Lecture Wednesday 5 September 2007

Topics Helium part 3: Ground State; Independent electrons; (Variational Method next)

Bound states - energies - and Helium; Classically unstable

Independent particles - energies

Experiment etc

Two-electron systems in units of eV

	H-	Не	Li+	Be ⁺⁺	B ⁽³⁺⁾	C ⁽⁴⁺⁾
Z	1	2	3	4	5	6
lon.pot.[au]	0,757	24,60	75,62	153,95	259,49	392,22
2.lon.pot	13,600	54,40	122,40	217,60	340,00	489,60
EXP.BindEner	-14,357	-79,00	-198,02	-371,55	-599,49	-881,82
2 E _{1s}	-27,200	-108,80	-244,80	-435,20	-680,00	-979,20
2 E _{1s} + 5/8 Z	-10,200	-74,80	-193,80	-367,20	-595,00	-877,20
Variational	-12,856	-77,46	-196,46	-369,86	-597,66	-879,86
EXP.BindEner	-14,357	-79,00	-198,02	-371,55	-599,49	-881,82

lon.pot. Ionization potential: The energy to remove the first electron

2.lon.pot Second lonization potential: The energy to remove the second electron

Evaluate expectation value - What is expectation value?

Example - age distribution - average value of age

Generally for any two states a,b - but we specify a->1s b->1s; Multipole expansion

How to perform the 6-dim integration: two angular (4 dimensions) using Y - spherical harmonics

$$\int d^{3}r_{1} d^{3}r_{2} \left| \varphi_{a}(r_{1}) \right|^{2} \left| \varphi_{b}(r_{2}) \right|^{2} \frac{e^{2}}{|\vec{r}_{1} - \vec{r}_{2}|} \right| \frac{1}{\text{mixed}}$$

$$\left(\operatorname{Pnlm}(\vec{r}) \right) = \operatorname{Rnl}(r) \operatorname{Yem}(\vec{r}) \quad \text{angular variables}$$

$$d^{3}r_{1} = r_{1}^{2}dr_{1} \cdot \sin \vartheta d\vartheta_{1} d\vartheta_{1} \right| \quad v_{1} \cdot y_{1} \cdot y_{2} \cdot y_{2} \cdot y_{3} \cdot y_{4} \cdot y_{4}$$

Orthogonality of spherical harmonics

Gives that the integral of one Y is zero (unless L=0....)

The evaluation reduces to a two-dimensional integral over r_1 and r_2 (with r_2)

Solve
$$Y_{00}$$
 Y_{00} Y_{0

We must evaluate the integrals

$$R_{1,0}(r) = 2 \cdot \left(rac{Z}{a_0}
ight)^{rac{arphi}{2}} \cdot e^{-rac{Z \cdot r}{a_0}} = R_{1,0}^*(r)$$

$$\begin{split} &\int_0^\infty \int_0^\infty r_1^2 \cdot r_2^2 \cdot R_{1,0}(r_1)^2 \cdot R_{1,0}(r_2)^2 \frac{e^2}{r_>} dr_1 dr_2 \\ &= \int_0^\infty \int_0^\infty 2^4 \left(\frac{Z}{a_0}\right)^6 e^{-\frac{2Z}{a_0}(r_1 + r_2)} r_1^2 \cdot r_2^2 \frac{e^2}{r_>} dr_1 dr_2 \\ &= 2^4 \left(\frac{Z}{a_0}\right)^6 \cdot e^2 \int_0^\infty \int_0^\infty e^{-\frac{2Z}{a_0}(r_1 + r_2)} r_1^2 \cdot r_2^2 \frac{1}{r_>} dr_1 dr_2 \end{split}$$

The r, must be replaced which leads to two integrations

$$\begin{split} &\int_{0}^{\infty} \left(\int_{0}^{r_{1}} e^{-r_{1}-r_{2}} r_{1} r_{2}^{2} dr_{2} \right) dr_{1} + \int_{0}^{\infty} \left(\int_{r_{1}}^{\infty} e^{-r_{1}-r_{2}} r_{1}^{2} r_{2} dr_{2} \right) dr_{1} \\ &= \int_{0}^{\infty} r_{1} e^{-r_{1}} \underbrace{\int_{0}^{r_{1}} r_{2}^{2} e^{-r_{2}} dr_{2}}_{intB} dr_{1} + \int_{0}^{\infty} r_{1}^{2} e^{-r_{1}} \underbrace{\int_{r_{1}}^{\infty} e^{-r_{2}} r_{2} dr_{2}}_{intC} dr_{1} \end{split}$$

And the result is

And the result is

$$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \int_0^\infty \int_0^\infty ... = \frac{5}{8} \frac{Ze^2}{a_0}$$

The multipole expansion we used:

$$\frac{1}{\left|\vec{r_1}-\vec{r_2}\right|} = \sum_{LM} \frac{4\pi}{2L+1} \ \frac{r_<^L}{r_>^{L+1}} \ Y_{LM}^{\star} \left(\hat{r}_1\right) Y_{LM} \left(\hat{r}_2\right)$$

$$r_< = r_1, \quad r_> = r_2 \quad {
m for} \quad |\vec{r}_1| \ < \ |\vec{r}_2|$$

$$r_< = r_2, \quad r_> = r_1 \quad {
m for} \quad |\vec{r}_1| \ > \ |\vec{r}_2|$$