Hartree-Fock total energy and sum of orbital energies
Shorthand notation
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We have started our work with the Hartree-Fock equations by evaluating
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This we have evaluated as
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From this expression we have obtained Hartree-Fock equations by the varia-
tional procedure.



The Hartree-Fock equation can be then written as
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since (o) = 1. This can be rewritten as
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And now we can explore what is the sum of all ¢,
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which we can compare with the above (®| H |P)
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The two expressions are very similar, but they differ in fact by all the interac-
tion term, since it is counted twice in the sum:
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for any set of objects that are symmetric Fr,g = Fj,

Our objects are symmetric, because they are in fact of the type H,g 3. The
wavefunctions are antisymmetric, |a3) = —|fa).

Thus, surprisingly perhaps
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