PHYS261 Atomic Physics and Physical Optics

Lecture

Tuesday 7. October 2008

Topics:

Helium; Final touch

Helium; Excited States, Doubly excited states

Autoionizing states - also Auger Effect

Comment:

Revised version;

The Perturbation Theory (see next slide - work)

$$\left[-rac{\hbar^{2}}{2m_{e}}
abla_{r_{1}}^{2} \; - \; rac{Z\;e^{2}}{r_{1}} \; - \; rac{\hbar^{2}}{2m_{e}}
abla_{r_{2}}^{2} \; - \; rac{Z\;e^{2}}{r_{2}} \; - \; rac{Z\;e^{2}}{|\mathbf{r}_{1}-\mathbf{r}_{2}|}
ight]\Psi\left(\mathbf{r}_{1},\mathbf{r}_{2}
ight) \; = \; E\;\Psi\left(\mathbf{r}_{1},\mathbf{r}_{2}
ight)$$

Repulsion expectation Value

Evaluation of the repulsion term using the multipole expansion

$$\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\sum_{LM}\frac{4\pi}{2L+1}\ \frac{r_{<}^{L}}{r_{>}^{L+1}}\ Y_{LM}^{\star}\left(\hat{r}_{1}\right)Y_{LM}\left(\hat{r}_{2}\right)$$

where

$$r_{<} = r_{1}, \quad r_{>} = r_{2} \quad \text{for} \quad |\mathbf{r}_{1}| < |\mathbf{r}_{2}|$$

$$r_<=r_2, \quad r_>=r_1 \quad ext{for} \quad |\mathbf{r}_1| \ > \ |\mathbf{r}_2|$$

$$\int d^3\mathbf{r}_1 \int d^3\mathbf{r}_2 \; \psi_{100}^{\star}\left(\mathbf{r}_1\right) \psi_{100}^{\star}\left(\mathbf{r}_2\right) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \psi_{100}\left(\mathbf{r}_1\right) \psi_{100}\left(\mathbf{r}_2\right) = \frac{5}{8} \frac{Z e^2}{a_0}$$

Perturbation theory result:

$$E(z, 16, 16) = -\frac{1}{2}Z^2 - \frac{1}{2}Z^2 + \frac{5}{8}Z$$
 [a.u.]

The Variational Method

H minus is also possible Negative ion of hydrogen

Experiment - Level scheme for Helium

The experimental values of the lowest energy levels of helium.

E = 0 corresponds to the ionisation threshold.

Variational Method basics $\mathcal{M}(\vec{x}', \alpha)$ $\alpha - parameter$ $H\varphi = E\varphi$ i.e gives best approximation to 32 <u(x) / +/ / u(a) > = E(x) € for which & E(x) dusest u(xxx) = Z'ciqi(x) | Hqi= VZ, ci Jcj Sqi(x) H(x) q; (x) dr $\langle E \rangle = \langle H \rangle \gg E_0$ $\langle u(\alpha) | u(\alpha) = \sum_{i} c_i^* \sum_{j} c_j \langle q_i \rangle$

PHYS261 Autumn term 2008

$$E(z) = \left(z^2 - 2z \cdot Z + \frac{5}{8}\pi\right) E_0$$

$$find z \qquad b \qquad \frac{\partial E(z)}{\partial z} = 0$$

$$2z - 2 + \frac{5}{8} = 0$$

$$z = \frac{2}{16}$$

$$z = \frac{2}{16}$$

$$z = \frac{2}{16}$$

$$z = \frac{2}{16}$$

Derivation of "EXTREMUM"
$$E(\varphi) \ge E(\varphi_0)$$

$$\varphi = \sum_{i=1}^{n} C_i \ q_i$$

To remember in preliminary version

Carousel (pictures t include??) Flogiston - Look it up

The joke about Who wrote Hamlet - for remembering Stern-Gerlach (see wikipedia)

Quantiki (Quantum wiki) - very bad QM intro Quantum Computation

	H.	Не	Li ⁺	Be ⁺⁺	B ⁽³⁺⁾	C ⁽⁴⁺⁾
Z	1	2	3	4	5	6
lon.pot.[au]	0,757	24,60	75,62	153,95	259,49	392,22
2.lon.pot	13,600	54,40	122,40	217,60	340,00	489,60
EXP.BindEner	-14,357	-79,00	-198,02	-371,55	-599,49	-881,82
2 E _{1s}	-27,200	-108,80	-244,80	-435,20	-680,00	-979,20
2 E _{1s} + 5/8 Z	-10,200	-74,80	-193,80	-367,20	-595,00	-877,20
Variational	-12,856	-77,46	-196,46	-369,86	-597,66	-879,86
EXP.BindEner	-14,357	-79,00	-198,02	-371,55	-599,49	-881,82

Ion.pot. Ionization potential: The energy to remove the first electron

2.lon.pot Second lonization potential: The energy to remove the second electron

EXP.BindEner The experimental binding energy is sum of the two ionization potentials

Perturbation -74.8

variational -77.46

EXPERIMENT -79

Twice hydrogen-like _-108

Variational methods

effective κ More parameters one sees κ , κ Antisym $V_{\pi}(\vec{r_1}\vec{r_2}) = V_{\pi}(r_1) \varphi_{\pi}(r_2)$ independent

IMPROVEMENTS: not independent $V_{\pi}(r_1, r_2) \propto \varphi_{\pi}(r_1) \varphi_{\pi}(r_2) f(r_{12})$

N(r₁, r₂) α (q_a(r₁) φ_α(r₂) f(r₁₂)

- More than 1 parameter

- more terms . - -
Hylleraas wavefunctions 1935

IN BERGEN

Most modern wavefunctions

over 1000 parameters

18 diffits a greenest with

Helium (Spin) Triplet × Singlet Symmetric - Antisymmetric > Ferromagnetism Perturbation -s effective Z - vana dou Independent à lectrons Correlation -> Hyleraas Singly-excited - Aubion Many electron-abours