Expressions useful for discussion of Helium Description

H=T +Vi + T5 + Vo +Vp

H="T(r1) + Vi(r1) + Ta(r2) + Va(ra) + Via(re,ro)
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Evaluation of the repulsion term using the multipole expansion
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where
re=ry, rs=ry for |rj| < |rg

r<=ry, 7rs =11 for |r1| > |1°2|

Evaluation of the matrix element in general case
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is performed separately over the radial and angular parts
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where dr; means the integration over df2; = sin 0;d0;dy;.



The evaluation of general case - angular integrals of three Y;,,’s
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For the case of both s-states, [; =0 m; = 0only L =0 M = 0 are non-
zero; The sum reduces to one term. The angular factors give value one, since
the (Yz—om—0)> = (47)~! cancels the corresponding factor in the multipole
expansion and due to the normalization.

Thus the repulsion matrix element with the e? encluded
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is evaluated as the radial integral only
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Calculating the Radial Integral

Radial Part Ry o(r):
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Observe that % = lau. = Ey
To calculate the rest-integral, we split it into two integrals. For each r; are we
taking the integral over r5 and than can we take the integrale over ry:
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With partial integration one get:
intB =2 —e " (r? +2r +2)
intC' =e " (ry + 1)
And with this you get by again merging the two split integrals:
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If the exponent contains a, we make substitution
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We re-write intA as

ntA = / 2rie”"tdr; — / e “"ridr — / e “"2rydr;
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We see that the first integral has n = 1 and no constant in the exponential;
thus we get 2. Second term contains n = 2 and a = 2. It thus gives
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The third term has n =1 and a = 2. It gives
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The final expression for
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And with this the whole integral becomes
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How to get the variational method for Helium
written by Alexander Sauter; modified by L. Kocbach ; September 2006
We start with hydrogen-like (one electron) problem

H=1T +V.

We remember that the kinetic energy contains only second derivatives of the
wavefunction, while
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V=22
T
We know that the ground state energy is
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We will need the virial theorem, in order to avoid unnecessary evaluations. It
states:

Since



and

we can see that 1
<T> - 5 22 EO

and
<V> — —22 EO

Let us now consider the variable, or unknown effective charge number z, which
is contained only in the wavefunctions.

When z = Z, the kinetic energy (T) is 1 Z? Ey. As we mentioned, the
kinetic energy contains only second derivatives, no Z. That means that when
z becomes different from Z, there can not be any Z in the kinetic energy T,
thus

1
(T(z)) = 3 2% E,
On the other hand, the potential energy contains Z, as seen above. Thus
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We look now at the total energy for two electrons including the repulsion
H=T+T+V, + Vo + Via.

The repulsion term Viy is known for the hydrogen like orbitals, or repulsion
between two electrons where both are in 1s orbital. For atomic number Z we
obtained
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Again, there is no Z in the repulsion energy operator, therefore
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for the orbitals with effective z.

Thus . | .
E(z) = Ep ( 22— ZZ) + Ey ( 22 — zZ> + Ey—z.
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or

E(z) = (22 — 227 + ZZ) FEy.



The variational method says that for the ground state the energy functional
9 5
E(z) = (2 =222+ g7 FEy.

must be extremal: q
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Atomic Units
Unit of length is the Bohr radius:
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The first is in atomic units, second in SI-units. This quantity can be remembered by
recalling the virial theorem, i.e. that in absolute value, half of the potential energy
is equal to the kinetic energy. This gives us
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and if we accept this relation, we have the above value of ag.

The so called fine structure constant

62

Oé:%

expresses in general the weakness of electromagnetic interaction.



Some Constants and Quantities

vo = e = 2.18710% m s~1 Bohr velocity
ap = 0.529177 1071% m Bohr radius
h=0.6582 10" eV s Planck’s constant

kg =0.8625 1074 eV ‘K1 Boltzmann constant

R = Nakp
N4 = 6.0222 10?3 Avogadro’s number
pp = 0.579 107* eV (Tesla) ! Bohr magneton

Plank’s formula

hw; 1
p(wha) = wzcg ohw/KT _ |

Useful formulae and informations

Py (cosh) =1 Py (cosf) = cosb



