\documentclass{letter} \usepackage{amsmath,capt-of,ifthen,calc} \usepackage{graphicx,xr} %%%%%%%%%% Start TeXmacs macros \newcommand{\tmop}[1]{\ensuremath{\operatorname{#1}}} \newcommand{\tmfloatcontents}{} \newlength{\tmfloatwidth} \newcommand{\tmfloat}[5]{ \renewcommand{\tmfloatcontents}{#4} \setlength{\tmfloatwidth}{\widthof{\tmfloatcontents}+1in} \ifthenelse{\equal{#2}{small}} {\ifthenelse{\lengthtest{\tmfloatwidth > \linewidth}} {\setlength{\tmfloatwidth}{\linewidth}}{}} {\setlength{\tmfloatwidth}{\linewidth}} \begin{minipage}[#1]{\tmfloatwidth} \begin{center} \tmfloatcontents \captionof{#3}{#5} \end{center} \end{minipage}} %%%%%%%%%% End TeXmacs macros \begin{document} Qualitative understanding of many-electron atoms 1. centr. field $\Upsilon ( r )$ ``close`` to $+ \tmop{Ze}$ nucleus the ratio $R ( r )$ \[ R ( r ) = \frac{\text{$\Upsilon ( r )$}}{V ( r )} = \frac{\text{$\Upsilon ( r )$}}{- \frac{\tmop{Ze}^2}{r}} \] is such that close to nucleus, $R ( r \rightarrow 0 ) \rightarrow 1 - \frac{5}{16 Z} \approx 1$ while for large r $R ( r \rightarrow \infty ) \rightarrow \frac{1}{Z}$ \includegraphics[scale=0.6]{ratio_pots.pdf} %\tmfloat{h}{small}{figure}{}{} \[ ( 1 s )^2 ( 2 s )^2 ( 2 p )^6 \rightarrow \tmop{Ne} \] $( 1 s )^2 ( 2 s )^2 ( 2 p )^6 \rightarrow \tmop{Ne}$ $( 1 s )^2 ( 2 s )^2 ( 2 p )^6 ( 3 s )^2 ( 3 p )^6 ( 3 d )^{10} \rightarrow \tmop{Ni}$ But this does not work \end{document}