PHYS261 Atomic Physics and Physical Optics

Lecture Tuesday 7. October 2008

Topics:

Helium; Final touch Helium; Excited States, Doubly excited states Autoionizing states – also Auger Effect

Comment:

Revised version;

The Perturbation Theory (see next slide – work)

$$
\left[-\frac{\hbar^2}{2m_e}\nabla_{r_1}^2 \ -\ \frac{Z\ e^2}{r_1} \ -\ \frac{\hbar^2}{2m_e}\nabla_{r_2}^{\ 2} \ -\ \frac{Z\ e^2}{r_2} + \frac{e^2}{|{\bf r}_1 - {\bf r}_2|} \right] \Psi \left({\bf r}_1 , {\bf r}_2 \right) \ =\ E \ \Psi \left({\bf r}_1 , {\bf r}_2 \right)
$$

Repulsion expectation Value

Evaluation of the repulsion term using the multipole expansion

$$
\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\sum_{LM}\frac{4\pi}{2L+1}\,\frac{r_{<}^{L}}{r_{>}^{L+1}}\,Y_{LM}^{\star}\left(\hat{r}_{1}\right)Y_{LM}\left(\hat{r}_{2}\right)
$$

where

$$
r_{<} = r_1, \quad r_{>} = r_2 \quad \text{for} \quad |\mathbf{r}_1| < |\mathbf{r}_2|
$$
\n
$$
r_{<} = r_2, \quad r_{>} = r_1 \quad \text{for} \quad |\mathbf{r}_1| > |\mathbf{r}_2|
$$

 $\int d^3 {\bf r}_1 \int d^3 {\bf r}_2 \; \psi_{100}^\star \left({\bf r}_1 \right) \psi_{100}^\star \left({\bf r}_2 \right) \frac{e^2}{\left| {\bf r}_1 - {\bf r}_2 \right|} \psi_{100} \left({\bf r}_1 \right) \psi_{100} \left({\bf r}_2 \right) = \frac{5}{8} \frac{Ze^2}{a_0} \; .$

Perturbation theory result:

$$
E(z_1, 1, 1, 1) = -\frac{1}{2}Z^2 - \frac{1}{2}Z^2 + \frac{5}{8}Z \quad [a, u_0]
$$

The Variational Method

H minus is also possible Negative ion of hydrogen

Experiment – Level scheme for Helium

 $E = 0$ corresponds to the ionisation threshold.

Variational Method basics $\mathcal{U}(\vec{x}, \alpha)$ α - parameter $H \varphi = E \varphi$ $\begin{pmatrix} 0 & 0 \\ v & 0 \end{pmatrix}$
 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ rie gives best approximation to ?? ENERGY $\left\langle u(x) | H | u(x) \right\rangle \geq E(x) \Leftarrow$ h for which α $E(\alpha)$ do rest $\overline{\mu(\vec{x}_{\mu})} = \sum c_i Q_i(\vec{x})$ $H_{\vec{q}} = \vec{q}_i Q_i$ $\oint_{\mathcal{X}} \sum_{i} c_i^* \sum_{j} c_j = \int \widetilde{\varphi_i^*}(x) \overline{\mu(x)} \varphi_j(x) dx$ 17 \mathscr{L} $\langle E\rangle = \langle H\rangle$ $\Rightarrow E_0$
 $\langle u(\alpha)|u(\alpha)\rangle = \sum_i c_i^* \sum_j c_j^* \langle \varphi_i \rangle$ \sum_{i} $|c_{i}|$ h or m a h 1 PHYS261 Autumn term 2008

To remember in preliminary version

```
Carousel (pictures t include?? )
Flogiston - Look it up
```
The joke about Who wrote Hamlet - for remembering Stern-Gerlach (see wikipedia)

Quantiki (Quantum wiki) - very bad QM intro Quantum Computation

lon.pot. Ionization potential: The energy to remove the first electron

2.lon.pot Second lonization potential: The energy to remove the second electron

EXP.BindEner The experimental binding energy is sum of the two ionization potentials

Perturbation -74.8

variational -77.46

EXPERIMENT -79

Twice hydrogen-like -108

PHYS261 Autumn term

 $\overline{}$

 $\mathbb T$

Auger Effect (autoionization from already ionized atom)

Auger Effect (autoionization from already ionized atom)