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This can be described by a simple notation
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where GL
fi(R(t)) is called The G-function and CL is composed of Clebsch-

Gordan coefficients. The matrix element is different from zero only if:
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Ri(~r) and Rf (~r) are the radial wave functions for initial and final states.

The integration over the angular parts, which is the integral over three spherical
harmonics, gives
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This is known as Gaunts formula, and the numerical values
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)
are

Wigner-3j symbols, up to a factor equal to Clebsch-Gordan coefficients.


