
Expressions useful for discussion of Helium Description

H = T1 + V1 + T2 + V2 + V12
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H = T1(r1) + V1(r1) + T2(r2) + V2(r2) + V12(r2, r2)
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Evaluation of the repulsion term using the multipole expansion
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where dr̂i means the integration over dΩi = sin θidθidϕi.



The evaluation of general case - angular integrals of three Ylm’s

CL =
∫
Y ?
limi

(θ, ϕ)YLM(θ, ϕ)Ylimi
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For the case of both s-states, li = 0 mi = 0 only L = 0 M = 0 are non-
zero; The sum reduces to one term. The angular factors give value one, since
the (YL=0M=0)2 = (4π)−1 cancels the corresponding factor in the multipole
expansion and due to the normalization.

Thus the repulsion matrix element with the e2 encluded
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is evaluated as the radial integral only
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Calculating the Radial Integral

Radial Part R1,0(r):
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Observe that e2

a0
= 1a.u. = E0

To calculate the rest-integral, we split it into two integrals. For each r1 are we
taking the integral over r2 and than can we take the integrale over r1:

intA =
∫ ∞

0

(∫ r1

0
e−r1−r2r1r

2
2dr2

)
dr1 +

∫ ∞
0

(∫ ∞
r1

e−r1−r2r2
1r2dr2

)
dr1

=
∫ ∞

0
r1e
−r1

∫ r1

0
r2

2e
−r2dr2︸ ︷︷ ︸

intB

dr1 +
∫ ∞

0
r2

1e
−r1

∫ ∞
r1

e−r2r2dr2︸ ︷︷ ︸
intC

dr1

With partial integration one get:
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1 + 2r1 + 2)
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And with this you get by again merging the two split integrals:
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If the exponent contains α, we make substitution
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We see that the first integral has n = 1 and no constant in the exponential;
thus we get 2. Second term contains n = 2 and α = 2. It thus gives
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The third term has n = 1 and α = 2. It gives
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The final expression for
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And with this the whole integral becomes
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How to get the variational method for Helium

written by Alexander Sauter; modified by L. Kocbach ; September 2006

We start with hydrogen-like (one electron) problem

H = T1 + V1.

We remember that the kinetic energy contains only second derivatives of the
wavefunction, while

Vi = −Ze
2

ri
.

We know that the ground state energy is

E1s(Z) = −1

2
Z2 e

2

a0

.

We will need the virial theorem, in order to avoid unnecessary evaluations. It
states:

〈T 〉 = −1

2
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Since

〈H〉 = E1s(Z) = −1
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and
〈H〉 = 〈T 〉+ 〈V 〉

we can see that

〈T 〉 =
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2
Z2 E0

and
〈V 〉 = −Z2 E0

Let us now consider the variable, or unknown effective charge number z, which
is contained only in the wavefunctions.

When z = Z, the kinetic energy 〈T 〉 is 1
2
Z2 E0. As we mentioned, the

kinetic energy contains only second derivatives, no Z. That means that when
z becomes different from Z, there can not be any Z in the kinetic energy T,
thus

〈T (z)〉 =
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2
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On the other hand, the potential energy contains Z, as seen above. Thus

〈V (z)〉 = − z Z E0



We look now at the total energy for two electrons including the repulsion

H = T1 + T2 + V1 + V2 + V12.

The repulsion term V12 is known for the hydrogen like orbitals, or repulsion
between two electrons where both are in 1s orbital. For atomic number Z we
obtained
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Again, there is no Z in the repulsion energy operator, therefore
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for the orbitals with effective z.
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The variational method says that for the ground state the energy functional

E(z) =
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)
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must be extremal:
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Atomic Units

Unit of length is the Bohr radius:

a0 =
h̄2

mee2

(
= 4πε0

h̄2

mee2

)

The first is in atomic units, second in SI-units. This quantity can be remembered by
recalling the virial theorem, i.e. that in absolute value, half of the potential energy
is equal to the kinetic energy. This gives us

1
2
e2

a0
=

h̄2

2mea0
2

and if we accept this relation, we have the above value of a0.

The so called fine structure constant

α =
e2

h̄c

expresses in general the weakness of electromagnetic interaction.



Some Constants and Quantities

v0 = αc = 2.187106 m s−1 Bohr velocity

a0 = 0.529177 10−10 m Bohr radius

h̄ = 0.6582 10−15 eV s Planck’s constant

kB = 0.8625 10−4 eV K̊−1 Boltzmann constant

R = NAkB

NA = 6.0222 1023 Avogadro’s number

µB = 0.579 10−4 eV (Tesla)−1 Bohr magneton

Plank’s formula

ρ(ωba) =
h̄ω3

ba

π2c3

1
eh̄ω/kT − 1

Useful formulae and informations

P0 (cosθ) = 1 P1 (cosθ) = cosθ


