Applications of MATLAB to Problems in Quantum Mechanics
for Research and Education: Dirac Notation Interpreter

Ladislav Kocbach
Department of Physics, University of Bergen
Allégaten 55, N-5007 Bergen, Norway

Abstract.

Applications of MATLAB to Quantum Mechanics re-
lated research and teaching are described. The main
application is the Dirac notation Interpreter. In fol-
lowing sections the paper reviews our applications of
MATLAB to problems in atomic collision physics, for-
mulated in terms of matrices. These sections are of
particular interest to physicists who are considering
similar applications in other fields. A special fea-
ture of general interest is a demonstration of an easy
method to write interpreters of local notations using
standard MATLAB functions.

1. Introduction.

This contribution describes applications of MATLAB
to quantum mechanical problems which are formu-
lated in terms of matrices. A special feature of gen-
eral interest is a demonstration that one can quite eas-
ily write small specialized command interpreters us-
ing MATLAB’s character-string functions and MAT-
LAB’s command eval. In this paper, I first shortly re-
view the Dirac notation as used in Quantum Mechan-
ics. Then I describe the Dirac notation interpreter
in MATLAB and discuss mostly the educational as-
pect of the work. In Technical notes I discuss shortly
how this interpreter works and how other interpreters
can be constructed. In order to illustrate how this
idea emerged and also for the sake of general infor-
mation, a more detailed presentation of our projects
is included in this paper.

It should be well known that a large class of quan-
tum mechanical problems leads to matrix formulation.
Our work is related to theory of atomic collisions, but
similar problems are found in parts of nuclear physics,
optical physics, quantum chemistry etc. We have used
MATLAB for example for analysis of problems with
non-orthogonal basis. In course of this work, an idea
emerged to write a simple interpreter enabling us to
enter the statements in easier understandable form.

Further developement of these ideas resulted in the

above mentioned interpreter package which I hope will
be useful for teaching quantum mechanics.

Turning to applications of computers to teaching nat-
ural sciences, let us remark that the excellent abilities
of the modern integrated systems (including MAT-
LAB, and e.g. Mathematica and Maple) are often dif-
ficult to exploit efficiently in teaching. This is caused
by specialized command languages and special syn-
tax rules. It takes too much time to learn the lan-
guage before a simple concept can be demonstrated.
This project shows that it is possible to develop in-
terpreters in the command language, which interpret
a syntax presumably known to the students. Because
of MATLAB’s excellent character-string processing
repertoir, the interpreter was developed relatively eas-
ily.

We also note that the interpreter idea can be ex-
tended or adapted to other problems, for example to
define vectors (arrays) with vectors as elements (in-
dexed vectors) or multidimensional arrays. This is
also shortly described.

2. Dirac Notation.

Dirac’s formulation of Quantum Mechanics is based
on abstract Hilbert space, which for problems in ma-
trix formulation leads to a set of simple replacements
rules.

A matrix H corresponds to an abstract operator H
and a column vector a corresponds to an abstract vec-
tor |a). The eigenvalue equation

Hll H12 Hln al al

H21 H22 H2n as as
=F,

Hnl an Hnn [0 7% [0 7%

is written in Dirac notation as

Hla)=Es|a) (1)

The scalar product in matrix notation

u)] 1
v2

Un

becomes in Dirac notation

(uw]v) (2)

Very important for quantum mechanics is the so called
general matrix element, in Dirac notation

(uw|V]v) (3)
is in terms of matrices and column vectors

[’U,1 Uqg . ’U,:L] Vll V12 . Vln U1
Vor Va2 . Vo V2

an Vn2 . Vnn Un
The mathematical and physical basis of the Dirac for-
malism is explained in many texts on Quantum Me-
chanics, e.g. in [1]. Though developed for quantum

mechanics, it could be used in many other applica-

tions of linear algebra.

3. The Interpreter.

The Dirac interpreter enables the user to enter the
Dirac expressions and have them evaluated by nor-
mal MATLAB matrix operations. We have chosen to
show the corresponding MATLAB expression before
evaluation. Having declared and defined |a@ > and |b >
as two dimensional vectors, we can enter e.g. linear
combinations and even assignments (the constants are
¢l = 0.8;¢2=0.6;)

Dirac : |a>
MATLAB: -—=> a
a =

1

0
Dirac : | b>
MATLAB: -—=> b
b =

1
Dirac : le>
MATLAB: -—=>
c =

cl |a> + c2|b>
c=cl*a+c2*b

0.8000
0.6000
Dirac : |d>
MATLAB: -—=>

d =

c2 |la> - ci1|b>
d=c2*a-cl%b

0.6000

-0.8000
Dirac : <cld>
MATLAB: -—=> (c)’*d
ans =

0
Dirac : <cle>
MATLAB: -—> (c) 7*c
ans =

1

Projection operators are often a difficult topic. In
Dirac notation, using P = |b >< b|

Dirac : | B><b |
MATLAB: -—> b*(b)’
ans =

0

0 1

We can e.g. easily demonstrate that P2 = P

Dirac : (Il bB><b |)]l bB><b)
MATLAB: --> (b*(b) ?)*(b*(b) *)
ans =
0 0
0 1
Dirac : | D><bl b><b|
MATLAB: --> b* (b) ?*b*(b)’
ans =
0
0 1

The applications to teaching and demonstrations are
countless. It should be also mentioned that the inter-
preter understands and performs the exponential of
a matrix (replaces exp() by expm()), and the func-
tions sin(x), cos(x) and sqrt(x).

4. Orthogonalization example.

In this section we show how the well known orthog-
onalization procedure can be formulated using Dirac
notation with projection operators. In the listing are
the commands of the example, starting by defining
the three nonorthogonal states |a> [b> [c> .

D: la> |b> lc> [u> |[v> |w> [U]
M: a=[1;1;0]; b=[1;0;0]; c=[0.3;1;1];

Dirac : M: U=[1 0 0;0 1 0; 0 0 1] %Unit
U=

1 0 0

0 1 0

0 0 1
Dirac : |a> |a> / sqrt(<ala>)

Dirac : | b> [b> / sqrt(<b|b>)

Dirac : [e> = |e> / sqrt(<cle>)

Dirac : % Orthogonalization

Dirac : [u> = |a>

Dirac : [v>= (U - |w<ul) | b>

Dirac : [v> = |v> / sart(<v|v>) % Norm
Dirac : [a> = (U - |u><ul - [v><v]) |e>
Dirac : |[a> = |w> / sart(<wlw>) % Norm

% Tests: (shortened table only); Original:
<a|b> <alc> <blc>
0.7071 0.6359 0.2075
% The orthonormal
<ulv> <ulw> <v|w>
0 0 0

Commands are followed by a table constructed from
parts of the responses (the MATLAB forms are omit-

ted). The table shows that the new set [u> |v>
| w> is orthogonal, while the original set |a> |[b> |c>
was not. This example illustrates the possible use of
the interpreter for quite complex tasks.

5. Technical Notes.

How does the interpreter work? The main part is
a MATLAB function called parse.m. This function
translates a string of characters representing a Dirac
command into a new string with standard MATLAB
syntax. For example

>> parse(’ <x| M |y> ?)
ans =
(x) ?*Mxy
>> parse(’(<al + <b]) (M + N) |c> ?)
ans =
((a) ’+(b) *)+ (M+N) *c

The string returned can be evaluated by MATLAB.
To do this in a comfortable way, we have a function
which sets up the Dirac enviroment. When typing
Dirac, the control is taken over by Dirac.m All that
we type is then input to this enviroment. This en-
viroment has been revised many times. One of its
functions is to take care of the work done. In the
normal version, Dirac copies all the commands into a
file. Typing 'H:’ (each of the command tokens must be
followed by a colon) inside Dirac brings the following
help information:

Dirac : H:

H: help
M: matlab line (execute a matlab line)
D: Declare a vector vec : |vec>
or an operator op : [op]
or a constant cl @ (c1)
example:
Dirac : D: la> |psi> [L] [Xz] (c1)
. .declares Dirac vectors a,psi

operators L, Xz
constant cli
G: show the global objects

example:
Dirac : G:
DECLARED : |a> |b> |psi>
[L] [Xz] (c1) (c2)
$ exit Dirac

a new call Dirac preserves the
global names and their values
General examples:
e: lists the 2-components examples
E: lists the 3-components examples

Naturally, the detailed behaviour can somewhat
change in the future versions, the described state
is end of september 1995. The simplest version of
Dirac.m, would look about like this

% simplest possible version of Dirac.m
stopval=0
while stopval==0
InputStr=input(’Dirac : 1,%8%);
if InputStr(l) ==’$’ stopval=1; end
OutStr=parse(InputStr,0);

fprintf (1, ’MATLAB: -—> %s\n’,0utStr);

eval (QutStr) ;
end J while

In fact, the present version of Dirac.m is about one
hundred lines and it does many other things, as
e.g. passing some of the command strings directly
to MATLAB, keeping track of assigned variables etc.,
as the help text indicates.

Inner working of parse. I think that an appro-
priate name for it is an heuristic interpreter. The
rules for Dirac notation itself can be easily spelled out,
but in combination with different uses of parantheses,
functions and operators the set of translating rules
gets large. Therefore, I keep the parse.m in its orig-
inal style, with a small set of replacement rules and
various post-processing patches. In its present ver-
sion, the function has about 250 lines, including some
comments. Function parse.m is a character string
function and it uses the following character string ma-
nipulating standard MATLAB functions:
% setstr() assign ASCII value to a character
QUOT=setstr(39);
strrep() replace a substring
teststr=strrep(teststr,’exp’,’"?’) ;
length() Length of a string, for loops
nl = length(teststr)
findstr() returns a list of occurences
findstr(teststr,’<’)
splitting strings
yyy=teststr(1:nl-3)
setting strings together
yyy=[yyy *(° NaME ’)’ QUOT]

%

%

%

%

%

The simplest first test version, which could only do the
scalar product <a|b> used only the strrep() and
returned the new string. The present version can han-
dle all the combinations of signs which ocurred to the
author. In fact, recently a problem with parantheses
has been encountered and the repair of the inconsis-
tency contributed some ten new lines of code.

For teaching and demonstration purposes the stan-
dard MATLAB output is not always suitable. At
present, we are thus also working with formatting rou-
tines, as an example this is a printout of a 3 x 3 matrix

(2. ; 0. ; 0.)
(0. ;1. ; 1.+ 1.i)
(0. ; 1.- 1.1 ; -1.)

Concluding this section, I would like to repeat that it
is in principle quite easy to write an interpreter us-
ing the string functions mentioned in the above list-
ing. The interpreter (or perhaps parser) can then be
used via a function shown in the listing Simple Dirac
or directly. Unfortunately, only single line codes can
be performed in this way, since both input() and
eval() understand newline-character as a termina-
tor of the string. On the other hand, there seems to be
no limitation on the length of the string which can be
executed by eval() . An interpreter can pack longer
commands in the same way as the following example
shows

>> % a long program in 4 strings
>> Li=’X=zeros(10); ’;
>> L2="for k1=1:10 if k1>3 ’;
>> L3=’for k2=1:10 X(k1,k2)=k1%k2; ’;
>> L4=’end; end; end; ’;
>> % packed into 1 line
>> eval([L1 L2 L3 L4]);
>> % and this checks it
>> X(4,5)+X(3,5)
ans =
20

6. Time-dependent Schrodinger equation for
description of atomic collisions.

The approach to atomic collisions implied in this sec-
tion is called semiclassical, referring to the fact that
only the electrons are treated as quantal particles,
while the atomic motion is simulated by a classical
trajectory. This leads to time-dependent Schrodinger
equation (eq. (5) below). The matrix formulation of
this problem arises from expansion of the unknown
electron wavefunction | ¥(¢)) in a set of basis func-
tions | ¢;), much in analogy with Fourier series or

expansions using orthogonal polynomials

| ()) = Zci(tH bi) (4)

The unknown quantities to be found are the expansion
coefficients, which form a vector. In this formulation,

the time-dependent Schrodinger equation

. d -
i 1) = () |$0)) (5)

is replaced by a set of coupled differential equations,

which are conveniently expressed by matrix notation

c1 Hyy Hy; ... Hy, c1
. d 2 _ Hyy Hiy; ... Hy, Ca
i — =

Cn Hnl Hn2 Hnn Cn

Normaly, the basis functions would be orthonormal.
In many of the physical problems we study, the nat-
ural sets of basis functions are not orthogonal. There
are currently several possible approaches to this prob-
lem, using matrix inversion or pre-orthogonalization
of the basis set. MATLAB has proven to be a very
useful tool for debugging the FORTRAN-based codes
and in particular, to analyze the actual conceptual
problems. Some details of the collision codes can be
found e.g. in [2] or [4].

7. General Comment on Collision Studies.

For the atomic collisions calculations, a set of quite
large FORTRAN codes exists and new codes are un-
der developemnt. Here it is described how MATLAB

has recently been applied in the process of develope-
ment and debugging. In these applications, MAT-
LAB’s matrix handling and its integrated graphical
abilities are very valuable and cannot be matched by
any other approach. On the other hand, other mod-
ern tools are also extremely useful in the discussed

work.

We are applying REDUCE with GENTRAN to check
the correctness of algebraic relations in symbolic cal-
culations and outputing directly functioning FOR-
TRAN code, which is integrated in the system. Here
the combination REDUCE and GENTRAN are un-
matched. Mathematica has been useful for our work
because of its large built-in library of physics related
functions.

From this we can see that the amount of time spent
in mastering to a sufficient degree the details of the
various mentioned systems is large and that a cross-
interpreter and information systems would be of great
value for efficient application of these powerful tools.

8. Nonorthogonal basis sets.

We describe here another method to treat the
nonorthogonal basis sets, which seems to be well
known in Quantum chemistry [3]. It is based on
a treatment of the overlap matrix, 0;; = { ¢; | ¢;)

011 012 we.. O1n
021 022 weo. O2p (
6)
On1 On2 wee Opnn
The overlap matrix O has eigenvalues Oq, O,,, Oy,

and its eigenvectors are arranged as columns in matrix
S. Defining a matrix U

(01)~Y/2 0 e 0
0 0,)" Y2 . 0
U (02) 1)
0 0 .. Ont?

a transformation matrix 7' can be constructed
T=5U (8)
It is easy to see that
TTOT =USTOSU =1 (9)

so that the (scaling) transformation T transforms all
the relevant operators from the original basis to a new

basis, which is orthonormal.

This is all well as far as the functions (i.e. vectors) of
the basis remain abstract objects and we work only

with the overlap matrix and other relevant operators.
In an application, however, we might also work with
the objects themselves (e.g. to plot their representa-
tion), and they might be e.g. A-dimensional vectors
(such that their dimension A >> n). Unfortunately,
MATLAB cannot place such general objects in a vec-
tor. We have written a demonstration routine, ex-
ploring possible solutions of these problems (see also

section 11. or the next section, which includes plots).
9. Quantum Chemistry inspired Example.

An extreme case of non-orthonormal basis is the use
of so—called Gaussian orbitals in Quantum Chemistry

and in some physical applications. Here the basis

Figure 1: Comparison of the combined Gaussian with

the hydrogen ground state

functions (or states) are the functions
o) — e

which are far from orthogonal with respect to the

scalar product defined as

o0
<ai | aj> _)/ e_"‘”Ee—"‘”Z,ﬂzdr
0

The expressions for all the relevant matrix elements
are well known analytically and matrices for overlap
and the atomic total energy (hamiltonian) are thus
easily constructed. The alternative orthogonalization
procedure (eq.9) has been applied in terms of a small
set of MATLAB functions. The figures 1 and 2 show
a typical output for a randomly chosen set of ¢;. Mo-
tivation for this work is to explore the procedures for
choosing sets of orbitals and understanding the proce-
dures used in quantum chemistry. It will also be used
in the course of Atomic and Molecular Physics. The
MATLAB functions are available as mentioned in the
Conclusion.

1.05

0.8
0

Figure 2: Ratio Gaussian to exact as seen in Fig.1

10. Collision Code Debugging .

Our general interest is to investigate the two men-
tioned orthonormalization procedures with respect to
questions which will become clear at the end of this
section. In the theory of atomic collisions, especially
those directed towards the studies of electron trans-
fer, the basis states for the electron are located on
both atomic centers. When the atomic centers are far
apart, the overlaps are small and the basis is approx-
imately orthonormal, if each of the two subsets on
each center were orthonormal. As the two atoms ap-
proach each other, the two subsets gradually overlap
and for the smallest distances the effective dimension-
ality of the basis might become smaller (approaching
the dimensionality of one subset). The small subspace
representing the difference between the two subsets is
’blown up’ by the normalization and this can lead to
numerical problems. This can be studied by inves-
tigating the determinant of the overlap matrix. For
well separated atoms it approaches one (if the two
subsets are internally orthonormal for each center),
but as the atoms approach each other, the determi-
nant approaches zero.

All the matrix elements involved in the realistic
atomic collision calculation are quite complicated
mathematical objects and they were thus evaluated
by the collision FORTRAN program (ref. [4]). The
overlap matrices were dumped as one large rectan-
gular matrix and entered into MATLAB. They were
then investigated using simple MATLAB functions.

In particular, plotting the determinant of the overlap

matrix eq. (6).

D(R) = det(O(R))

as function of the interatomic distance R, we were
able to detect the reason for numerical problems in
collision calculations.

In short, it can be shown that D(R) cannot cross zero,
it can at most have a zero minimum. It turned out
that some of the numbers were not evaluated but set
precisely to assumed, theoretically correct values. Af-
ter replacing this by evaluation, the resulting values
remaind positive. This is connected with the fact that
the states are nearly linearly dependent (overlaping)
and calls for further detailed investigation of the cal-
culational approach, the details are however not in-
teresting in this discussion.

The problem of gradually overlapping basis subsets is
however quite general and the applications of symmet-
ric orthonormalization and elimination of unphysical
states is of broader interest. The work on these as-
pects is done together with A. Dubois and a paper is

in preparation [5] .
11. Multidimensional Array Interpreter.

The technical notes included in our MATLAB release
contain a suggestion how to treat multidimensional
arrays. It is based on index pointing into a rectangular

array.

In one of our applications we needed to have an array
of vectors, but it could easily be a vector of matrices.

Here we show how it is possible to treat it by inter-
preting a notation. In this example, the interpreted
string is fed directly to eval.

>>), These must be written explicitely
>> c_1=v(:,1); c_2=v(:,2);
>> ¢_3=v(:,3); c_4=v(:,4); c_b=v(:,5);
>>% Here is the same using ToVector()
>> for vind=1:5

eval (ToVector(’c_’,’v’,vind));

end
>> vind=4;
>> ToVector(’c_’,’v’,vind)
ans =
c_4=v(:,4);

Listing of function ToVector.m

function os= ToVector(vname, mname, ki)
% translates for vector-array

% outputs (ki=4)

% vname4 = mname(:,4);

os = [vname sprintf(’%d’,ki) ’=’];
os = [os mname ’(:,’] ;
os = [os sprintf(’%d’,ki) ’);°’ 1;

This enables us to use the vectors

c_1,... c_b...

as if they were indexed vectors. In the simple exam-
ple here only the assignment is shown, but a general
interpreter can be written, using for example the trick
to pack longer commands into a single string as shown
at the end of section 5.

12. Conclusion.

This paper described the applications of MATLAB. It
should, however also be mentioned that other mod-
ern integrated systems are also used in this work.
These include REDUCE, Mathematica and Maple.
For numerical intensive tasks MATLAB is unique.
For the educational applications, along the lines of
the Dirac notation interpreter, the mainly algebraic
systems may be even more suitable. However, MAT-
LAB’s internal representation of vectors, matrices and
character strings shortened the way from the idea to

the first realization to several hours.

The files and documentation for the Dirac interpreter
can be found in the World Wide Web at the address
http://www.fi.uib.no/AMOS/matlab/

Also some of the other mentioned functions can be
found there. If necessary, the files can be transfered

in any other way on request to the author.
Acknowledgements.

I would like to thank J. P. Hansen, A. Dubois and
S.E. Nielsen for the impulses from the collaboration
on atomic physics codes, K. Bgrve for clarifying dis-
cussions on the methods of Quantum Chemistry, and
my son Jan Kocbach for first introduction to MAT-
LAB.

References

[1] E. Merzbacher: Quantum Mechanics (Wiley In-
ternational Edition)

[2] J. P. Hansen and K. Taulbjerg, Comp. Phys.
Comm. 51,317 (1988)
procedure for coupled channel problems

A preorthonormalization

[3] K. Bgrve (1995), private communication

[4] J. P. Hansen and A. Dubois Comp. Phys. Comm.
67, 456 (1992)
numerical calculation of Coulombic one- and two-

Procedures for analytical and

centre integrals

[5] A. Dubois and L. Kocbach, in preparation (1995)

