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I investigate the evolution of a continuous trait, such as body size or arms level, which affects
the outcome of competitive contests such that the contestant with the larger trait value has
a higher probability of winning. I show that a polymorphism of distinctly different strategies
can evolve in an initially monomorphic population even if mutations have only small
phenotypic effect. In a simple Lotka–Volterra-type model of asymmetric competition, I derive
the conditions under which two strategies can gradually evolve from a single ancestral
strategy; the evolution of higher level polymorphisms is studied by numerical analysis and
computer simulations of specific examples. High levels of polymorphism may build up during
evolution. The coevolution of strategies in polymorphic populations, however, may also lead
to extinction, which decreases the level of polymorphism. I discuss whether the evolution of
several haploid strategies from a single initial strategy may correspond to the evolution of
several sympatric species in a diploid outbreeding population.
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Introduction

The outcome of competitive interactions often
depend on traits which influence or indicate
competitive ability, such as body size, weight,
armament, or costly signals of strength (e.g.
Clutton-Brock et al., 1979; Clutton-Brock &
Albon, 1979; Weiner, 1986, 1990; Weiner &
Thomas, 1986; Carroll & Salamon, 1995;
Luiselli, 1996; Mitani et al., 1996; Roberts, 1996;
Simmons & Scheepers, 1996). The contestant
with the larger trait value has a higher
probability of winning the contest; large values
of the trait, however, are costly in terms of
reduced survival probability or reduced fecun-

dity. Competitive asymmetry between members
of a population has been recognized as an
important factor for example in shaping
within-population variability (Begon, 1984;
Begon et al., 1996) and in stabilizing population
dynamics (Lomnicki, 1989). Asymmetry is also
prevalent in between-species competition
(Lawton & Hassell, 1981; Connell, 1983;
Schoener, 1983; Englund et al., 1992), where the
larger species is usually superior in interference
competition (Persson, 1985; Alatalo & Moreno,
1987; Dickman, 1988; Thompson & Fox, 1993).

A wide range of evolutionary dynamics may
occur for traits that determine competitive
success. It is intuitively appealing that the
competitive advantage of individuals larger than
the rest of the population may lead to runaway
evolution or an ‘‘arms race’’ (Dawkins & Krebs,
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1979; Maynard Smith & Brown, 1986). The
evolutionary increase of the trait value, however,
may come to a halt either because the cost of
large trait values increases and eventually
outweighs the advantage, or because population
size decreases such that competition is relaxed
(Parker, 1983; Abrams & Matsuda, 1994). The
population may reach a unique stable strategy,
but multiple attractors are also possible (Abrams
& Matsuda, 1994). Evolution may lead to
extinction either because the trait value increases
without limit and the associated population
density asymptotically decreases to zero, or
because the evolutionarily stable population has
such a low density that it is endangered by
demographic or environmental stochasticity
(Matsuda & Abrams, 1994).

A population of large individuals may be
invaded by considerably smaller mutants, which
cannot win competitive contests against the
residents, but which are free from the costs of
large size. Invasion of small mutants may give
rise to a stable dimorphism (Abrams & Matsuda,
1994), or to evolutionary cycles in which run-
away evolution towards large trait values is reset
when small mutants take over the population
(Maynard Smith & Brown, 1986). Asymmetric
competition can also maintain a continuous
evolutionarily stable distribution of trait values
(Maynard Smith & Brown, 1986; Geritz, 1995).

A series of coevolutionary models assumed
that size differences not only influence competi-
tive superiority but also imply niche differen-
tiation (Roughgarden, 1979; Rummel &
Roughgarden, 1985; Brown & Vincent, 1987;
Taper & Case, 1992). These models yield either
a stable coalition of several species, or taxon
cycles started by the invasion of a new species,
followed by directional coevolution, extinction,
and reconstitution of the initial species assem-
blage. Coevolution of two species with different
within- and between-species competition was
modelled by Law et al. (1997), who found
multiple evolutionary attractors, parallel evol-
ution or character convergence, evolutionary
cycles, and extinction of one species.

In this paper, I investigate the evolution of
polymorphism under asymmetric competition.
Previous models with evolutionarily stable
polymorphic populations or multispecies co-

alitions either did not consider the dynamics of
evolution leading to polymorphism, or assumed
that invaders had the best strategy given the
present composition of the resident population.
Though the latter procedure is apt to identify
evolutionarily stable coalitions, it may be
unrealistic for the actual dynamics of evolution
[Taper & Case (1992) discuss this assumption in
more detail]. Here I assume that mutants are
phenotypically similar to the resident strategies
already present, and investigate how polymor-
phisms of distinctly different strategies can
evolve by small mutational steps.

In most cases when a slightly different mutant
appears in a resident population, it either invades
and replaces the former resident strategy, or dies
out; repeated invasions result in directional
evolution of the trait (Eshel, 1983; Taylor, 1989).
The resident and the mutant can coexist only
when directional evolution ceases, i.e. near a
so-called evolutionarily singular point. The
evolutionary singularity where directional evol-
ution arrives at may be an ESS; it also may,
however, lack evolutionary stability. Near a
singularity of the latter type, the invading mutant
can coexist with the former resident; moreover,
the two strategies undergo divergent coevolu-
tion, which gives rise to two phenotypically
distinct strategies (Metz et al., 1992, 1996; Eshel
et al., 1997; Geritz et al., 1997, 1998). The
emergence of a dimorphism in an initially
monomorphic population (or of an n+1-
morphism in an n-morphic population) followed
by the gradual differentiation of the two initially
similar strategies is called evolutionary branch-
ing, and the singular point at which the process
initiates a branching point (Metz et al., 1996;
Geritz et al., 1997, 1998).

Assuming small mutations, the level of
polymorphism can increase only by evolutionary
branching. Hence I explore the evolution of
polymorphism under asymmetric competition
primarily by searching for evolutionary branch-
ing points. However, as I will also demonstrate,
the coevolution of strategies which have arisen
by evolutionary branching can lead to the extinc-
tion of a strategy later, thus the population can
fall back to a lower level of polymorphism again.

The specific model I assume is a Lotka–
Volterra competition model, where the com-
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petitive coefficients are determined by the
differences between the trait values of the
contestants. First I investigate under which
conditions a monomorphic population can
undergo evolutionary branching and thus be-
come dimorphic. This part of the model analysis
can be done without restricting generality by
assuming specific functional forms in the model.
Second, I explore the evolutionary dynamics of
polymorphic populations. Since this is possible
only by numerical analysis, I give three examples
with different functions assumed. The examples
illustrate repeated evolutionary branching lead-
ing to high levels of polymorphism, evolution-
arily stable polymorphisms, and extinction.
Qualitatively similar results have been obtained
by Geritz et al. (1999), under significantly
different model assumptions.

The Model

I investigate the evolution of a single continu-
ous trait such as body size or arms level. The trait
has two effects on fitness. First, individuals of the
population engage in competitive interactions,
where a trait value larger than that of the
contestant confers an advantage. Asymmetric
competition thus exerts frequency-dependent
selection for larger trait values. Second, large
values of the trait imply a cost in terms of low
survival and/or fecundity, irrespectively of other
individuals. Frequency-independent selection
may be either stabilizing (both small and large
trait values are disadvantageous, intermediate
trait values are favoured) or directional (large
trait values are costly, small trait values are
favoured). For example, stabilizing selection is
likely to operate on body size. Armaments
used solely to gain competitive advantage
monotonously decrease fitness in a competition-
free environment.

Let n denote the number of strategies present
in the population, with trait values x1, . . . , xn

and population densities N1, . . . , Nn . Population
dynamics are described by the Lotka–Volterra
equations,

dNi

dt
=Ni$r(xi )− s

n

j=1

a(xi − xj )Nj% (1)

where r(xi ) is the intrinsic growth rate of
strategy xi in a competition-free environment,
and a(xi − xj ) is the competition coefficient
which describes the effect of strategy xj on
strategy xi . r(x) is a decreasing function at least
for large values of x. The competitive coefficient,
a(xi − xj ), is a decreasing function of the
difference between the trait value of the
individual and that of its contestant: individuals
with large trait value experience little compe-
tition by small individuals, while small individ-
uals suffer from high competition by large
individuals. The concave–convex function

a(xi − xj )= c01−
1

1+ n exp(−k(xi − xj ))1
(2)

shown in Fig. 1 is a flexible way of modeling this
situation.

This model is similar to the one investigated
recently by Law et al. (1997), with the following
differences: (i) they considered two species with
a single resident strategy for each; (ii) the
intrinsic growth rate function (r(x)) was
assumed to be linear, and the competition
coefficients were given by eqn (2) with n=1; and
(iii) different intensities of interspecific and
intraspecific asymmetric competition [i.e. differ-
ent values of k and c in eqn (2) for within- and
between-species competition] were allowed for.

F. 1. Concave–convex shape of a as given by eqn (2)
(n=0.2; 1; 5; c=2; k=4).
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Here I consider an arbitrary number of
coexisting strategies in a population, and assume
that competition is determined solely by the trait
values of the contestants. Except in the examples,
I do not assume any particular function for r(x)
or a(xi − xj ).

In order to analyse the dynamics of evolution,
I assume that mutations are of small phenotypic
effect. Evolution is mutation-limited, i.e. mu-
tations occur infrequently such that a mutant
strategy either has spread or has been excluded,
and the population has reached its equilibrium,
by the time the next mutant comes along.

Adaptive Dynamics under Asymmetric
Competition

In this section I start with a population of a
single resident strategy, and investigate under
which conditions this strategy can undergo
evolutionary branching giving rise to two
resident strategies. At the end of this section I
briefly describe the generalized analysis for
polymorphic resident populations.

Consider a rare mutant strategy y in the
resident population of strategy x. The mutant
increases in number if its growth rate,

rx (y)= r(y)− a(y− x)N(x) (3)

is positive [cf. eqn (1)]; a mutant with negative
growth rate dies out. The resident population has
zero growth rate (rx (x)=0) at the equilibrium
population density N(x)= r(x)/a(0). It follows
that a mutant strategy y slightly larger than x can
invade and replace the resident if the fitness
gradient

1rx (y)
1y by= x

= r'(x)− a'(0)r(x)/a(0) (4)

is positive; smaller mutants can invade if the
fitness gradient is negative. Notice that since the
resident and its slightly different mutant take
part in competition, the shape of function
a(y− x) is relevant only near y− x=0.

Repeated invasions and substitutions result in
directional evolution until the population
reaches an evolutionary singularity, where the
fitness gradient is zero. At the singular strategy
x*, the proportionate cost of increasing the trait,

=r'(x*)/r(x*)=, must balance the constant advan-
tage given by =a'(0)/a(0)= [cf. eqn (4)]. If the cost
is too high for all trait values, then frequency-
independent selection drives evolution towards
decreasing trait values despite the competitive
advantage of being larger. Runaway evolution
leads to increasing trait values if the proportion-
ate cost is smaller than the advantage for all trait
values. Notice, however, that if r(x) becomes
zero at some xmax , then the proportionate cost
must exceed the advantage as x increases, and
therefore evolution must reach a singularity
before xmax .

Whether or not the population can undergo
evolutionary branching at a singularity depends
on two stability criteria (Metz et al., 1996; Geritz
et al., 1997, 1998; Eshel et al., 1997). First, the
singular strategy must be convergence stable
such that directional evolution of a monomor-
phic population can approach it. This condition
is fulfilled if

d
dx $1rx (y)

1y by= x%x*

=$ 12r
1x1y

+
12r
1y2%y= x= x*

Q 0

(5)

(Eshel, 1983; Taylor, 1989; Christiansen, 1991).
Second, the singularity must lack evolutionary
stability, i.e.

$12rx (y)
1y2 %y= x= x*

q 0 (6)

(Maynard Smith, 1982). Substituting rx (y) from
eqn (3) into inequalities (5) and (6), a singular
strategy is a branching point if

r0(x*)−
a'(0)
a(0)

r'(x*)Q 0 (7)

and

r0(x*)− a0(0)
r(x*)
a(0)

q 0 (8)

The singularities that are both convergence
stable and evolutionarily stable [i.e. satisfy
inequality (7) and the opposite of inequality (8)]
are final stops of evolution; these were called
continuously stable strategies or CSSs by Eshel
(1983). Convergence unstable singularities [that
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T 1
Possible evolutionary singularities with different functional forms r and a

a near zero

Linear or
Concave inflection Convex

(a0(0)Q 0) (a0(0)=0) (a0(0)q 0)

Concave r CSS or CSS CSS
(r0(x*)Q 0) branching point

Linear r Branching point Degenerate CSS
(r0(x*)=0

Convex r Branching point Branching point CSS, branching
(r0(x*)q 0 or repellor or repellor point or repellor

do not satisfy inequality (7)] are evolutionary
repellors.

The first derivatives in inequality (7) are both
negative: a'(0) is negative by definition, and
r'(x*) must be negative otherwise the fitness
gradient [eqn (4)] cannot be zero at x*. It follows
from inequality (7) that the singularity is always
convergence stable if r(x) is concave or linear,
and may be convergence stable if r(x) is convex.
(Throughout the paper, I use the terms
‘‘concave’’ and ‘‘convex’’ as seen from below, i.e.
a concave function has a negative second
derivative.) Inequality (8) shows that a locally
concave shape of a(y− x) near y− x=0
promotes evolutionary branching; so does the
convexity of r(x) as long as the singularity
remains convergence stable. Table 1 summarizes
the possible outcomes of evolution for different
shapes of r and a.

If a0(0)=0 and r(x) is linear, then the
monomorphic singular strategy is degenerate in
the sense that 12rx (y)/1y2=y= x= x* =0, i.e. the
singularity just undergoes a bifurcation between
an ESS and a branching point. Since both the
first and the second derivatives of the fitness
function vanish at the singularity, it is the third
derivative 13rx (y)/1y3=y= x= x* that determines
which mutants can invade. If the third derivative
is positive, then mutants smaller than x* cannot
invade the singular strategy, whereas a larger
mutant can invade and coexist with x*. A
negative third derivative leads to the opposite
result. The details of evolutionary dynamics in
dimorphic populations near such a singularity
are quite complicated, and will be presented

elsewhere (Kisdi, in prep.). Ultimately, however,
the population undergoes evolutionary branch-
ing at the degenerate singularity.

Evolutionary branching gives rise to a
polymorphism of two substantially different
strategies in an initially monomorphic popu-
lation. The subsequent coevolution of the
coexisting strategies can be modelled similarly to
the monomorphic populations (Geritz et al.,
1998). The fitness of a rare mutant y in the
population of resident strategies x1, . . . , xn is

rx1, . . . , xn (y)= r(y)− s
n

j=1

a(y− xj )Nj (9)

[cf. eqn (1)]. The fitness gradient

1rx1, . . . , xn (y)
1y by= x i

= r'(xi )− s
n

j=1

a'(xi − xj )Nj

(10)

determines the direction of evolution of the
resident strategy xi . Notice that in polymorphic
populations the shape of function a is significant
not only near zero, because mutants of one
resident must compete also with other, substan-
tially different residents.

Polymorphic evolutionary singularities are
coalitions of resident strategies where the fitness
gradient of each strategy is zero. Unfortunately,
a general condition for convergence stability is
not straightforward in polymorphic populations
(Matessi & Di Pascuale, 1996). If the population
arrives near the singular coalition, a particular
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resident strategy xi can undergo evolutionary
branching if it is evolutionarily unstable,
i.e. if

12rx1, . . . , xn (y)
1y2 by= x i

= r0(xi )− s
n

j=1

a0(xi − xj )Nj

(11)

is positive. This condition is necessary; however,
it is sufficient only if all the other strategies of the
singular coalition are evolutionarily stable, and
hence remain at the singularity. If other
strategies also lack evolutionary stability, and
they evolve with different speed, then the fastest
of them can undergo branching while the others
may lag behind. As branching in one strategy
generally changes the frequency-dependent
fitness function [eqn (9)], the slower evolving
strategies may no longer be near a branching
point, i.e. they may have missed the opportunity
for branching. Faster evolution of a strategy is
possible if it is present in greater number (since
the speed of evolution is limited by the
appearance of new mutants, and the number of
mutants is proportional to the number of
individuals), or if the rate or size of mutations
depends on the trait value.

Polymorphic populations with asymmetric
competition may have very rich adaptive
dynamics, a full exploration of which is beyond
the scope of this paper. The following examples
illustrate the possibility of evolution to a
stable polymorphism, repeated evolutionary
branching, ‘‘missed’’ branching, and extinction
following evolutionary branching.

Examples

The following three examples assume different
functional forms for the intrinsic growth rate
r(x). The competitive coefficient function
a(y− x) remains unspecified; in the numerical
analyses of polymorphic populations, however, I
use eqn (2) for a(y− x) with different values of
n. If nQ 1 then a is convex, if nq 1 then a is
concave, and if n=1 then a has an inflection
point at y− x=0.

 1:  r(x)

If the intrinsic growth rate is a linearly
decreasing function of the trait value,

r(x)= b− bx (12)

then 1rx (y)/1y=y= x= x* =0 can be solved explicitly
for the monomorphic singular strategy

x*=
b

b
+

a(0)
a'(0)

(13)

The singularity is always convergence stable;
evolutionary branching occurs if a is concave
near zero (Table 1).

Coevolution following evolutionary branching
can be analysed numerically using eqns (10) and
(11). The results are shown in Fig. 2(a) for a
dimorphic population where a is given by eqn
(2). For each pair of coexisting strategies, the
direction of evolution of x1 and x2 can be

F. 2. (a) Isocline plot with linear r(x). Strategy pairs
inside the shaded area can form a protected dimorphism.
The direction of evolution of x1 (x2) is shown by horizontal
(vertical) arrows as determined from eqn (10). Thick
isoclines are evolutionarily stable [eqn (11) is negative]; thin
isoclines are evolutionarily unstable [eqn (11) is positive].
(w) indicates the branching point (x1 = x2 = x*=0.45),
(W) corresponds to the dimorphic singular coalition,
(x1*=−0.32, x2*=0.49). At the singular coalition, x1 (i.e.
the smaller strategy) is evolutionarily unstable, x2 (the larger
strategy) is evolutionarily stable; (b) simulated evolutionary
tree. Starting with a monomorphic population, evolution
first converges to x*=0.45 where it undergoes evolution-
ary branching; the two branches evolve to (x1* =−0.32,
x2*=0.49), where the smaller strategy undergoes branch-
ing again. Subsequent evolution leads to increasing levels of
polymorphism by repeated branching. The position of the
branching point and the dimorphic singular coalition, as
read from the isocline plot, are shown by the vertical bars
above the tree; horizontal dotted lines indicate when the
population is at the monomorphic and dimorphic
singularities. Parameter values: b=1, b=1, c=2, n=1.2,
k=4.
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determined from eqn (10): in Fig. 2(a), these
are indicated by horizontal and vertical
arrows, respectively, within the set of protected
dimorphisms. Directional evolution of one or the
other resident strategy ceases at the so-called
isoclines. The intersection of the isoclines thus
corresponds to the dimorphic evolutionary
singularity.

The expected course of evolution of the
dimorphic population can be read from the
isocline plot in Fig. 2(a) as follows. For
convenience, I assume that the smaller strategy
of the coalition is denoted by x1 and the larger
one is x2 (that is, I consider the upper half of the
plot above the x2 = x1 diagonal). At the
beginning of evolutionary branching, the popu-
lation contains two strategies both near x*,
which undergo disruptive coevolution, i.e. x1

decreases and x2 increases. Evolution soon
arrives at the x2-isocline, and proceeds along this
isocline towards the singular coalition (x1*, x2*).
Since the x2-isocline is nearly horizontal, the
larger strategy will stay approximately constant
while the smaller strategy evolves towards even
smaller trait values. In the singular coalition, the
large strategy is evolutionarily stable, but the
small strategy is evolutionarily unstable [as
determined from eqn (11) and indicated by the
thickness of the isoclines]. The small strategy
thus undergoes secondary branching, giving rise
to a trimorphic population. Subsequent evol-
ution can be analysed similarly to the dimorphic
case; however, I do not pursue the numerical
analysis further because the results cannot be
visualized.

With linear r(x), a strategy xi in the n-morphic
singular coalition lacks evolutionary stability if
−Sa0(xi − xj )Nj is positive [cf. eqn (11)]. Notice
that this condition is always satisfied for the
smallest strategy of the coalition, provided that
a is concave–convex and a0(0)Q 0. The first
branching is thus followed by a series of further
evolutionary branching events; the series of
repeated branching is interrupted only if
the smallest possible trait value is reached.
Depending on the model parameters, some of the
larger strategies can undergo further branching
as well.

I also performed direct simulations of the
evolutionary process in order to confirm the

model predictions, and to illustrate the evol-
utionary dynamics of three and more coexisting
strategies [Fig. 2(b)]. In the simulations, I
iterated the population dynamics according to
eqn (1), starting with a monomorphic popu-
lation. Mutant strategies were generated by small
deviations from strategies already present, and
were introduced at a low initial frequency. By the
iteration of the population dynamics some
strategies grew in number, others declined. If the
frequency of a strategy dropped below a low
threshold, the strategy was considered extinct
and was removed from the iteration. The
evolutionary tree shows the strategies present at
various times during the simulation. The
simulations were not mutation-limited, i.e.
mutants appeared before the previous mutants
reached their equilibrium density or went extinct.
As a consequence, there was always some
variation within a branch of the evolutionary
tree. This variation, however, did not confound
the model predictions: the first branching in the
simulation took place near the monomorphic
branching point (x*) as determined above, the
lower branch evolved downwards while the
upper branch remained approximately constant,
and the second branching happened near the
singular coalition (x1*, x2*).

 2:  r(x)

Stabilizing selection on the trait can be
modelled by assuming that the intrinsic
growth rate is a Gaussian function of the trait
value,

r(x)= a exp0−(x−m)2

2s2 1 (14)

In this case, there is a single monomorphic
singularity at

x*=m−
a'(0)
a(0)

s2 (15)

that is larger than the optimal trait value in a
competitive-free environment (m) because a'(0)
is negative. The singular strategy is always
convergence stable [inequality (5) reduces to
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F. 3. (a) Isocline plot with Gaussian r(x); (b) simulated
evolutionary tree. The monomorphic population has a
branching point at x1 = x2 = x*=1.1; there is an
evolutionarily stable dimorphic coalition at (x1*=0.84,
x2*=1.37). Notations as in Fig. 2. Parameter values: a=1,
m=0, s=1, c=2, n=1, k=2.2.

Strong asymmetry and weak stabilizing selection
result in a large x* [cf. eqn (15)], such that the
Gaussian function r(x) is convex at x*, which
favors branching (Table 1).

Following evolutionary branching, the popu-
lation may reach an evolutionarily stable
coalition of two strategies provided that the
competitive asymmetry is sufficiently weak, i.e. k
is sufficiently small in eqn (2) (Fig. 3). With
stronger asymmetry, however, further evolution-
ary branching occurs. The isocline plot in
Fig. 4(a) shows an example where both strategies
of the dimorphic singular coalition lack evol-
utionary stability. The population density of the
smaller strategy is higher, hence it produces more
mutants and evolves faster. Once the smaller
strategy has undergone branching, the fitness
function [eqn (9)] slightly changes such that the
singularity shifts away from the present trait
value of the larger strategy. Whether or not the
larger strategy will still undergo branching
depends on the size of mutations relative to the
magnitude of this shift: if mutations are not very
small, then the larger strategy can still branch,
but if mutations are of sufficiently small
phenotypic effect, then the opportunity for
evolutionary branching in the larger strategy is
missed. Figure 4(b) illustrates a simulation with
missed branching; an analogous simulation with
somewhat larger mutations led to branching in
both strategies of the dimorphic coalition.

Repeated evolutionary branching can lead to
high levels of polymorphism [Fig. 4(b)]. Unlike
in the case of linear r(x), the coexisting strategies
are confined in range such that all strategies are
larger than m, the optimal trait value in a
competition-free environment: strategies below
m are disadvantageous with respect to both
stabilizing selection and asymmetric compe-
tition, and therefore would experience strong
selection towards larger trait values.

 3:  r(x)

If the intrinsic growth rate is a convex function
of the trait value, then a monomorphic
population may have multiple evolutionary
singularities. Here I assume the monotonically
decreasing, convex function

r(x)=−a− b(x−zx2 + d) (17)

−r(x*)/s2 Q 0]. The monomorphic population
undergoes evolutionary branching if

12rx (y)
1y2 by= x= x*

= r(x*)$0a'(0)
a(0)1

2

−
1
s2 −

a0(0)
a(0) %q 0 (16)

Evolutionary branching is hence promoted if (i)
=a'(0)/a(0)= is large, i.e. there is strong asymmetry
in competition, (ii) s2 is large, i.e. stabilizing
selection is weak, and (iii) a is concave at zero.

F. 4. (a) Isocline plot with Gaussian r(x). (b) Simulated
evolutionary tree. The monomorphic population has a
branching point at x1 = x2 = x*=1.81. In the dimorphic
singular coalition (x1*=1.33, x2*=2.24), both strategies
lack evolutionary stability; in the simulation, however, the
larger strategy at the two-strategy stage misses evolutionary
branching. Notations as in Fig. 2. Parameter values: a=1,
m=0, s=1, c=2, n=1.2, k=4.
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with non-negative a and positive b and d. For
large negative values of x, this function is
approximately linear with slope −2b. As x
increases, the function becomes less steep; for
large positive values of x, it asymptotically
converges to −a.

If a=0, i.e. if even very large strategies have
positive growth rates in a competition-free
environment, then there are two monomorphic
evolutionary singularities at

x*1,2 =2X0a(0)
a'(0)1

2

− d (18)

The larger singular strategy is always conver-
gence unstable, hence an initial population above
this singularity undergoes runaway evolution
towards large trait values. The smaller singular-
ity is a branching point unless a is too convex
(Table 1). If competitive asymmetry is strong
such that (a(0)/a'(0))2 Q d, then there is no
evolutionarily singular strategy: runaway evol-
ution leads to ever increasing trait values unless
the strategy set is constrained. As the trait value
increases, the equilibrium population density,
N(x)= r(x)/a(0), decreases: the population
evolves towards extinction (Matsuda & Abrams,
1994).

If aq 0, then r(x) is negative for large trait
values, and therefore runaway evolution is not
possible. The monomorphic evolutionary singu-
larities are the roots of a third-degree poly-
nomial; the largest one is always convergence
stable. Figure 5 shows the singular trait values as
a function of competitive asymmetry. If a is
convex near zero [Fig. 5(a)], then there may be
one or two convergence stable ESSs; if a is
concave [Fig. 5(b)], then all convergence stable
singularities are branching points (cf. Table 1).

Evolutionary branching gives rise to protected
polymorphism. It does not guarantee, however,
that the polymorphism is persistent on an
evolutionary time-scale: coevolution of the
coexisting strategies can lead to extinction, and
thus the population can fall back to a lower level
of polymorphism. Such an evolutionary scenario
is illustrated in Fig. 6. There are two convergence
stable monomorphic evolutionary singularities,
an ESS and a branching point, with a repellor in
between. A monomorphic population above the

F. 5. The monomorphic evolutionary singularities for
convex r(x) as given by eqn (17). a is specified by eqn (2);
increasing k corresponds to increasingly asymmetric
competition. (—) denotes evolutionarily stable strategies,
(—) branching points, and (. . .) evolutionary repellors. (a)
a is convex near zero (n=0.7); (b) a is concave near zero
(n=1.1). Parameter values: a=0.6, b=10, d=3.5, c=2.

repellor evolves to the branching point and
becomes dimorphic. However, there is no
dimorphic singularity in the domain of protected
dimorphisms in which the population is evolv-
ing. Therefore the population eventually leaves
the set of protected dimorphisms, and the larger
strategy of the dimorphism goes extinct. The
remaining monomorphic population is below the
repellor and hence evolves to the monomorphic
ESS.

Discussion

In a simple asymmetric competition model
based on the Lotka–Volterra equations, I have
demonstrated the possibility for evolutionary
branching, i.e. the evolution of polymorphism by
small mutational steps in an initially monomor-
phic population. Repeated evolutionary branch-
ing readily leads to high levels of polymorphism
[e.g. Figs 2(b) and 4(b)].

Evolutionary branching is possible only if a
large and a small strategy can coexist in a



(b)

–30 30x
T

im
e

(a)
30

–30
–30

30x1

x
2

(b)

–3 1x

T
im

e

(a)

–3 1x

T
im

e

́. 158

F. 6. (a) Isocline plot with convex r(x) as given by eqn
(17). The monomorphic population has three singularities,
an ESS at x1 = x2 = x*=−6.86 (W), a repellor at
x1 = x2 = x*=11.37 (r), and a branching point at
x1 = x2 = x*=17.22 (w); other notations as in Fig. 2; (b)
simulated evolutionary tree. Starting with a monomorphic
population above the repellor, the population evolves to the
branching point and undergoes evolutionary branching;
the dimorphic population, however, leaves the area of
protected dimorphism, i.e. the larger strategy goes extinct.
The remaining monomorphic population is below the
repellor and therefore evolves to the ESS. Parameter values:
a=0.6, b=10, d=3.5, c=2, n=0.7, k=0.24.

more easily in an initially polymorphic popu-
lation. Such an example is shown in Fig. 7. Here
the monomorphic population has an ESS,
therefore no polymorphism evolves [Fig. 7(a)].
If, however, the initial population is dimorphic,
then the smaller strategy undergoes repeated
evolutionary branching whereby a high level of
polymorphism can evolve [(Fig. 7b)]. This
implies that there may be a threshold level of
polymorphism above which higher level poly-
morphisms can be evolutionarily restored. If
some environmental catastrophe were to kill all
but two strategies of the rich coalition built up
in Fig. 7(b), then highly polymorphic coalitions
can evolve again provided that the two
remaining strategies are able to coexist and
evolve to the dimorphic branching point. If
only one strategy is left, then it will evolve to
the ESS, thus the polymorphism cannot be
regained.

     

 

The Lotka–Volterra type model used in this
paper is perhaps the simplest model of
asymmetric competition. It is not, however, a
mechanistic model, i.e. it is not derived from
underlying elementary processes of individual
life histories. When trading off ecological realism
for simplicity, it is crucial to ask how robust the
predictions are with respect to structural
modifications of the model.

protected dimorphism. A large strategy can
invade the population of small individuals by its
competitive superiority. A small strategy can,
however, also invade the population of large
individuals. Though small individuals cannot
win a contest against large ones, they have a
good chance to avoid any such contest
altogether, because the large strategy can
maintain only a low population density due to
the cost of large trait values. The few contests
encountered and lost by small individuals is
overcompensated by their greater intrinsic
growth rate, i.e. by not bearing the cost of large
size.

When runaway evolution proceeds up to large
trait values, then even a slightly smaller mutant
can invade and coexist with the former resident.
This sets the initial stage of evolutionary
branching. If the two coexisting strategies
experience disruptive selection (which is math-
ematically equivalent to there being no evolu-
tionarily stable strategy sufficiently similar to
them), then divergent coevolution gives rise to
two phenotypically distinct branches.

For simplicity, I always started with a
monomorphic population and investigated
whether it can undergo evolutionary branching.
Evolutionary branching, however, may occur

F. 7. Simulated evolutionary trees. (a) Starting with a
monomorphic population, evolution converges to an ESS;
(b) starting with a dimorphic population, the smaller
strategy undergoes repeated evolutionary branching. r(x) is
linear [eqn (12)], a is given by eqn 2; parameter values are
b=1, b=1, c=2, n=0.8, k=4.
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A short preliminary analysis of the asymmetric
competition model proposed by Roughgarden in
order to explain taxon cycles (Roughgarden,
1979; Rummel & Roughgarden, 1985; Brown &
Vincent, 1987; Taper & Case, 1992) also
indicated evolutionary branching. In this model,
however, different strategies exploit partially
different niches in addition to the differences in
their competitive ability. Niche segregation is
known to promote evolutionary branching
without competitive asymmetry (Metz et al.,
1996).

In a model constructed specifically for the
evolution of seed size in plants, the results
obtained by Geritz et al. (1999) were strikingly
similar to the present study, including evolution-
ary branching, repeated branching, and extinc-
tion. This is surprising because their model was
rather different from the simple Lotka–Volterra
model used here. Seeds were assumed to disperse
randomly into safe-sites, such that the number of
seeds per site was variable. Competition was
restricted to seeds within the same site.
Individuals competed according to a weighted
lottery, where an increase in seed size conferred
a disproportionate advantage as larger seedlings
oppress smaller ones by shading. Larger seeds
also had higher precompetitive survival prob-
ability; large seeds, however, could be produced
in less number given the limited resources
provided by a safe site. The fitness function
incorporating these ecological details is analyti-
cally untractable and much more complicated
than eqn (3). Nevertheless the predicted evol-
utionary scenarios are similar, which may reflect
a fundamental similarity of the evolutionary
mechanism operating in the two models: the
evolutionary increase of the trait value promoted
by competitive asymmetry leads to low popu-
lation density, where competition is relaxed and
smaller mutants can invade.

It would be premature, however, to conclude
that competitive asymmetry facilitates evolution-
ary branching in general. Reanalysing four
asymmetric competition models used by Abrams
& Matsuda (1994), I found that evolutionary
branching is possible in only two of them:
Branching may occur in the constant density
‘‘free for all’’ competition model and in the
variable density ‘‘pairwise’’ competition model,

but branching is not possible in the variable
density ‘‘free for all’’ model and in the constant
density ‘‘pairwise’’ model of Abrams & Matsuda
(1994). Further research is required in order to
identify the critical ecological factors which
determine whether asymmetric competition can
lead to evolutionary branching.

   

 

As in most previous models with evolutionary
branching (Metz et al., 1996; Doebeli & Ruxton,
1997; Meszéna et al., 1997; Geritz et al., 1998,
1999; Geritz & Kisdi, in press; Mathias & Kisdi,
in press; Meszéna & Metz, in press), I modelled
evolution on a phenotypic level and assumed
that strategies breed true (i.e. there is haploid or
clonal inheritance). In diploid outbreeding
species, recombination may severely affect the
outcome of evolution. As long as the population
is monomorphic and undergoes directional
evolution, the phenotypic adaptive dynamics
(termed often as the ‘‘ESS-approach’’) are
largely compatible with the quantitative genetic
models (Charlesworth, 1990; Iwasa et al., 1991;
Taper & Case, 1992; Abrams et al., 1993a,b;
Taylor, 1996). At an evolutionary branching
point, however, random mating and recombina-
tion recreates the intermediate phenotypes that
are selected against during evolutionary branch-
ing, and thereby prevent the emergence of two
phenotypically separate branches. If mating is
random and recombination is free, the evolution
of polygenic traits will get stuck at the branching
point, in spite of that the population is at a
fitness minimum and thus experiences disruptive
selection (Abrams et al., 1993a).

Evolutionary branching may occur under
diploid multilocus inheritance only if recombina-
tion is prevented by reproductive isolation
between the emerging branches. Although the
evolution of reproductive isolation in sympatry
is still controversial, there is some empirical
evidence which seems to support the possibility
(e.g. Coyne & Orr, 1989, 1997; Rice & Hostert,
1993; Johannesson et al., 1995; Noor, 1995;
Saetre et al., 1997; Rundle & Schluter, 1998).

If the trait under selection (henceforth referred
to as the primary trait) determines mate choice,
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then evolutionary branching immediately results
in prezygotic isolation (Templeton, 1981; Rice,
1984; Smith, 1988; Rice & Salt, 1990; Rice &
Hostert, 1993; Galis & Metz, 1998). In an explicit
multilocus genetic model, Doebeli (1996) and
Doebeli and Dieckmann (in press) demonstrated
that disruptive selection leads to bimodal
phenotypic distribution (the multilocus equival-
ent of branching) under assortative mating. A
realistic example for this scenario may involve
body size as the primary trait: body size has a
strong influence on mate choice, and disruptive
selection on body size is thought to lead to
sympatric speciation in several species (Schluter
& Nagel, 1995; Nagel & Schluter, 1998). Body
size is often a main factor in competitive
asymmetry. It is thus reasonable to expect that
asymmetric competition, by generating disrup-
tive selection on body size at an evolutionary
branching point, may cause sympatric speciation
when mating is size-assortative.

If there is no assortative mating in the initial
population, it may still evolve when the
population is at the evolutionary branching
point. Under disruptive selection on the primary
trait, an allele influencing mate choice such
that carriers prefer mates with primary trait
similar to their own is spread by selection
(Maynard Smith, 1966; Seger, 1985; Doebeli,
1996; Doebeli & Dieckmann, in press). Assorta-
tive mating based on the primary trait evolves
easily because no linkage disequilibrium is
needed between the primary trait and the mate
choice loci (Felsenstein, 1981; Rice & Hostert,
1993).

Reproductive isolation may also evolve inde-
pendently of the primary trait, for example by
sexual selection (Turner & Burrows, 1995). Two
reproductively isolated groups, or species,
cannot coexist permanently without niche
differentiation. However, if the isolated groups
appear in a population that has been stuck at a
branching point, then any initial difference in the
primary trait will be amplified by disruptive
selection: the population will undergo evolution-
ary branching such that the two isolated groups
evolve into the two branches, and thereby
gain the differentiation necessary for stable
coexistence as separate species (Galis & Metz,
1998).

Multilocus inheritance is also likely to violate
the assumption of mutation-limited evolution:
the more loci affect the trait, the more mutations
occur, and therefore the less likely it is that a new
mutant appears only after the population has
reached its equilibrium. The assumption of
mutation-limited evolution greatly simplifies the
analysis of the model. However, as the direct
simulations demonstrate, the model predictions
are robust with respect to the frequency of
mutations.

Multilocus genetic models often assume that
each locus has only two alternative alleles. This
is, however, not necessarily true a priori. If there
is a continuum of different potential alleles at a
locus, and mutations give rise to phenotypically
similar alleles, then the adaptive dynamics
framework can be applied to the evolution of
alleles within a locus. In a one-locus diploid
model, Kisdi and Geritz (in press, 1999) showed
that alleles undergo evolutionary branching
much like haploid strategies in the phenotypic
model, giving rise to a protected genetic
polymorphism of two distinctly different alleles.
It is not yet known to what extent this result
generalizes to several loci.
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(OTKA, grant number T 019272), and by a travel
grant from the Soros Foundation (Hungary).

REFERENCES

A, P. A. & M, H. (1994). The evolution of
traits that determine ability in competitive contests. Evol.
Ecol. 8, 667–686.

A, P. A., M, H. & H, Y. (1993a).
Evolutionarily unstable fitness maxima and stable fitness
minima of continuous traits. Evol. Ecol. 7, 465–487.

A, P. A., H, Y. & M, H. (1993b). On the
relationship between quantitative genetic and ESS
models. Evolution 47, 982–985.

A, R. V. & M, J. (1987). Body size, inter-
specific interactions, and the use of foraging sites in tits
(Paridae). Ecology 68, 1773–1777.

B, M. (1984). Density and individual fitness: asymmet-
ric competition. In: Evolutionary Ecology (Shorrocks, B.,
ed.), pp. 175–194. Oxford: Blackwell Science.

B, M., H, J. L. & T, C. L. (1996).
Ecology. Oxford: Blackwell Science.

B, J. S. & V, T. L. (1987). Coevolution as an
evolutionary game. Evolution 41, 66–79.



     161

C, S. P. & S, M. H. (1995). Variation in
sexual selection on male body size within and between
populations of the soapberry bug. Anim. Behav. 50,
1463–1474.

C, B. (1990). Optimization models, quantitat-
ive genetics, and mutation. Evolution 44, 520–538.

C, F. B. (1991). On conditions for evolutionary
stability for a continuously varying character. Am. Nat.
138, 37–50.

C-B, T. H. & A, S. D. (1979). The roaring
of red deer and the evolution of honest advertisement.
Behaviour 69, 145–170.

C-B, T. H., A, S. D., G, R. M. &
G, F. E. (1979). The logical stag: aspects of
fighting in red deer (Cervus elaphus L.). Anim. Behav. 27,
211–275.

C, J. H. (1983). On the prevalence and relative
importance of interspecific competition: evidence from
field experiments. Am. Nat. 122, 661–696.

C, J. A. & O, H. A. (1989). Patterns of speciation in
Drosophila. Evolution 43, 362–381.

C, J. A. & O, H. A. (1997). ‘‘Patterns of speciation in
Drosophila’’, revisited. Evolution 51, 295–303.

D,R.&K, J.R. (1979). Arms races between and
within species. Proc. R. Soc. Lond. B 205, 489–511.

D, C. R. (1988). Body size, prey size, and
community structure in insectivorous mammals. Ecology
69, 569–580.

D, M. (1996). A quantitative genetic model for
sympatric speciation. J. evol. Biol. 9, 893–909.

D, M. & D, U. (1999). Evolutionary
branching with multi-locus genetics. In: Adaptive
Dynamics in Context (Dieckmann, U. & Metz, J. A. J.,
eds). Cambridge: Cambridge University Press (in press).

D,M.&R,G.D. (1997). Evolution of dispersal
rates in metapopulation models: branching and cyclic
dynamics in phenotype space. Evolution 51, 1730–1741.

E, C., J, F. & O, T. I. (1992).
Asymmetric competition between different taxa: poecilid
fishes and water striders. Oecologia 92, 498–502.

E, I. (1983). Evolutionary and continuous stability. J.
theor. Biol. 103, 99–111.

E, I., M, U. & S, E. (1997). Continuous
stability and evolutionary convergence. J. theor. Biol.
185, 333–343.

F, J. (1981). Scepticism towards Santa Rosalia,
or why are there so few kinds of animals? Evolution 35,
124–138.

G, F. & M, J. A. J. (1998). Why are there so many
cichlid species? TREE 13, 1–2.

G, S. A. H. (1995). Evolutionarily stable seed
polymorphism and small-scale spatial variation in
seedling density. Am. Nat. 146, 685–707.

G, S. A. H. & K, E� . (1999). Adaptive dynamics and
evolutionary branching in mutation-limited evolution. In:
Adaptive Dynamics in Context (Dieckmann, U. & Metz,
J. A. J., eds). Cambridge: Cambridge University Press
(in press).

G, S. A. H., M, J. A. J. K, E� . & Ḿ, G.
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