Qualitative understanding of many-electron atoms

1. centr. field $\Upsilon(r)$ "close" to $+Ze$ nucleus

$$
V(r) = -\frac{Ze^2}{r}
$$

the ratio $R(r)$

$$
R(r) = \frac{\Upsilon(r)}{V(r)} = \frac{\Upsilon(r)}{-\frac{Ze^2}{r}}
$$

is such that close to nucleus, $R(r \to 0) \to 1 - \frac{5}{16Z} \approx 1$ while for large r $R(r \to \infty) \to \frac{1}{Z}$

$$
(1s)^2(2s)^2(2p)^6 \rightarrow Ne
$$

 $(1s)^2(2s)^2(2p)^6 \to Ne$ $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(3d)^{10} \rightarrow Ni$ But this does not work

 \mathcal{E}_n : $\mathcal{E}_{n,l} = \mathcal{E}_n$ in hydrogen-like case

but in $\Upsilon(r)$

is such that

$$
E_{n,l_1} < E_{n,l_2} \text{ if } l_1 < l_2
$$

see the difference Boron - Beryllium in the table

Radial equation

$$
T_r+\frac{\hbar^2\ell(\ell+1)}{2mr^2}+\Upsilon(r)
$$

with increasing ℓ the wavefunction is pushed outside (to large r)

for small ℓ (especially $\ell = 0$) it is easy for the electrons to see the region where the potential is not screened for $\ell = 0$ the electrons can "see" the nucleus

Thus effectively

$$
E_{n,l} = E_n + f(l) * \Delta E
$$

$$
f(l) \equiv f(l, n) \ge 0
$$

The above picture is the Coulomb potential

The above picture is the Hartree potential, represented by an exponentielly screened function (The Coulomb potential is the dotted line)