey coevolution by the dotted curve in Fig. 5a. Note that not
only the isoclines can be displaced, but in consequence also the fixed points
themselves. Thus the shifting discussed here may affect the asymptotic station-
ary states of the coevolutionary system.

5.3 Conditions for evolutionary slowing down

For illustration, we consider the two dynamical systems �
��

x
�
"!x

�
and

�
��

x
�
"!x	

�
. Both examples possess a locally stable fixed point at the origin.

The time evolution of these systems is described by x
�
(t)"x

�
(0) · e
� and

Fig. 5a. Shifting of evolutionary isoclines: the effect of finite mutation variance. The
discontinuous oval curve is the boundary of the region of coexistence. The continuous
curves are the inner evolutionary isoclines of the two species (straight line: predator, curved
line: prey) for infinitesimal mutation variances �

�
P 0 and �

�
P 0. The dotted curve is the

inner evolutionary isoclines of the predator for finite mutation variances, �
�
"5 · 10
� and

�
�
"5 · 10
�. The other parameters of the coevolutionary predator—prey community are as

in Table 1
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Fig. 5b. Evolutionary slowing down: algebraic approach towards a fixed point. The con-
tinuous curve shows the mean path dynamics of the predator’s trait value close to the
evolutionary equilibrium sL in Fig. 2 (constructed from 20 trait substitution sequences). The
fixed point sL lies on a non-invadable predator isocline. In the figure the actual algebraically
slow approach to sL is compared to the exponentially fast one, depicted by the discontinuous
curve, that is obtained from the first order result which cannot account for evolutionary
slowing down. The inset confirms the derived power law s

�
(t)!sL

�
Jt
��	 by means of

a double logarithmic plot, the jaggedness of the continuous curve stems from the extreme
amplification of single trait substitutions due to the logarithmic scale. The dotted straight
line resulting from a linear least square fit to the time series turns out to have a slope of
!0.3154, close to the predicted value of !1/3. The parameters of the coevolutionary
predator—prey community are as in Table 1

x
�
(t)"$[x
�

�
(0)#2t]
���. Note that for t PR the first system ap-

proaches the fixed point exponentially, x
�
(t) Je
�, while in the second case

the approach is only algebraic, x
�
(t)Jt
���, and therefore much slower. The

latter effect is called slowing down. It can occur at fixed points that are not
only characterized by the vanishing of the rate of the dynamical system,
�
��

x"0, but also by a vanishing of the rate’s slope, �
��

�
��

x"0.
In general, a dynamical system �

��
x"F (x) is said to exhibit jth order

slowing down at a fixed point xL if F (x)"��
��	

ak$ · (x!xL )� around x"xL
with (i) j'1 and with (ii) $aj$(0 for j even and aj$(0 for j odd. The
distinction $ refers to the two cases $(x!xL )'0 and is necessary to
account for slowing down of even order. Condition (ii) only ensures the local
stability of the fixed point x"xL , whereas condition (i) implies the vanishing of
the rate’s slope at x"xL . The algebraically slow approach towards the fixed
point is described by x(t)!xL J$(aj$ · t)1/(1!j).

The phenomenon of slowing down does arise in the context of co-
evolutionary dynamics. Before turning to the general case, for intuition we
first utilize the second order result. We consider a locally stable fixed
point of the adaptive dynamics which is situated on a non-invadable inner
evolutionary s

�
-isocline such that ���

�
fM
�
(s
�
, s )(0 holds in the vicinity of

this isocline. Thus the range of integration is given according to
(5.5) by R

�
(s)"(s

�
, s

�
!2 · ��

�
fM
�
(s
�
, s)/���

�
fM
�
(s
�
, s )) for ��

�
fM
�
(s
�
, s )'0 and by
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R
�
(s)"(s

�
!2 · ��

�
fM
�
(s
�
, s )/���

�
fM
�
(s
�
, s), s

�
) for the other side of the isocline.

Evidently, the range of integration in second order vanishes on the isocline
itself. The ecological interpretation of this statement is intuitive: fewer and
fewer mutants s�

�
are advantageous while approaching the fixed point, until

finally all possible mutants are deleterious. In order to prove formally that this
process gives rise to evolutionary slowing down, we examine the coefficients
aj$ defined above in the case of the adaptive dynamics described by equation
(4.7). For adaptation in a single species the results obtained are a0$"a1$"
a2$"a3$"0 whereas a4#"!a4!(0. Thus we are confronted with
slowing down of fourth order.

We conclude that evolutionary stable fixed points of the adaptive dy-
namics are attained at a rate that is algebraically slow in those traits s

�
whose

isoclines are non-invadable at the fixed point. In principle, the evolutionary
slowing down thus can drastically increase the length of evolutionary transients.
Let us now briefly consider invadable isoclines. Here, the evolutionary rate �

��
s
�

in the vicinity of the isoclines actually is increased by a factor 2, since here the
integration range is doubling rather than vanishing. Compared to the first order
result, this amounts only to a quantitative but not to a qualitative change.

The phenomenon of evolutionary slowing down can be exemplified in the
coevolutionary predator—prey system. Figure 5b shows the algebraically slow
dynamics taking place in lieu of an exponentially fast approach towards
a stable fixed point of the adaptive dynamics. A double logarithmic plot in the
inset confirms the predicted power law s

�
(t)!sL J$t
��	 and thus the

fourth order of the evolutionary slowing down.

6 Extensions and open problems

In this section we discuss generalizations and limitations of our approach. We
point out how to extend the theoretical framework presented, in order to
cover more complicated ecological and evolutionary scenarios.

6.1 Polymorphic coevolution

We have assumed in Sect. 2.1 that without mutations two or more trait values
s
�
within a species cannot coexist indefinitely, only the single more advantage-

ous trait value surviving. This principle of mutual exclusion can be proved for
the case of Lotka—Volterra population dynamics (Dieckmann 1994).

The theorem is as follows. Consider the population sizes n
�

and n�
�

of
a resident trait value s

�
and a sufficiently close mutant trait value s�

�
respec-

tively in an environment defined by trait values s
	
and population sizes n

	
with

j"1, . . . , N9i. The dynamics of the population sizes are assumed to be of
Lotka—Volterra type. When the mutant is absent we call the remaining
dynamical system for the population sizes the resident system, when the
resident is absent the mutant system, and when both are present the combined
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system. Provided that, first, the selection derivative ��
�
fM
�
(s
�
, s) does not vanish,

and that, second, the Lotka—Volterra interaction matrix is regular and varies
smoothly with s�

�
, there exists no fixed point of the combined system in R���

�
.

It can then be shown that the mutant will either go to fixation or to extinction.
To our knowledge there exists no proof of the principle of mutual exclusion
for coevolutionary communities not of Lotka—Volterra type, although even in
such cases the principle has been tacitly assumed (e.g. Rand et al. 1993).

We pointed out in Sect. 2.1 that the quasi-monomorphic feature of the
populations rests on two requirements, the principle of mutual exclusion and
a timescale separation. We can now investigate the conditions for and the
consequences of a violation of these requirements.

1. The principle of mutual exclusion may fail to hold for species i in the
vicinity of an inner evolutionary s

�
-isocline, since this isocline is close or

identical to the manifold given by ��
�
fM
�
(s
�
, s)"0. Whether this failure

actually happens, depends on the class of the isocline as defined in Sect. 5.2.
In particular, the population will remain quasi-monomorphic, if the iso-
cline is not mutually invadable. Metz et al. (1994) have suggested that
otherwise the population can become polymorphic via a process of evo-
lutionary branching.

2. As a second possibility, the timescale separation may be violated. Again,
this can occur for species i in the vicinity of an inner evolutionary
s
�
-isocline, since here the per capita growth rates of a resident trait value

and a close mutant trait value will differ only slightly. For this reason it
may take a relatively long time until the mutant replaces the former
resident.

Both cases can best be treated within a polymorphic framework that allows for
phenotypic distributions p

�
(s
�
) describing the density distribution of trait values

s
�
in each species’ population (Dieckmann 1994; Dieckmann et al. 1995).

6.2 Multi-trait coevolution

So far we have restricted attention to the case that each species i possesses
only a single adaptive trait s

�
. To understand the significance of coevolution-

ary phenomena on the adaptive dynamics this was sufficient.
However, in real ecosystems adaptive change not only simultaneously

happens with respect to multiple species but also with respect to multiple
traits within species. For instance, life-history traits like rates of reproduction
and growth at given ages typically undergo concurrent evolution (Stearns
1992). We allow multiple traits within species by turning s

�
into a vector

s
�
"(s

�

) with a species index i"1, . . . , N and a trait index l"1, . . . , �

�
.

Moreover, allowing for multiple adaptive traits per species can be a pre-
requisite for the reliability of the Markov assumption, introduced in Sect. 5.2;
knowledge of all the trait values at present ought to be sufficient to determine
the potential of further adaptive change in the immediate future.
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A third reason for considering multiple traits in phenotypic coevolution is
that the path of evolution can be constrained. In addition to natural bounds
on certain trait values — e.g. fecundities or weights necessarily must be
non-negative — which already ought to be accounted for when considering
only one trait per species, the set of accessible trait values is further restricted
by constraints on the combinations of different trait values. These constraints
may depend on simple matters of physics — e.g. surface to volume ratios cannot
decrease beyond a certain threshold. Alternatively, the constraints may be an
outcome of developmental pathways of the organism — e.g. an organism that
matures at a small size has only a small amount of resources to give to
reproduction. Constraints may also follow from the mapping from genotype to
phenotype — e.g. if the same gene influences two traits, the trait values that
result are not independent; this effect is called pleiotropy (Falconer 1989). For
a more detailed discussion of constraints see Maynard Smith et al. (1985),
Loeschcke (1987) or Stearns (1992). We allow for such constraints as follows.

1. Constraints restrict the set of trait values accessible within each species to
a subset of SK

�
which we denote by SK

����
. The Cartesian product of all these

sets is called SK
��
"��

���
SK
����

. The adaptive dynamics of the N-species
community are then confined to the subset SK

�
of SK with SK

�
"SK

�
�SK

��
where

SK
�
denotes the region of coexistence as defined in equation (2.2).

2. Due to pleiotropy the effects of mutations on different traits can be
correlated. For this reason we write the probability distribution for
a change �s

�
from a given trait value s

�
due to mutation as a single

multivariate distribution M
�
(s
�
,�s

�
) rather than as a product of �

�
separate

distributions M
�

(s
�
, �s

�

).

Here we generalize the results obtained in the previous sections to match the
extended framework of multiple-trait coevolution. The results for the stochas-
tic representation in Sect. 3, in particular equations (3.1), (3.2) and (3.6), carry
over without alteration. Notice first that the delta functions in equation (3.2)
now take vectors as arguments such that the usual definition
	(s

�
)"
�

�


��
	(s

�

) applies, and second that the mutation distribution in equa-

tion (3.6) now is multivariate. In addition, the principle of mutual exclusion is
more likely to be violated in multi-trait coevolution, but resulting polymor-
phisms will usually be of a transient type. The results for the deterministic
approximation in Sect. 4 generalize as below. No modifications are required
in equations (4.7) and (4.8). However, the integral in equation (4.7) now is
multi-dimensional with ds

�
"
�

�


��
ds

�

, and consequently the range R

�
(s) of

integration in (4.8) now becomes a subspace of dimension �
�
instead of an

interval. In generalizing equations (4.12) and (4.13) we obtain

d

dt
s
�
"1

2
· �

�
(s
�
) · ��

�
(s
�
) · nL

�
(s) ·��

�
fM
�
(s
�
, s ) (6.1)

as the first order result for the deterministic approximation of the multi-trait
coevolutionary dynamics in S

�
. Here ��

�
fM
�
(s
�
, s) with ��

�
"(��

��
, . . . , ��i�

�
)
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denotes the selection gradient for species i, a vector being composed of simple
selection derivatives ��

�

fM
�
(s
�
, s ) with ��

�

"�/�s�

�

for the traits l"1, . . . , �

�
of

species i. In the case of multi-trait coevolution ��
�

is the variance-covariance
matrix of the multivariate mutation distribution M

�
. The elements of this

square matrix ��
�
"(��

� �

�
) are given by

��
��

�

(s
�
)"��s

�

·�s

�
� ·
M

�
(s
�
, �s

�
) d�s

�
(6.2)

with l, l�"1, . . . , �
�
.

Notice that finite off-diagonal elements in ��
�

(non-vanishing covariances)
cause the adaptive dynamics to take a suboptimal path, i.e. the direction of
adaptive change is not parallel to the selection gradient. Notice also that up to
first order the inner evolutionary isoclines of the adaptive system (6.1) for
species i are now given by those manifolds in S

�
where the selection gradient

��
�
fM
�
(s
�
, s) either vanishes or lies in the null space of the variance-covariance

matrix ��
�
. The location and type of boundary isoclines on �S

�
is less easy

to settle and phase portraits of the system (6.1) will prove useful in this
circumstance.

6.3 Coevolution under nonequilibrium population dynamics

In this section we discuss the issue of coevolution under nonequilibrium
population dynamics. In relaxing the assumption of a fixed point attractor in
population size space made at the end of Sect. 2.1 we now allow for arbitrary
attractors A that give rise to periodic, quasi-periodic or chaotic population
dynamics. We first outline some mathematical concepts that have been
considered in this context and then investigate how these relate to the
stochastic formalism developed in this paper.

To decide upon the initial increase of a rare mutant s�
�
in an environment

given by the residents s the following constructs have been suggested

E
�
(s�
�
, s )" lim

���

1

¹ · �
�

�

fI
�
(s�
�
, s, n (t) ) dt ,

E
�
(s�
�
, s )" lim

���

1

¹ · log
��n(¹ )�
��n(0)�

, (6.3)

E
	
(s�
�
, s )"�A (s)

fI
�
(s�
�
, s, n ) d� (n) .

The first quantity E
�
is the time average of the per capita growth rate of the rare

mutant along a trajectory n (t) that starts on the attractor A(s) of the resident
system. This construct immediately follows from our formal framework set
out in Sect. 2.1; in generalization of equation (2.7) we thus write
fM
�
(s�
�
, s)"E

�
(s�
�
, s ). The second quantity E

�
(Metz et al. 1992) is the ¸yapunov
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exponent of the combined system along the direction of the mutant’s popula-
tion size for a point on the attractor A (s) of the resident system. It is given by
the average logarithmic growth rate of the distance between two specific
trajectories. The first trajectory n (t) starts from n (0) on the attractor A(s) itself,
the second trajectory nJ (t) has initial conditions nJ (0)"n (0)#�n(0) where
�n(0) denotes an initial displacement in the direction of the mutant’s popula-
tion size. The distance between these two trajectories is given by ��n (t)� with
�n(t)"nJ (t)!n (t), where the particular choice of the distance function � . . . �
does not affect the result. Note that the mathematical definition of
a Lyapunov exponent requires the time development of nJ (t) to be evaluated
according to the linearization of the dynamics of the combined system along
the attractor A(s) (Eckmann and Ruelle 1985). As a convenient alternative for
numerical estimations of Lyapunov exponents one might utilize the combined
system directly but then choose a small �n(0) and extend the average only
over a finite time interval (0, ¹ ); nonetheless in order to cover the attractor
A(s) sufficiently, several repetitions of this procedure usually are necessary
where each single repetition is followed by a rescaling � · �n(¹ ) P�n(0) with
�;1 (Baker and Gollub 1990). The third quantity E

	
(Rand et al. 1993) is

called invasion exponent and in our case is simply the phase average of the per
capita growth rate of the mutant on the attractor A (s) of the resident system
weighted by the natural measure d�(n) of this attractor. Taking the natural
measure rather than an arbitrary invariant measure is important when the
attractor A (s) is chaotic (Ott 1993). For practical applications this caveat
however is immaterial due to the noise inevitably associated with any numer-
ical estimation (Schuster 1989).

In the literature, the condition for initial increase of the rare mutant is
taken to be E

�
'0 with k"1, 2, 3 (e.g. Metz et al. 1992; Rand et al. 1993).

The equivalence of the three criteria can readily be established. First, the time
average E

�
coincides with the phase average E

	
(Ott 1993) — there can be

exceptional initial conditions n(0) that do not satisfy this identity, but since
the set of these has Lebesque measure zero they are irrelevant for realistic
systems. Second, the time average E

�
equals the Lyapunov exponent E

�
. To

show this we linearize the dynamics of the combined system about
the trajectory n (t) and obtain �

��
�n(t)"J (n (t)) ·�n(t) where J (n) denotes the

Jacobian matrix of the dynamics of the combined system evaluated at n.
From the population dynamics of the combined system we get
�n

�
(0)"0 N�n

�
(t)"0 (the left hand side holds since the initial displacement

between n(0) and nJ (0) is only affecting the mutant’s population size n�
�
) as well

as n�
�
(0)"0 Nn�

�
(t)"0 (the left hand side holds for the trajectory n(t) since it

starts on the attractor of the resident system where the mutant is absent).
From the first implication we obtain ��n (t)�"��n�

�
(t)� and applying the second

impliction to the linearized dynamics yields �
��

�n�
�
(t)"fI

�
(s�
�
, s, n )�n"n (t) · �n�

�
(t).

From these equations we conclude ��n(¹ )�/��n(0)�"exp ��
�

fI
�
(s�
�
, s, n(t) ) dt

which completes the proof of E
�
"E

�
.

We investigate whether or not we recover the condition E
�
'0 for the

initial increase of a rare mutant in the light of our stochastic approach.
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Already in the case of a fixed point attractor in population size space we had
to distinguish between the timescale �

�
of adaptive change and the timescale

�
�
;�

�
on which a mutant either goes extinct or reaches fixation while the

population dynamics of the combined system attain its attractor. With popu-
lation dynamics settling to a nonequilibrium attractor A(s), an additional
timescale �

�
for the motion on this attractor is introduced. We assume

�
�
<�

�
<�

�
. In this case the invasion of a successful mutant happens slowly

compared to the dynamics on the attractor A(s); this is typical for mutants
whose trait values s�

�
are sufficiently close to the resident trait values s

�
. In

generalizing equations (3.6) and (4.12) we obtain for the probabilities per unit
time in the stochastic representation

w
�
(s�
�
, s)"�

�
(s
�
) · b

�
(s
�
, s ) · n

�
(s) · M

�
(s
�
, s�

�
!s

�
) · b� 
�

�
(s�
�
, s) · ( fM

�
(s�
�
, s ))

�
(6.4)

and for the adaptive dynamics the deterministic approximation in first order
yields

d

dt
s
�
"1

2
· �

�
(s
�
) ·��

�
(s
�
) · b� 
�

�
(s
�
, s ) · b

�
(s
�
, s) · n

�
(s) · ��

�
fM
�
(s
�
, s) . (6.5)

The construction of the higher order deterministic approximations for the
adaptive dynamics follows the same scheme as in Sect. 5.1 and is not repeated

here. Note that in result (6.5) the term b� 
�
�

(s
�
, s ) · b

�
(s
�
, s ) · n

�
(s) will differ more

from nN
�
(s) the larger the variation in the resident population size of species i is

along the attractor A(s).
We now turn to the invasion criteria. A rare mutant s�

�
can successfully

invade a community given by the resident trait values s provided that there is
a positive transition probability per unit time for the trait substitution s

�
P s�

�
,

i.e. w
�
(s�
�
, s)'0. We easily draw the conclusion that our stochastic approach

yields the criterion E
�
'0 which is equivalent to those proposed previously.

To see this, consider equation (6.4) together with the definitions of ( . . . )
�

and
that of fM

�
(s�
�
, s )"E

�
(s�
�
, s) in equation (6.3). However, our analysis not only

yields these criteria for the initial increase of a rare mutant but provides us
also with a full dynamical description of the adaptive process. We emphasize
that the results above readily generalize to cover the issue of coevolution in
slowly varying environments where the additional time dependence stems
from external influences rather than from internal interactions.

7 Conclusions

In this paper we have established the canonical equation (1.1) of adaptive
dynamics from the underlying stochastic ecological processes. In the course of
this derivation we revealed the implicit assumptions, on which this result
is based. Moreover, our approach allowed us to relax many of these
assumptions and thus to provide generalized descriptions of coevolutionary
dynamics.
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To conclude, we briefly summarize these generalizations.

1. To obtain a dynamics like equation (1.1) from a mutation-selection process
certain symmetry properties of the mutation distributions are needed, see
Sect. 4.2. Both our deterministic approximation in higher order, see
Sect. 5.1, and the stochastic representation in general remove this
assumption.

2. Being a deterministic description of the coevolutionary dynamics, the
canonical equation describes the mean path and thus does not cover the
full richness of dynamical effects that can occur in stochastic mutation-
selection systems, see e.g. the discussion in Sect. 4.3. We have provided
a stochastic representation in Sects. 3.1 and 3.2 that accounts for these
features. Two examples illustrating the difference are given in Figs. 4a
and 4b.

3. We have recovered the canonical equation as an exact description of the
coevolutionary deterministic path, provided that the mutational steps are
considered to be infinitesimal. Although the canonical equation gives
a good approximation for small finite mutation variance, the
approximation becomes inaccurate as the variance increases and consid-
eration of higher order correction terms is recommended, see the derivation
in Sect. 5.1.

4. The canonical equation does not permit interdependencies between several
traits within one species. In Sect. 6.2 we could show how the stochastic
approach to the coevolutionary mutation-selection process in this case
naturally leads to the introduction of the variance-covariance matrix for
the mutation distributions. The latter can give rise to less direct pathways
towards evolutionary attractors.

5. The scope of the canonical equation is confined to coevolutionary systems
with equilibrium population dynamics and a constant external environ-
ment. We have demonstrated in Sect. 6.3 that this limitation can be
overcome such that more general ecological scenarios may be tackled.

Such relaxation of the restrictions of the canonical equation are variations on
a single theme: In modelling complex systems, like those exhibiting co-
evolutionary dynamics, one can always trade descriptive capacity for math-
ematical simplicity. The canonical equation may indeed be sufficient for
specific goals, but this depends on what assumptions can reasonably be made.
We have shown in this paper that new and distinct evolutionary phenomena
emerge by removing any of these assumptions. Conversely, if the generaliza-
tions summarized above are not to be made, it is important to be aware of the
evolutionary phenomena that are then sacrificed.
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