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Figure 9.3: Generalisation of Snell’s law and the reflection law to include non-planar waves that are
incident upon a curved interface.

9.3 Reflection and refraction of plane electromagnetic waves

Note that the reflection law and the refraction law apply to all types of plane waves, i.e. to acoustic,
electromagnetic, and elastic waves. In the derivation we have only used that k?-r — wt (¢ = 4,7, )
shall be the same for ¢ = i, ¢ = r, and ¢ = t. Now we take a closer look at the reflection and
refraction of plane electromagnetic waves in order to determine how much of the energy in the
incident wave that is reflected and transmitted.

We know that a plane electromagnetic wave is transverse, i.e. that both E and B = yH are
normal to the propagation direction k = kS. In Fig. 9.1 we have chosen the z axis in the direction of
the interface normal. If E is normal to the plane of incidence, we have s polarisation (from German,
“Senkrecht”) or T'E polarisation (“transverse electric” relative to the plane of incidence or the z
axis). And if E is parallel with the plane of incidence, we have p polarisation or TM polarisation,
since in this case B is normal to the plane of incidence or the z axis; hence the use of the term T M
or “transverse magnetic”.

A general time-harmonic, plane electromagnetic wave consists of both a T'FE and a T'M compo-
nent. With the time dependence e~** suppressed, we have for the spatial part of the field

E=E'F tET™™ . B=B"F BT, (9.3.1)
BTE _ prEXe X8 er (9.3.2)
Ky
ETM — ETMMEikT, (9.3.3)
kk;
BTE = Ly gre - prek (@) (9.3.4)
]{30 kokt
1 1 ,
B™™ = _k x ETM = gT™ k x [k x (k; x &,)]e’T. (9.3.5)
ko kokk;
But since k x [k x (k; x &,)] =k[k - (k; x &,)] — (k; x &,)k -k = —k?k; x &, we get
BTM — __kETM 7kt X éz eik'r. (936)

ko Ky
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Note that the vectors I x & I (k. x &
X € X X €
eTB — T2 T2 oM Mv (9.3.7)
k¢ kky
are unit vectors in the directions of ET® and ETM | respectively.
We represent each of the incident, reflected, and transmitted fields in the manner given above,

so that (¢ =1i,7,t)

E? = ETPe f gTMa . Ba — gTP¢ y gTMa, (9.3.8)
ki Xx &, .14
ETEq _ ETEq# ik9.r 9.3.9
kt € I ( )
q &) .
ETMa _ ETqu x (ki X ez)equd" (9.3.10)
kak,
k4 k? x (ky X €,) pq.
BTFe = —_pThe— — 2 7 =/ jiklr 9.3.11
e Wik, e, ( )
—k1 ki X €&, .4
BTMa _ pTMqXt X €: etk T (9.3.12)
ko k¢
where
K=k +kaé. ; ky=kye,+ kyéy, (9.3.13)
k" =k; — ka6, ; ki =k + k.08, (9.3.14)
k1 =niky for q=1i,r
q __ 9
K= { kg = n2k0 for q= t. (9315)

The continuity conditions that must be satisfied at the interface z = 0 are that the tangential
components of E and H = ﬁB be continuous, i.e.

éz X {ETEz + ETET‘ _ ETEt + ET]Wi + ETM?" _ ETMt} — O7 (9316)
- 1 TEi TEr L rE 1 TMi TMr e
e, x{— (B"™+B"") - —B""" + — (B +B"") - —B =0. (9.3.17)
H1 H2 M1 H2
Further, we have
6, x [k x (ky x &,)] = (k?-&,)é, x ky, (9.3.18)
éz X (kt X éz) = kt. (9319)

By substituting from (9.3.9)-(9.3.12) into the boundary conditions (9.3.16)-(9.3.17) and using (9.1.2)
and (9.3.18)-(9.3.19), we get

k, {ETF 4 ETEr _ ETP1) L6, x K, kaa prai ko prae B2 prae | _ 0, (9.3.20)
kl kl ]{;2
L (ks ks 1k,
e, x ky {— <—1ETE1 — —1ETET) _ __ZETEt}
H1 kO ko L2 kO

L =k ome k1rm ) —ks TMf}
+kd — | —E*M - —F*"T | - —F “> =0. 9.3.21
' {#1 ( ko ko ko ( )
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Since k; and &, x k; are orthogonal vectors, the expression inside each of the {} parentheses in
(9.3.20) and (9.3.21) must vanish, i.e.

ETE 4 pTEr — gTEY (9.3.22)
kopo (BT — ETET) = kop ETFY (9.3.23)
koaky (ETM — ETMTY = foky ETMY, (9.3.24)
keypio (ETME— ETMTY = fgpuy ETME (9.3.25)
Now we define reflection and transmission coefficients as
ETE’I‘ ETEt
ET]WT ETMt
T™ _ . TM _
R — W 9 T — W7 (9.3.27)
so that (9.3.22)-(9.3.25) give
k.
1+ RTP =TTF ; |- RTF = 2pre (9.3.28)
k1 po
k.ok k
L- R™M = R g RV = ]:—‘“TTM. (9.3.29)
2152 1H2
The two equations in (9.3.28) have the following solution
RTE — p2k.1 — pik.o TTE _ 2ok (9.3.30)
pokaa + pikse prokz1 + pikao
whereas the two equations in (9.3.29) give
RTM _ k3pik.y — kipokss TTM _ 2k1kopzk 1 (9.3.31)
k%,ulkzl + k%l@kz2 ’ k%mku + k%MQkﬁ

The interpretation of the reflection and transmission coefficients follow from (9.3.26)-(9.3.27). Thus,
the reflection coefficient represents the amplitude ratio between the reflected and the incident E
field, whereas the transmission coefficient represents the amplitude ratio between the transmitted
and the incident E field.

Note that (9.3.22)-(9.3.23) and (9.3.28) contain only T'E quantities, whereas equations (9.3.24)-
(9.3.25) and (9.3.29) contain only T'M quantities. This implies that these two wave types are
independent or de-coupled upon reflection and refraction. Thus, an incident T'F plane wave produces
a reflected TFE plane wave and a transmitted TE plane wave, whereas an incident T'M plane wave
produces a reflected TM plane wave and a transmitted T'M plane wave. Upon reflection and
refraction there is no coupling between TE and T'M waves.

From Fig. 9.1 it follows that

k.o =k -é, =kcost ; kpp=k' &, =kocost, (9.3.32)

so that if g3 = po = 1 the reflection and transmission coefficients become

7T _ 2n1 cos 6 . RTM _ ™2 cos 0" — ny cos 6 (9.3.33)
" ngcos® 4+ nqcosft " ngcosf + nqcosft’ o
TTE _ 2n4 cos 6 . pTE _ T1COS 0" — ng cos 6! (9.3.34)

ny cos 0 + ny cos 6t Ny cos 0 + ny cos 6’
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Figure 9.4: Reflection and refraction of a plane electromagnetic wave at a plane interface between
two different media. Illustration of TEF and T'M components of the electric field.

These expressions are called the Fresnel formulas. By using Snell’s law (9.1.20), we can rewrite them
as (Exercise 9)

™ 2sin 6% cos 6 . RTM _ tan(6° — 0Y)

= - - = — 7 9.3.35
sin(6% + 6t) cos(0* — 6t) ' tan(6¢ 4 6¢)’ ( )
2sin 0% cos 6 sin(#® — 6%)
TP~~~ . RTE_-_“ 9.3.36
sin(0¢ + 6t) ' sin(6¢ + 6t) ( )
At normal incidence where 6° = 6" = 0, we get from (9.3.33) and (9.3.34)

qrE g — 2 oprm_ _pre_noLoo m (9.3.37)

n+1 n+1 ni
The fact that R”™ = —RTF at normal incidence follows from the way in which ET# and ETF

are defined. From Fig. 9.4 we see that these two vectors point in opposite directions at normal
incidence.

9.3.1 Reflectance and transmittance

Fig. 9.4 shows the polarisation vectors 674 (¢ = 4,7, t) and &*F for TM and TE polarisation.
These unit vectors are parallel with the electric field and follow from (9.3.9)-(9.3.12)

ke x e, .
—oTE _ tk; € . |eTE =1, (9.3.38)
t

éTE'L' TEr TEt

=é =eé
k7 x (k; x &)
™Mo — = Z 272 |gTMa) =, 9.3.39
é e e (9:3:39)
Let the angle between E? and the plane of incidence spanned by k? and €74 be a4 [see Fig. 9.5],
so that

E? = e"PEIsina? + 6TMIE cos o, (9.3.40)
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g ™Y

Figure 9.5: Illustration of the angle a? between the electric vector E? and the plane of incidence
spanned by k? and é7Ma,

Further, we let J?, J", and J? denote the energy flows of respectively the incident, reflected, and
transmitted fields per unit area of the interface. Then we have

JPI = SPlcosf? ; p=TE,TM ; q=1,nrt, (9.3.41)
where SP? is the absolute value of the Poynting vector, given by
c c c el 2
SP1 = —|EP! x HY| = —EPIHP! = —, [ — (EP1)". 9.3.42
471" x | 4 4\ pd ( ) ( )

Here we have used the relation /e7EPY = \/u?HP4. The reflectance RP (p = TE,TM is the ratio
between the reflected and incident energy flows. From (9.3.41)-(9.3.42) we have
JTM’I" |ETM7‘ |2

RTM = (RTM)Z, (9.3.43)

- JTMi - |ETM'L"2

TEr TEr|2
_ S BT

RTE = (RTE)? (9.3.44)

- JTEi - |ETEi|2

Thus, the reflectance R? is equal to the square of reflection coefficient RP.
The transmittance TP (p = TE,TM) is the ratio between the transmitted and incident energy
flows, and (9.3.41)-(9.3.42) give

JTME ny juy cos 0t
T™ — = 27 (pTM)y2 9.3.45
JTMi ny g cos@l( ) ( )
gre L cost” TTEY?, (9.3.46)

~ JTEL g po cos @i

Thus, the transmittance 7P is proportional to the square of the transmission coefficient 77 (p =
TE,TM). When ps = p; = 1, we find on substitution from (9.3.35)-(9.3.36) into (9.3.43)-(9.3.46)
the following expressions for the reflectance and the transmittance

v tan?(0" —60")
R —_ m7 (9~3.47)
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rp sin?(0° — 0t

=7 9.3.48
sin?(0¢ + 6t) ( )

. 2 Z . 2 t
TT™ — _ ; sin 0" sin 20 | ) (9.3.49)

sin“(0% + %) cos? (9 — 0%)

TTE — w (9.3.50)

sin® (0% + 6¢)

By use of these formulas one can show that

RIM 7™M =1 ; RTELTTE =1, (9.3.51)

so that for each of the two polarisations the sum of the reflected energy and the transmitted energy
is equal to the incident energy.
From (9.3.41) and (9.3.42) we have

JP = 4£ E—1|Em|2 cos ', (9.3.52)
v M1
which by the use of (9.3.40) gives
JTE — cosgi E—1|]E?T’E"|2 = cos Gii, [ B2 gin? o, (9.3.53)
4 Jo51 Am |
JTME — cos Qii1 /6—1|ETMi|2 —cos0 = [TLE? cos? o, (9.3.54)
47 M1 47 H1
But since the total incident energy flow is given by
i i € 81 o2
J'=cos@'—,|—E"~, 9.3.55
=\ ( )
we find
JTE = Jigin?a® 5 JTMI = Jicos? o (9.3.56)
Thus, we have
Jr JTMT‘ + JTE’I‘ JT]\/IT ; JTE’I‘ ) ;
R= 5= ¥ = i cos? o’ + STET sin? o, (9.3.57)
which gives
R =R™ cos? o' + RTF sin” o, (9.3.58)
and similarly we find
T =T"™cos? o' + TTF sin? o (9.3.59)

At normal incidence, §* = 6% = 0, and the distinction between TE and T'M polarisation disappears.
From (9.3.43)-(9.3.46) combined with (9.3.33)-(9.3.34), we find (when 1 = pus = 1)

2
_TM _ TE _ (pTEN2 _ (prMy2 _ (1 ) _ N2

R=RTM — RTE — (RTEY2 — (RTM) (n—l—l) = (9.3.60)
S TM _ TE _ (pTEN2 _ (prMy2 41 . _ N2

T=TI ST = (1) = (1Y) = s = (9.3.61)

When n — 1, we see that R — 0 and 7 — 1, as expected. Similarly, we find from (9.3.47)-(9.3.50)
that Ry — 0, Ry — 0,7 — 1,7, — 1 whenn — 1.
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Figure 9.6: Hlustration of Brewster’s law.

9.3.2 Brewster’s law

From (9.3.47) it follows that R”™ = 0 when 6’ + " = Z, since then tan(f* + 6") = co. We call this
particular angle of incidence #*F and the corresponding refraction or transmission angle 6. By
using Snell’s law (9.1.20), we find

ng sin 0*F = ngy sin T _giB) = no cos 08 = ny sin 0°5, 9.3.62
2

so that R™™ = 0 when 6 = §°B where 0?F is given by

tan g’ = 2 = p. (9.3.63)
ni
The angle #'F is called the polarisation angle or the Brewster angle. When the angle of incidence
is equal to §*, the E vector of the reflected light has no component in the plane of incidence (Fig.
9.6). This fact is exploited in sunglasses with polarisation filter. The filter is oriented such that
only light that is polarised vertically (Fig. 9.6) is transmitted. Thus, one avoids to a certain degree
annoying reflections from e.g. a water surface.
Note that k" - k! = 0, i.e. k" and k' are normal to one another when 6 = '8, as shown in
Fig. 9.6.

9.3.3 Unpolarised light (natural light)

For natural light, e.g. light from an incandescent lamp, the direction of the E vector varies very
rapidly in an arbitrary or irregular manner, so that no particular direction is given preference. The

average reflectance R is obtained by averaging over all directions «. Since the average value of both

sin® & and cos? v is %, we find from (9.3.56) that

i o Ei ——— 1 .
T M = Jicostai =T 7 = Jisinfai = EJ’. (9.3.64)
For the reflected components we find
—TMr —=TMr
—rymr  J —r™Mi J I Y
N = J :m.a]:i?z J, (9.3.65)

J J
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—TEr
—=TEr J 1, 1 _ 715

J
which shows that the degree of polarisation for the reflected light can be defined as

] RTM _ RTE JTM'r _ JTEr
P" = = | | (9.3.67)
RIM | RTE JTMr { JTEr
The average reflectance is given by
—=r —=TMr —=TEr —=TMr —=TEr
= J J J J J 1
R=—= —+z = i + = = 5 (RTY +RTP), (9.3.68)
J J 27 27 2
so that the degree of polarisation becomes
R Y TE
Pr==-|R"™" -R"¥|, (9.3.69)
R2
where |[RTM — RTE| is called the polarised part of the reflected light.
Similarly, we find for the transmitted light
=_Loru TE PR O v TE

9.3.4 Rotation of the plane of polarisation upon reflection and refraction

Note that if the incident light is linearly polarised, then also the reflected and the transmitted light
will be linearly polarised, since the phases only change by 0 or 7. This follows from the fact that the
reflection and transmission coefficients are real quantities [cf. (9.3.33)-(9.3.36)]. But the planes of
polarisation for the reflected and the transmitted light are rotated in opposite directions relative to
the polarisation plane of the incident light. The angles o, a”, and o that the planes of polarisation
of the incident, reflected, and transmitted light form with the plane of incidence, are given by [cf.
Fig. 9.5]

. ETEz
tan o' = W’ (9371)
ETEr EZE' ETEi RTE .
tana” = =LE- - = tana’, (9.3.72)
ETAr ~ ETHC ETALL T RTM
ETEt E'" prEi  TE _
tana® = =£= - = tan . (9.3.73)
ETMt g;%l ETM:i TTM
By use of the Fresnel formulas (9.3.35)-(9.3.36) we can write
cos(6' — 0Y) ;
t T=———t ¢ 9.3.74
an o cos(07 1 07) ana’, ( )
tana’ = cos(9' — 0") tan a’. (9.3.75)
SinceOSHig%and0§9t§%7weget
|tana”| > |tana’|, (9.3.76)
|tan of| < |tana|. (9.3.77)

In (9.3.76) the equality sign applies at normal incidence (#* = §* = 0) and at grazing incidence (0% =

%), whereas in (9.3.77) the equality sign applies only at normal incidence. These two inequalities
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imply that upon reflection the plane of polarisation is rotated away from the plane of incidence,
whereas upon transmission it is rotated towards the plane of incidence. Note that when 0 = 65,

so that 8°8 4 g*8 = 5, then tana” = oco. Thus, we have a” = § in accordance with Brewster’s law.

9.3.5 Total reflection
Snell’s law (9.1.20) can be written in the form

snf' . _ne_ [ (9.3.78)
n ni E1M1

Hence, it follows that if n < 1, then we get sin#* = 1 when 6% = 0%, where

sin # =

sin % = n. (9.3.79)

This implies that when §° = 0%, we get 6" = 5, so that the transmitted light propagates along the
interface. If 8* > 0, we have total reflection, i.e. no light will pass into the other medium. All
light is then reflected. There exists a field in the other medium, but there is no energy transport

through the interface. When 6% > 0%, then sin6* > 1, which means that 6% is complex. We have

from (9.3.78)
cos 0" = £v/1 — sin® 0t = iy | Smf _q o EVsTO et (9.3.80)
n n

The lower sign in (9.3.80) must be discarded. Otherwise the field in medium 2 would grow expo-
nentially with increasing distance from the interface. The electric field in medium 2 is

EP = TPEPiertei 6 =t (p = TE TM), (9.3.81)

where

k' r =k + kyy+ ko2, (9.3.82)
with (cf. Fig. 9.1 and (9.3.80) with upper sign)
1 ,
k.o = kocosf' = ikgg\/ sin?0i —n2 ; n= @, (9.3.83)

so that

o ) k -
etk _ pilkeztkyy) o= k2|2 D |kas| = f /sin2 0 — n2 . (9.3.84)

We see that EP! represents a wave that propagates along the interface and is exponentially damped
with the distance z into medium 2.
From V - D! = &,V - E! = 0 it follows that

k' - E' =0, (9.3.85)
which gives

k. Et + k, Bt
B - _(ﬂvk—y?ﬁ. (9.3.86)
z2

If we let the plane of incidence coincide with the xz plane, we have (cf. Fig. 9.7)
ky = —kisin" ; k, =0, (9.3.87)

Eztl — ETEtei(k117Wt)67|kz2|z — TTEETEiei(k117Wt)67|k22|z’ (9388)
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g™ : ® gTE = gTEr- TE

X

Figure 9.7: Tllustration of the refraction of a plane wave into an optically thinner medium, so that
0" < 0'. When 6" — 0%, then #" — /2, and we get total reflection.

E; — _ETMt cos etei(kzx—wt)e—\kzﬂ — _TTJVIETMZ' cos etei(kmac—wt)e—wzg\z’ (9389)

Bt = — Ko gt B gtat i it a-on - haslz (9.3.90)
kz2 ¥ k2
From these expressions for the components of Ef and corresponding expressions for the components
of H! one can show (Exercise 11) that the time average of the z component of the Poynting vector
is zero, which implies that there is no energy transport through the interface, as asserted earlier.
The reflection coefficients in (9.3.35)-(9.3.36) can be written as follows

in 0 cos #* — sin O cos 6*
RTM _ BT €05 : 9.3.91
sin 6% cos 0% + sin 0 cos 6* ( )

sin 6% cos 8¢ — sin 6% cos °
sin 0% cos 6 + sin 0t cos §¢

By combining Snell’s law (9.3.78) and (9.3.80) with the upper sign with (9.3.91)-(9.3.92), we get

2 i in/ain2 @i — n2
pT™ _ T cos @' —iy/sin” 0" —n

RTE _

(9.3.92)

= : (9.3.93)
n2 cos 0 + i\/sin? 9 — n?2
prE _ 08 0" — i\/sin? i — n? (9.3.94)

cos 0 + iv/sin? §F — n?2

Since both reflection coefficients are of the form z/z*, where z is a complex number, it follows that

|RTM| = |RTE| =1, (9.3.95)
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which shows that for each polarisation the intensity of the totally reflected light is equal to the
intensity of the incident light.

But the phase is altered upon total reflection. Letting
Err i6? 2P giar

= =" =¢ (p=TE,TM), (9.3.96)

RP = .
Epe 2Px

where [cf. (9.3.93)-(9.3.94)]
2™ = p? cos ' — iv/sin® 01 — n2 = |ZTM|eiO‘TM, (9.3.97)

2TE = cos 0 —iV/sin? 9 — n? = |zTE|emTE, (9.3.98)

we find
1 V/sin? ¢ — n?
t M _ ¢ —oTM ) = X — 3.
an o an (2 TR (9.3.99)
1 V/sin? 9 — n2
tan O[TE = tan (§5TE) = *% (93100)
The relative phase difference
§ =0T _ M (9.3.101)
is determined by
fan (%) _ tan (3077) — tan (367Y) (9.3.102)
2 1+ tan (367F) tan (367M)’
which upon substitution from (9.3.99)-(9.3.100) gives
1 cos B /sin? §i — n?2
t =6 ) = , . 9.3.103
an (2 ) sin? ¢ ( )

We see that § = 0 for 6 = I (grazing incidence) and % = 6% (critical angle of incidence). Between
these two values there is an angle of incidence 6* = 6™ which gives a maximum phase difference
0 = 0™, where 0" is determined by

dd
— =0. 9.3.104
@ |y (93104
From (9.3.104) we find
; 2n?
2 pim
sin“ 6 = m, (93105)
which upon substitution in (9.3.103) gives (Exercise 10)
1 1—n?
oM ) = . 3.1
tan (2(5 ) o (9.3.106)

If the phase difference § is equal to &7 and in addition ETMi — ETEi the totally reflected light

will be circularly polarised. By choosing the angle o between the polarisation plane and the plane

of incidence equal to 45°, we make ETM? equal to ET#%. In order to obtain § = 5 we must have

%m > Z. This means that tan (%) > tan (Z) = 1, which according to (9.3.106) implies that

n?+2n—1<0. (9.3.107)
By completing the square on the left-hand side of (9.3.107), we find that
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Thus, ™
-
reflection.

43

1
n<V2—1 ; —="2>241=241 (9.3.108)
n No

L must exceed 2.41 in order that we shall obtain a phase difference of § in one single





