PHYS261 Atomic Physics and Physical Optics

Lecture Wednesday 20. August 2008

Topics:

In lecture: Introduction Here: Mainly atomic units

Comment:

Introductory Lecture; L. Kocbach

Starting from our page: <http://web.ift.uib.no/AMOS/PHYS261/>

History of the Course; Laser Physics; AMOS Atomic part Optical part

- We have visited the years of courses – bottom of our page

- We have visited the Atomic units
- The wavelengths energy and wavenumbers

The Notebook:

- Spectrum of hydrogen,
- Wolfram research (Mathematica) The world of Physics
- NIST (spectra etc National Institute of Standards and Technology)
- Hyperphysics

Atomic Units – the world of Atoms

Wavelengths: the peculiar historical unit of energy

Atomic Units – the world of Atoms Wavelengths: the peculiar historical unit of energy

Schrödinger Equation (from sometimes) We see that the dimension of energy is kept on both sides

$$
\left(\frac{\hbar^{2}}{2m}\nabla^{2} \cdot V(r)\right)\psi(r) = \frac{1}{2}\psi(r) \quad \text{where } \psi(r) \in \mathbb{Z}_{\frac{1}{2}}^{\frac{1}{2}} \text{ and } \psi(r) \in \math
$$

PHYS261 Autumn term 2008 page 3

$$
V(r) = \frac{e^{2}}{r} \qquad \text{Physics} \qquad G(r) = -\frac{e^{2}}{r} \qquad \text{grav.conf.}
$$
\n
$$
V(r) = \frac{1}{2r\pi\epsilon_{0}} \sum_{i=1}^{n} \sum_{n=1}^{n} G_{i} \qquad \text{grav.conf.}
$$
\n
$$
V(r) = \frac{1}{2r\pi\epsilon_{0}} \sum_{i=1}^{n} G_{i} \qquad \text{Class. This implies } V_{i} \qquad \text{C. This implies } V_{i} \qquad \text{S. This implies } V_{i} \qquad \text{S. This implies that } V_{i} \qquad \text{S. The result is the following.}
$$
\n
$$
V(r) = -\frac{e^{2}}{r} \qquad \text{Class.} \qquad \text{Class.} \qquad \text{Class.}
$$

Unit of length is the Bohr radius:

$$
a_0 = \frac{\hbar^2}{m_e e^2} \bigg(\ = 4 \pi \epsilon_0 \frac{\hbar^2}{m_e e^2} \ \ \bigg)
$$

The first is in atomic units, second in SI-units. This quantity can be remembered by recalling the virial theorem, i.e. that in absolute value, half of the potential energy is equal to the kinetic energy. This gives us

$$
\frac{1}{2}\frac{e^{2}}{a_{0}}=\frac{\hbar^{2}}{2m_{e}a_{0}{}^{2}}
$$

and if we accept this relation, we have the above value of a_0 .

PHYS261 Autumn term 2008 page 4 Unit of length is the Bohr radius:

$$
a_0 = \frac{\hbar^2}{m_e e^2} \bigg(\nonumber \\ = 4 \pi \epsilon_0 \frac{\hbar^2}{m_e e^2} \bigg)
$$

The first is in atomic units, second in SI-units. This quantity can be remembered by recalling the virial theorem, i.e. that in absolute value, half of the potential energy is equal to the kinetic energy. This gives us

$$
\frac{1}{2}\frac{e^2}{a_0} = \frac{\hbar^2}{2m_e a_0^2}
$$

and if we accept this relation, we have the above value of a_0 .

