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Figure 9.3: Generalisation of Snell’s law and the reflection law to include non-planar waves that are
incident upon a curved interface.

9.3 Reflection and refraction of plane electromagnetic waves

Note that the reflection law and the refraction law apply to all types of plane waves, i.e. to acoustic,
electromagnetic, and elastic waves. In the derivation we have only used that kq · r − ωt (q = i, r, t)
shall be the same for q = i, q = r, and q = t. Now we take a closer look at the reflection and
refraction of plane electromagnetic waves in order to determine how much of the energy in the
incident wave that is reflected and transmitted.

We know that a plane electromagnetic wave is transverse, i.e. that both E and B = µH are
normal to the propagation direction k = kŝ. In Fig. 9.1 we have chosen the z axis in the direction of
the interface normal. If E is normal to the plane of incidence, we have s polarisation (from German,
“Senkrecht”) or TE polarisation (“transverse electric” relative to the plane of incidence or the z
axis). And if E is parallel with the plane of incidence, we have p polarisation or TM polarisation,
since in this case B is normal to the plane of incidence or the z axis; hence the use of the term TM
or “transverse magnetic”.

A general time-harmonic, plane electromagnetic wave consists of both a TE and a TM compo-
nent. With the time dependence e−iωt suppressed, we have for the spatial part of the field

E = ETE + ETM ; B = BTE + BTM , (9.3.1)

ETE = ETE kt × êz

kt
eik·r, (9.3.2)

ETM = ETM k × (kt × ê)z

kkt
eik·r, (9.3.3)

BTE =
1
k0

k × ETE = ETE k × (kt × êz)
k0kt

eik·r, (9.3.4)

BTM =
1
k0

k × ETM = ETM 1
k0kkt

k × [k × (kt × êz)]eik·r. (9.3.5)

But since k × [k × (kt × êz)] = k[k · (kt × êz)] − (kt × êz)k · k = −k2kt × êz, we get

BTM =
−k

k0
ETM kt × êz

kt
eik·r. (9.3.6)
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Note that the vectors

êTE =
kt × êz

kt
; êTM =

k × (kt × êz)
kkt

, (9.3.7)

are unit vectors in the directions of ETE and ETM , respectively.
We represent each of the incident, reflected, and transmitted fields in the manner given above,

so that (q = i, r, t)

Eq = ETEq + ETMq ; Bq = BTEq + BTMq, (9.3.8)

ETEq = ETEq kt × êz

kt
eikq·r, (9.3.9)

ETMq = ETMq kq × (kt × êz)
kqkt

eikq·r, (9.3.10)

BTEq =
kq

k0
ETEq kq × (kt × êz)

kqkt
eikq·r, (9.3.11)

BTMq =
−kq

k0
ETMq kt × êz

kt
eikq·r, (9.3.12)

where

ki = kt + kz1êz ; kt = kxêx + kyêy, (9.3.13)

kr = kt − kz1êz ; kt = kt + kz2êz, (9.3.14)

kq =
{

k1 = n1k0 for q = i, r
k2 = n2k0 for q = t.

(9.3.15)

The continuity conditions that must be satisfied at the interface z = 0 are that the tangential
components of E and H = 1

µB be continuous, i.e.

êz ×
{
ETEi + ETEr − ETEt + ETMi + ETMr − ETMt

}
= 0, (9.3.16)

êz ×
{

1
µ1

(
BTEi + BTEr

)
− 1

µ2
BTEt +

1
µ1

(
BTMi + BTMr

)
− 1

µ2
BTMt

}
= 0. (9.3.17)

Further, we have

êz × [kq × (kt × êz)] = (kq · êz) êz × kt, (9.3.18)

êz × (kt × êz) = kt. (9.3.19)

By substituting from (9.3.9)-(9.3.12) into the boundary conditions (9.3.16)-(9.3.17) and using (9.1.2)
and (9.3.18)-(9.3.19), we get

kt

{
ETEi + ETEr − ETEt

}
+ êz × kt

{
kz1

k1
ETMi − kz1

k1
ETMr − kz2

k2
ETMt

}
= 0, (9.3.20)

êz × kt

{
1
µ1

(
kz1

k0
ETEi − kz1

k0
ETEr

)
− 1

µ2

kz2

k0
ETEt

}

+kt

{
1
µ1

(−k1

k0
ETMi − k1

k0
ETMr

)
− −k2

k0
ETMt

}
= 0. (9.3.21)
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Since kt and êz × kt are orthogonal vectors, the expression inside each of the {} parentheses in
(9.3.20) and (9.3.21) must vanish, i.e.

ETEi + ETEr = ETEt, (9.3.22)

kz1µ2

(
ETEi − ETEr

)
= kz2µ1E

TEt, (9.3.23)

kz1k2

(
ETMi − ETMr

)
= kz2k1E

TMt, (9.3.24)

k1µ2

(
ETMi − ETMr

)
= k2µ1E

TMt. (9.3.25)

Now we define reflection and transmission coefficients as

RTE =
ETEr

ETEi
; TTE =

ETEt

ETEi
, (9.3.26)

RTM =
ETMr

ETMi
; TTM =

ETMt

ETMi
, (9.3.27)

so that (9.3.22)-(9.3.25) give

1 + RTE = TTE ; 1 − RTE =
kz2µ1

kz1µ2
TTE , (9.3.28)

1 − RTM =
kz2k1

kz1k2
TTM ; 1 + RTM =

k2µ1

k1µ2
TTM . (9.3.29)

The two equations in (9.3.28) have the following solution

RTE =
µ2kz1 − µ1kz2

µ2kz1 + µ1kz2
; TTE =

2µ2kz1

µ2kz1 + µ1kz2
, (9.3.30)

whereas the two equations in (9.3.29) give

RTM =
k2
2µ1kz1 − k2

1µ2kz2

k2
2µ1kz1 + k2

1µ2kz2
; TTM =

2k1k2µ2kz1

k2
2µ1kz1 + k2

1µ2kz2
. (9.3.31)

The interpretation of the reflection and transmission coefficients follow from (9.3.26)-(9.3.27). Thus,
the reflection coefficient represents the amplitude ratio between the reflected and the incident E
field, whereas the transmission coefficient represents the amplitude ratio between the transmitted
and the incident E field.

Note that (9.3.22)-(9.3.23) and (9.3.28) contain only TE quantities, whereas equations (9.3.24)-
(9.3.25) and (9.3.29) contain only TM quantities. This implies that these two wave types are
independent or de-coupled upon reflection and refraction. Thus, an incident TE plane wave produces
a reflected TE plane wave and a transmitted TE plane wave, whereas an incident TM plane wave
produces a reflected TM plane wave and a transmitted TM plane wave. Upon reflection and
refraction there is no coupling between TE and TM waves.

From Fig. 9.1 it follows that

kz1 = ki · êz = k1 cos θi ; kz2 = kt · êz = k2 cos θt, (9.3.32)

so that if µ1 = µ2 = 1 the reflection and transmission coefficients become

TTM =
2n1 cos θi

n2 cos θi + n1 cos θt
; RTM =

n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
, (9.3.33)

TTE =
2n1 cos θi

n1 cos θi + n2 cos θt
; RTE =

n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
, (9.3.34)
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Figure 9.4: Reflection and refraction of a plane electromagnetic wave at a plane interface between
two different media. Illustration of TE and TM components of the electric field.

These expressions are called the Fresnel formulas. By using Snell’s law (9.1.20), we can rewrite them
as (Exercise 9)

TTM =
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
; RTM =

tan(θi − θt)
tan(θi + θt)

, (9.3.35)

TTE =
2 sin θt cos θi

sin(θi + θt)
; RTE = − sin(θi − θt)

sin(θi + θt)
. (9.3.36)

At normal incidence where θi = θt = 0, we get from (9.3.33) and (9.3.34)

TTE = TTM =
2

n + 1
; RTM = −RTE =

n − 1
n + 1

; n =
n2

n1
. (9.3.37)

The fact that RTM = −RTE at normal incidence follows from the way in which ETE and ETE

are defined. From Fig. 9.4 we see that these two vectors point in opposite directions at normal
incidence.

9.3.1 Reflectance and transmittance

Fig. 9.4 shows the polarisation vectors êTMq (q = i, r, t) and êTE for TM and TE polarisation.
These unit vectors are parallel with the electric field and follow from (9.3.9)-(9.3.12)

êTEi = êTEr = êTEt = êTE =
kt × êz

kt
; |êTE | = 1, (9.3.38)

êTMq =
kq × (kt × êz)

kqkt
; |êTMq| = 1. (9.3.39)

Let the angle between Eq and the plane of incidence spanned by kq and êTMq, be αq [see Fig. 9.5],
so that

Eq = êTEEq sinαq + êTMqEq cos αq. (9.3.40)
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Figure 9.5: Illustration of the angle αq between the electric vector Eq and the plane of incidence
spanned by kq and êTMq.

Further, we let J i, Jr, and J t denote the energy flows of respectively the incident, reflected, and
transmitted fields per unit area of the interface. Then we have

Jpq = Spq cos θq ; p = TE, TM ; q = i, r, t, (9.3.41)

where Spq is the absolute value of the Poynting vector, given by

Spq =
c

4π
|Epq × Hpq| =

c

4π
EpqHpq =

c

4π

√
εq

µq
(Epq)2 . (9.3.42)

Here we have used the relation
√

εqEpq =
√

µqHpq. The reflectance Rp (p = TE, TM is the ratio
between the reflected and incident energy flows. From (9.3.41)-(9.3.42) we have

RTM =
JTMr

JTMi
=

|ETMr|2
|ETMi|2 = (RTM )2. (9.3.43)

RTE =
JTEr

JTEi
=

|ETEr|2
|ETEi|2 = (RTE)2, (9.3.44)

Thus, the reflectance Rp is equal to the square of reflection coefficient Rp.
The transmittance T p (p = TE, TM) is the ratio between the transmitted and incident energy

flows, and (9.3.41)-(9.3.42) give

T TM =
JTMt

JTMi
=

n2

n1

µ1

µ2

cos θt

cos θi
(TTM )2, (9.3.45)

T TE =
JTEt

JTEi
=

n2

n1

µ1

µ2

cos θt

cos θi
(TTE)2. (9.3.46)

Thus, the transmittance T p is proportional to the square of the transmission coefficient T p (p =
TE, TM). When µ2 = µ1 = 1, we find on substitution from (9.3.35)-(9.3.36) into (9.3.43)-(9.3.46)
the following expressions for the reflectance and the transmittance

RTM =
tan2(θi − θt)
tan2(θi + θt)

, (9.3.47)
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RTE =
sin2(θi − θt)
sin2(θi + θt)

, (9.3.48)

T TM =
sin 2θi sin 2θt

sin2(θi + θt) cos2(θi − θt)
, (9.3.49)

T TE =
sin 2θi sin 2θt

sin2(θi + θt)
. (9.3.50)

By use of these formulas one can show that

RTM + T TM = 1 ; RTE + T TE = 1, (9.3.51)

so that for each of the two polarisations the sum of the reflected energy and the transmitted energy
is equal to the incident energy.

From (9.3.41) and (9.3.42) we have

Jpi =
c

4π

√
ε1

µ1
|Epi|2 cos θi, (9.3.52)

which by the use of (9.3.40) gives

JTEi = cos θi c

4π

√
ε1

µ1
|ETEi|2 = cos θi c

4π

√
ε1

µ1
E2 sin2 αi, (9.3.53)

JTMi = cos θi c

4π

√
ε1

µ1
|ETMi|2 = cos θi c

4π

√
ε1

µ1
E2 cos2 αi. (9.3.54)

But since the total incident energy flow is given by

J i = cos θi c

4π

√
ε1

µ1
E2, (9.3.55)

we find

JTEi = J i sin2 αi ; JTMi = J i cos2 αi. (9.3.56)

Thus, we have

R =
Jr

J i
=

JTMr + JTEr

J i
=

JTMr

JTMi
cos2 αi +

JTEr

JTEi
sin2 αi, (9.3.57)

which gives

R = RTM cos2 αi + RTE sin2 αi, (9.3.58)

and similarly we find

T = T TM cos2 αi + T TE sin2 αi. (9.3.59)

At normal incidence, θi = θt = 0, and the distinction between TE and TM polarisation disappears.
From (9.3.43)-(9.3.46) combined with (9.3.33)-(9.3.34), we find (when µ1 = µ2 = 1)

R = RTM = RTE = (RTE)2 =
(
RTM

)2
=

(
n − 1
n + 1

)2

; n =
n2

n1
, (9.3.60)

T = T TM = T TE =
(
TTE

)2
=

(
TTM

)2
=

4n

(n + 1)2
; n =

n2

n1
. (9.3.61)

When n → 1, we see that R → 0 and T → 1, as expected. Similarly, we find from (9.3.47)-(9.3.50)
that R‖ → 0, R⊥ → 0, T‖ → 1, T⊥ → 1 when n → 1.
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Figure 9.6: Illustration of Brewster’s law.

9.3.2 Brewster’s law

From (9.3.47) it follows that RTM = 0 when θi + θt = π
2 , since then tan(θi + θt) = ∞. We call this

particular angle of incidence θiB and the corresponding refraction or transmission angle θtB . By
using Snell’s law (9.1.20), we find

n2 sin θtB = n2 sin
(π

2
− θiB

)
= n2 cos θiB = n1 sin θiB , (9.3.62)

so that RTM = 0 when θi = θiB , where θiB is given by

tan θiB =
n2

n1
= n. (9.3.63)

The angle θiB is called the polarisation angle or the Brewster angle. When the angle of incidence
is equal to θiB , the E vector of the reflected light has no component in the plane of incidence (Fig.
9.6). This fact is exploited in sunglasses with polarisation filter. The filter is oriented such that
only light that is polarised vertically (Fig. 9.6) is transmitted. Thus, one avoids to a certain degree
annoying reflections from e.g. a water surface.

Note that kr · kt = 0, i.e. kr and kt are normal to one another when θi = θiB , as shown in
Fig. 9.6.

9.3.3 Unpolarised light (natural light)

For natural light, e.g. light from an incandescent lamp, the direction of the E vector varies very
rapidly in an arbitrary or irregular manner, so that no particular direction is given preference. The
average reflectance R is obtained by averaging over all directions α. Since the average value of both
sin2 α and cos2 α is 1

2 , we find from (9.3.56) that

J
TMi

= J icos2 αi = J
TEi

= J isin2 αi =
1
2
J i. (9.3.64)

For the reflected components we find

J
TMr

=
J

TMr

J
TMi

· JTMi
=

J
TMr

J
TMi

· 1
2
J i =

1
2
RTMJ i, (9.3.65)



FYS 263 39

J
TEr

=
J

TEr

J
TEi

· 1
2
J i =

1
2
RTEJ i, (9.3.66)

which shows that the degree of polarisation for the reflected light can be defined as

P r =
∣∣∣∣R

TM −RTE

RTM + RTE

∣∣∣∣ =
|JTMr − JTEr|
JTMr + JTEr

. (9.3.67)

The average reflectance is given by

R =
J

r

J
i

=
J

TMr
+ J

TEr

J
i

=
J

TMr

2J
TMi

+
J

TEr

2J
TEi

=
1
2

(
RTM + RTE

)
, (9.3.68)

so that the degree of polarisation becomes

P r =
1
R

1
2
|RTM −RTE |, (9.3.69)

where |RTM −RTE | is called the polarised part of the reflected light.
Similarly, we find for the transmitted light

T =
1
2
(T TM + T TE) ; P t =

1
T

1
2
|T TM − T TE |. (9.3.70)

9.3.4 Rotation of the plane of polarisation upon reflection and refraction

Note that if the incident light is linearly polarised, then also the reflected and the transmitted light
will be linearly polarised, since the phases only change by 0 or π. This follows from the fact that the
reflection and transmission coefficients are real quantities [cf. (9.3.33)-(9.3.36)]. But the planes of
polarisation for the reflected and the transmitted light are rotated in opposite directions relative to
the polarisation plane of the incident light. The angles αi, αr, and αt that the planes of polarisation
of the incident, reflected, and transmitted light form with the plane of incidence, are given by [cf.
Fig. 9.5]

tanαi =
ETEi

ETMi
, (9.3.71)

tanαr =
ETEr

ETMr
=

ET Er

ET Ei

ET Mr

ET Mi

ETEi

ETMi
=

RTE

RTM
tanαi, (9.3.72)

tanαt =
ETEt

ETMt
=

ET Et

ET Ei

ET Mt

ET Mi

ETEi

ETMi
=

TTE

TTM
tanαi. (9.3.73)

By use of the Fresnel formulas (9.3.35)-(9.3.36) we can write

tanαr = −cos(θi − θt)
cos(θi + θt)

tanαi, (9.3.74)

tanαt = cos(θi − θt) tanαi. (9.3.75)

Since 0 ≤ θi ≤ π
2 and 0 ≤ θt ≤ π

2 , we get

| tanαr| ≥ | tanαi|, (9.3.76)

| tanαt| ≤ | tanαi|. (9.3.77)

In (9.3.76) the equality sign applies at normal incidence (θi = θt = 0) and at grazing incidence (θi =
π
2 ), whereas in (9.3.77) the equality sign applies only at normal incidence. These two inequalities
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imply that upon reflection the plane of polarisation is rotated away from the plane of incidence,
whereas upon transmission it is rotated towards the plane of incidence. Note that when θi = θiB ,
so that θiB + θtB = π

2 , then tanαr = ∞. Thus, we have αr = π
2 in accordance with Brewster’s law.

9.3.5 Total reflection

Snell’s law (9.1.20) can be written in the form

sin θt =
sin θi

n
; n =

n2

n1
=

√
ε2µ2

ε1µ1
. (9.3.78)

Hence, it follows that if n < 1, then we get sin θt = 1 when θi = θic, where

sin θic = n. (9.3.79)

This implies that when θi = θic, we get θt = π
2 , so that the transmitted light propagates along the

interface. If θi ≥ θic, we have total reflection, i.e. no light will pass into the other medium. All
light is then reflected. There exists a field in the other medium, but there is no energy transport
through the interface. When θi > θic, then sin θt > 1, which means that θt is complex. We have
from (9.3.78)

cos θt = ±
√

1 − sin2 θt = ±i

√
sin2 θi

n2
− 1 =

±i
√

sin2 θi − n2

n
. (9.3.80)

The lower sign in (9.3.80) must be discarded. Otherwise the field in medium 2 would grow expo-
nentially with increasing distance from the interface. The electric field in medium 2 is

Ept = T pEpiêptei(kt·r−ωt) (p = TE, TM), (9.3.81)

where

kt · r = kxx + kyy + kz2z, (9.3.82)

with (cf. Fig. 9.1 and (9.3.80) with upper sign)

kz2 = k2 cos θt = ik2
1
n

√
sin2 θi − n2 ; n =

n2

n1
, (9.3.83)

so that

eikt·r = ei(kxx+kyy)e−|kz2|z ; |kz2| =
k2

n

√
sin2 θi − n2 . (9.3.84)

We see that Ept represents a wave that propagates along the interface and is exponentially damped
with the distance z into medium 2.

From ∇ · Dt = ε2∇ · Et = 0 it follows that

kt · Et = 0, (9.3.85)

which gives

Et
z = −

(kxEt
x + kyEt

y)
kz2

. (9.3.86)

If we let the plane of incidence coincide with the xz plane, we have (cf. Fig. 9.7)

kx = −k1 sin θi ; ky = 0, (9.3.87)

Et
y = ETEtei(kxx−ωt)e−|kz2|z = TTEETEiei(kxx−ωt)e−|kz2|z, (9.3.88)
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Figure 9.7: Illustration of the refraction of a plane wave into an optically thinner medium, so that
θi < θt. When θi → θic, then θt → π/2, and we get total reflection.

Et
x = −ETMt cos θtei(kxx−ωt)e−|kz2| = −TTMETMi cos θtei(kxx−ωt)e−|kz2|z, (9.3.89)

Et
z = − kx

kz2
Et

x =
kx

k2
TTMETMiei(kxx−ωt)e−|kz2|z. (9.3.90)

From these expressions for the components of Et and corresponding expressions for the components
of Ht one can show (Exercise 11) that the time average of the z component of the Poynting vector
is zero, which implies that there is no energy transport through the interface, as asserted earlier.

The reflection coefficients in (9.3.35)-(9.3.36) can be written as follows

RTM =
sin θi cos θi − sin θt cos θt

sin θi cos θi + sin θt cos θt
, (9.3.91)

RTE = − sin θi cos θt − sin θt cos θi

sin θi cos θt + sin θt cos θi
. (9.3.92)

By combining Snell’s law (9.3.78) and (9.3.80) with the upper sign with (9.3.91)-(9.3.92), we get

RTM =
n2 cos θi − i

√
sin2 θi − n2

n2 cos θi + i
√

sin2 θi − n2
, (9.3.93)

RTE =
cos θi − i

√
sin2 θi − n2

cos θi + i
√

sin2 θi − n2
. (9.3.94)

Since both reflection coefficients are of the form z/z∗, where z is a complex number, it follows that

|RTM | = |RTE | = 1, (9.3.95)
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which shows that for each polarisation the intensity of the totally reflected light is equal to the
intensity of the incident light.

But the phase is altered upon total reflection. Letting

Rp =
Epr

Epi
= eiδp

=
zp

zp∗ = e2iαp

(p = TE, TM), (9.3.96)

where [cf. (9.3.93)-(9.3.94)]

zTM = n2 cos θi − i
√

sin2 θi − n2 = |zTM |eiαT M

, (9.3.97)

zTE = cos θi − i
√

sin2 θi − n2 = |zTE |eiαT E

, (9.3.98)

we find

tanαTM = tan
(

1
2
δTM

)
= −

√
sin2 θi − n2

n2 cos θi
, (9.3.99)

tanαTE = tan
(

1
2
δTE

)
= −

√
sin2 θi − n2

cos θi
. (9.3.100)

The relative phase difference

δ = δTE − δTM , (9.3.101)

is determined by

tan
(

1
2
δ

)
=

tan
(

1
2δTE

)
− tan

(
1
2δTM

)
1 + tan

(
1
2δTE

)
tan

(
1
2δTM

) , (9.3.102)

which upon substitution from (9.3.99)-(9.3.100) gives

tan
(

1
2
δ

)
=

cos θi
√

sin2 θi − n2

sin2 θi
. (9.3.103)

We see that δ = 0 for θi = π
2 (grazing incidence) and θi = θic (critical angle of incidence). Between

these two values there is an angle of incidence θi = θim which gives a maximum phase difference
δ = δm, where θim is determined by

dδ

dθi

∣∣∣∣
θim

= 0. (9.3.104)

From (9.3.104) we find

sin2 θim =
2n2

1 + n2
, (9.3.105)

which upon substitution in (9.3.103) gives (Exercise 10)

tan
(

1
2
δm

)
=

1 − n2

2n
. (9.3.106)

If the phase difference δ is equal to ±π
2 and in addition ETMi = ETEi, the totally reflected light

will be circularly polarised. By choosing the angle αi between the polarisation plane and the plane
of incidence equal to 45◦, we make ETMi equal to ETEi. In order to obtain δ = π

2 we must have
δm

2 ≥ π
4 . This means that tan

(
δm

2

)
≥ tan

(
π
4

)
= 1, which according to (9.3.106) implies that

n2 + 2n − 1 ≤ 0. (9.3.107)

By completing the square on the left-hand side of (9.3.107), we find that
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n ≤
√

2 − 1 ;
1
n

=
n1

n2
≥

√
2 + 1 = 2.41. (9.3.108)

Thus, n1
n2

must exceed 2.41 in order that we shall obtain a phase difference of π
2 in one single

reflection.




