PHYS261 Atomic Physics and Physical Optics

Lectures Thursday 9. October 2008

Tuesday 14. October 2008

Thursday 16. October 2008

Topics:

Many-electron atoms

Evaluation of Slater Determinant < $\phi \mid H_{total} \mid \phi >$

Hartree method; selfconsistent field

Iteration - selfconsistency

Variational Methods for Schrödinger Equation

Variation derivation of Hartree-Fock equations

Comment: This is a preliminary collection of 3 lectures;

Contains extra figures at the end (atomic potentials)

Missing: The latex-based materials

The Perturbation Theory as we did for Helium

$$\left[-rac{\hbar^{2}}{2m_{e}}
abla_{r_{1}}^{2} \ - \ rac{Z\ e^{2}}{r_{1}} \ - \ rac{\hbar^{2}}{2m_{e}}
abla_{r_{2}}^{2} \ - \ rac{Z\ e^{2}}{r_{2}} \ + \ rac{E\ e^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}
ight]\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}
ight) \ = \ E\ \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}
ight)$$

Repulsion expectation Value

Evaluation of the repulsion term using the multipole expansion

$$\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\sum_{LM}\frac{4\pi}{2L+1}\ \frac{r_{<}^{L}}{r_{>}^{L+1}}\ Y_{LM}^{\star}\left(\hat{r}_{1}\right)Y_{LM}\left(\hat{r}_{2}\right)$$

where

$$r_{<} = r_{1}, \quad r_{>} = r_{2} \quad \text{for} \quad |\mathbf{r}_{1}| < |\mathbf{r}_{2}|$$

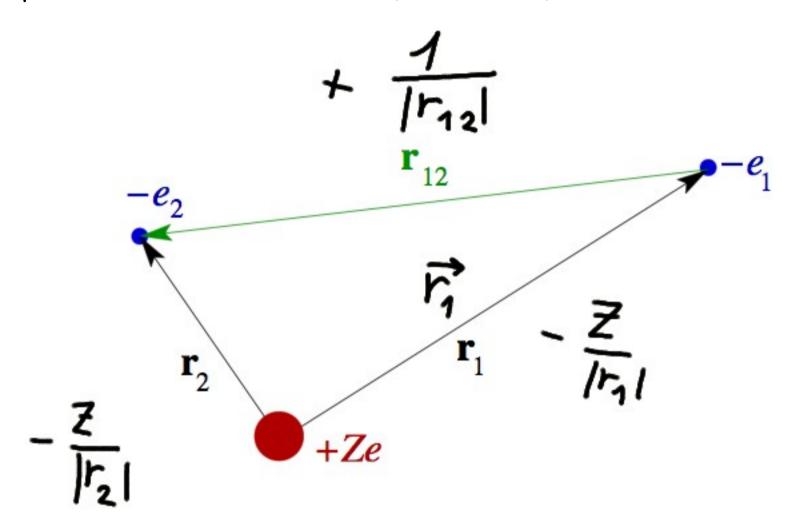
 $r_{<} = r_{2}, \quad r_{>} = r_{1} \quad \text{for} \quad |\mathbf{r}_{1}| > |\mathbf{r}_{2}|$

$$\int d^{3}\mathbf{r}_{1} \int d^{3}\mathbf{r}_{2} \; \psi_{100}^{\star}\left(\mathbf{r}_{1}\right) \psi_{100}^{\star}\left(\mathbf{r}_{2}\right) \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{100}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right) = \frac{5}{8} \frac{Z e^{2}}{a_{0}}$$

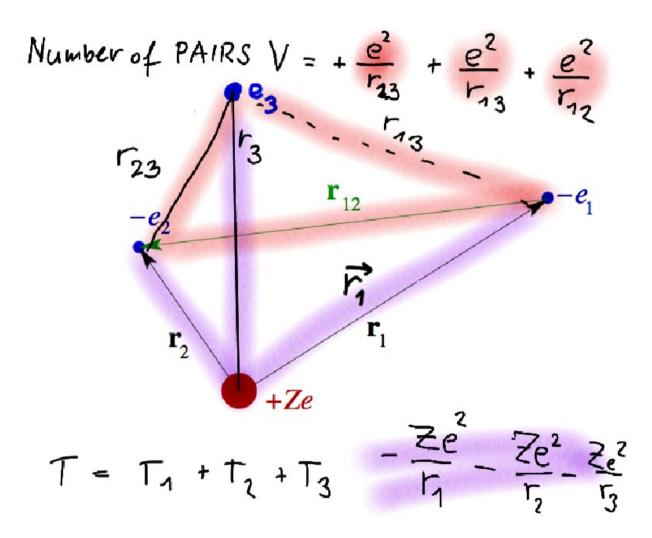
Perturbation theory result:

How does this work for Lithium - 3 electrons?

The picture of the Helium Atom (coordinates)



Lithium - 3 electrons



Make a link to 2-electron energies Make a link to The LATEX for Helium

$$\Psi(x_1,x_2,...x_n) = \sum_{perm(lpha,eta,...
u)} (-1)^{P(perm(lpha,eta,...
u))} perm\left(\phi_lpha\phi_eta...\phi_
u
ight)(x_1)(x_2)....(x_n)$$

where each term in the sum looks as $\phi_{\beta}(x_1)...\phi_{\nu}(x_2)...\phi_{\alpha}...$, summing over all permutations, and $P(perm(\alpha, \beta, ...\nu))$ is the number of swaps of the given permutation $perm(\alpha, \beta, ...\nu)$

This is very close to the definition of the determinant

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)} \right)$$

The above in this notation

See the Latex Document

$$\Psi(x_1, x_2, ... x_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \phi_{\alpha_{\sigma(i)}}(x_i)$$

Slater determinant

The antisymmetric combination for n-particles can be written as a determinant in this way:

For 3 particles:

3 particle Slater determinant

$$\left|egin{array}{cccc} \phi_lpha(x_1) & \phi_lpha(x_2) & \phi_lpha(x_3) \ \phi_eta(x_1) & \phi_eta(x_2) & \phi_eta(x_3) \ \phi_\gamma(x_1) & \phi_\gamma(x_2) & \phi_\gamma(x_3) \end{array}
ight|$$

3×3 determinant

$$\phi_{\alpha}(1) \ \phi_{\beta}(2) \ \phi_{\gamma}(3) \ + \ \phi_{\beta}(1) \ \phi_{\gamma}(2) \ \phi_{\alpha}(3) \ + \ \phi_{\gamma}(1) \ \phi_{\alpha}(2) \ \phi_{\beta}(3)$$

$$- \phi_{\gamma}(1) \phi_{\beta}(2) \phi_{\alpha}(3) - \phi_{\alpha}(1) \phi_{\gamma}(2) \phi_{\beta}(3) - \phi_{\beta}(1) \phi_{\alpha}(2) \phi_{\gamma}(3)$$

Slater Hartree: Selfconsistent field (box) Fock Hartree-Fock method Fock space (Second quantitation (in the field theory of particles, photons [next week . - .]

Li $T_1 + T_2 + T_3 + V_1 + V_2 + V_3$ N! permulations $+ V_{12} + V_{13} + V_{23}$ $\Phi(r_1, r_2; r_3)$ is Slater determine, E terms (6 terms 1 9 terms 1 6 terms)

$$T_{1} + T_{2} + T_{3} + T_{4} + V_{1} + V_{2} + V_{3} + V_{4}$$
 $V_{12} + V_{13} + V_{14} + V_{23} + V_{24} + V_{34}$
 $v_{12} + v_{13} + v_{14} + v_{23} + v_{24} + v_{34}$
 $v_{13} + v_{14} + v_{14} + v_{24} + v_{34}$
 $v_{14} + v_{14} +$

PHYS261 Autumn term 2008 page 8

Many of these terms will be zero! Normalization for general antisymmetrized Normaliza Hon state of Helium < 2 terms | 2 terms = $\langle \phi_a(1) \phi_k(2) - \phi_b(1) \phi_a(2) |$ $\frac{1}{\left(\frac{1}{\phi_{a}(1)} \phi_{b}(2) - \phi_{b}(1) \phi_{a}(2)\right)} = \frac{1}{\left(\frac{1}{\phi_{a}(1)} \phi_{a}(1) \phi_{a}(2)\right)}$ ρα(1) φα(2) φα(1) φ₄(2) d1 d2 $\int \phi_{a}(1) \phi_{a}(1) d1 \int \phi_{a}(1) \phi_{a}(2) d2$ $\langle \phi_a | \phi_b \rangle \langle \phi_e | \phi_a \rangle = 0$ (2 terms)

$$\phi_{\beta}$$
 (1) ϕ_{α} (2) ϕ_{γ} (3)

$$\phi_{\gamma}$$
 (1) ϕ_{β} (2) ϕ_{α} (3)

$$\phi_{\alpha}$$
 (1) ϕ_{β} (2) ϕ_{γ} (3)

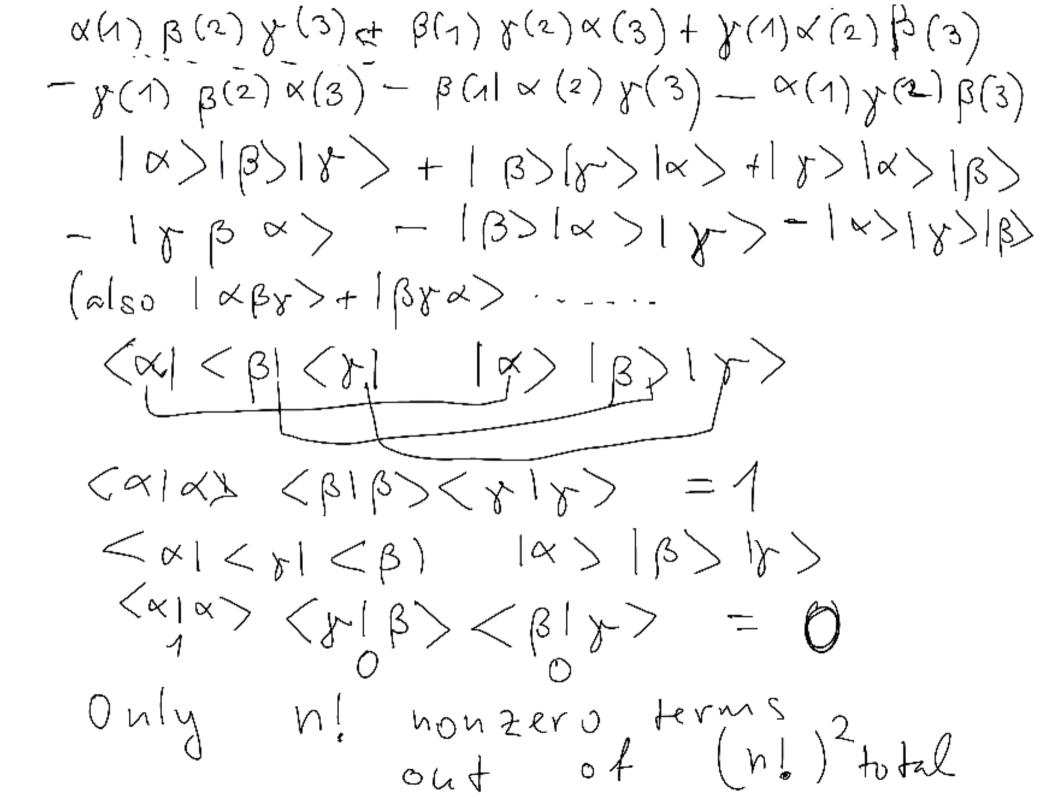
$$\phi_{\beta}$$
 (1) ϕ_{α} (2) ϕ_{γ} (3)

$$\phi_{\beta}$$
 (1) ϕ_{α} (2) ϕ_{γ} (3)

$$\phi_{\beta}$$
 (1) ϕ_{α} (2) ϕ_{γ} (3)

For the text document:
Play with the permutations
of «orbitals» and coordinates

Download ODP and do as homework



< x B8 1 T2 1 x B8> < α | β γ | T3 | α β γ > < α | α > < β | β > < γ | T3 | γ > < x1 < x1 < \b) T, 1 x > 1 \b) < x17,1x> < x1 B> < B1 x> = 0 Also for 1 particle terms Only n! honzero terms 2 total M of such terms But there are

Sum over particles for 1-particle operations -> Sum over «orbitals»

< x B x 1 V23 1 x B x > $\int d2 \int d3 \, \varphi_{\beta}^{*}(2) \, \varphi_{\beta}(3) \, V_{23}^{(2)2/3}) \, \varphi_{\beta}(2) \varphi_{r}(3)$ < 3 x 1 V23 1 x x B> = < 1 x > B & 1 V23 / 8 B> < x B 8 / V23 / B x 8> = 0 = $\langle \alpha | \beta \rangle \langle \beta \gamma | V_{23} | \alpha \gamma \rangle$ zero

nonzero

Either the same pair; or reversed pair

(6 terms | 3 pairs | 6 terms> $\int_{6}^{1} \sqrt{\frac{1}{6}}$ (XB | pair 1 xB) 6.6.3 terms < x B | pair | Bx> Sum over pair of courdinates Sum over pairs of exchange orbitals but with term

Sum of orbibals

End of Lecture Thursday 9. October 2008

PHYS261 Atomic Physics and Physical Optics

Lecture

Tuesday 14. October 2008

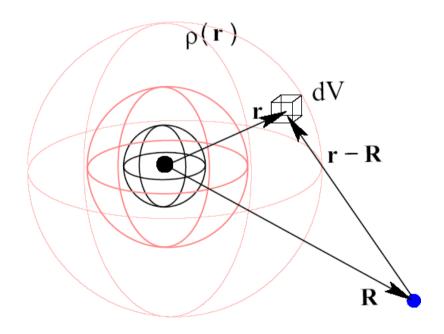
Topics:

Many-electron atoms

Hartree method; selfconsistent field Iteration - selfconsistency

Selfconsistent field (Hartree and Hartree) Hartree Density of the cloud, 9 (3) q(=) = All. p(=) is density at in -> Jum over all -> integrate over it.

Density of electric charge picture from PHYS264 The spheres of different «weight» represent radially changing density (included in the previous slide)



 $\psi_0 \longrightarrow \varphi^{(0)} \longrightarrow W^{(1)}$ [T + V + W (1)] Yen = Ean Yen until it doe's not change SELFCONSISTENT FIELD Solld State phys Quantum Chemistry...

Does it "converge"?
We allways take m lowest energy
And then there was this "theorem"
- Ground state is always lower than any
exproximation.

PHYS261 Atomic Physics and Physical Optics

Lecture

Thursday 16. October 2008

Topics:

Many-electron atoms

Variational Methods for Schrödinger Equation Variation derivation of Hartree-Fock equations

(φ(z) | H(Z) | φ(z) > best 2 "Variational Privaiple"
L'Istead Newbu Lagrange, Hamilton Best possible function on functions Functional depends Denivative Variation de rivative differential Functional derivative

 $\int_{0}^{\infty} |\phi(x)|^{2} dx$ Functional of p(x) 6 T+V $\frac{a}{V(x)} = \int_{\alpha}^{\beta} |\phi(x)|^2 V(x) dx$ if \$\phi was \$\phi(\frac{1}{2}) \rightarrow\$ we hade done it each dis a point in the space of ϕ_1 and ϕ_2 are "close" variation is $\phi_1(x) - \phi_2(x)$ Show analogy of differential × + dx functional derivative SF(\$) Φ+8¢ limit as 80 ->0 8(4)

 $X \longrightarrow d+dX$ $f(x) \longrightarrow f+df$ $\phi \rightarrow \phi + \delta \phi$ Fractional) Externa Extremum df = 0 2 F = 0 All possible "paths" x'(+) The real path $Sahsfiest_{2}$ $A(t) = \int_{-L}^{L} L(t') dt'$ has a minimum $A(x(+)) = \int L(x(+)) dt'$ 8A = 0 g(x) Lagrange equations -> The same as Newbon

Logrange:
$$A = \int dt \left(\frac{1}{m}x^2 + \frac{1}{2}x^2\right)$$
 $SA = \int dt \left(\frac{m}{x}Sx - xSx\right)$

as $if \times would be variable$
 $A - \int dt \varphi^{(t)} \longrightarrow SA = \int dt \varphi^{(t)}$
 $F(\varphi) = \langle \varphi| H| \varphi \rangle$
 $SF = \langle \varphi| H| \varphi \rangle$
 $= \langle \varphi| H| \varphi \rangle \Rightarrow \varphi$
 $= \langle \varphi| H| \varphi \rangle \Rightarrow \varphi$

Minimum of a function with a constraint find minimum of F(x,y)
while (xo yo) g(x)y) =0 Given F(x,y)
Find its unimum am a circle
X2+ y=5 U(x,y) = F(x,y) + & g(x,y) U(x,y) equal F(x,y) the circle $= 0 \qquad \frac{\partial}{\partial y} ((x,y)) = 0 \qquad x_0 y_0$ g(x,y) = 03 U(x,y) = 0

 $F(\phi) = \langle \phi | H | \phi \rangle \qquad g(\phi) = \langle \phi | \phi \rangle = 1$ $|g(\phi) = 0|$ U(b) = $\langle \phi | H | \phi \rangle - \lambda (\langle \phi | \phi \rangle - 1)$ < 5 \$ 1 +11 \$ > - λ \(\delta \phi \) = 0 δ () = HAD = 11 PD Variational principle for Schrödinger equation

< O | H | \$ > to the \$ sher determinanty \sum_{i} $\langle \phi_{\alpha} | T + V_{c} | \phi_{\alpha} \rangle$ + 2 (Φα Φβ | V12 | Φα Φβ > pairs - < \$\approx \phi_B \big| \V_{12} \big| \phi_B \phi_x \right\} With constrants $\langle \phi_{\alpha} | \phi_{\beta} \rangle = \delta_{\alpha\beta}$ $\langle \phi_{\alpha} | \phi_{\alpha} \rangle = 1$ $\langle \phi_{\alpha} | \phi_{\alpha} \rangle = 1$ n-different orbitals

The Slater determinant

$$\Phi_{a,b,...N}^{HF}(r_1, r_2, ...r_N) \rightarrow \begin{vmatrix} \psi_a(r_1)\psi_b(r_1).....\psi_N(r_1) \\ \psi_a(r_2)\psi_b(r_2).....\psi_N(r_2) \\ \\ \psi_a(r_N)\psi_b(r_N).....\psi_N(r_N) \end{vmatrix}$$

Evaluate

$$\begin{split} \left\langle \Phi^{HF} \right| H \left| \Phi^{HF} \right\rangle &= \sum_{j=1}^{N} \left\langle \psi_{j} \right| T - \frac{Ze^{2}}{r} \left| \psi_{j} \right\rangle \\ &+ \sum_{(i,j)pairs} \left\langle \psi_{j} \psi_{i} \right| \frac{e^{2}}{\left| \vec{r} - \vec{r'} \right|} \left| \psi_{j} \right| \psi_{i} \right\rangle \\ &- \sum_{(i,j)pairs} \left\langle \psi_{j} \psi_{i} \right| \frac{e^{2}}{\left| \vec{r} - \vec{r'} \right|} \left| \psi_{i} \right| \psi_{j} \right\rangle \end{split}$$

Hartree method can be derived from "variational method"

if we neglect ex dinge terms Hortree-Fock method The exchange terms lead to Exchange potential Ex drange potential nontocal Local $WY \longrightarrow \int V(x,x')Y(x')$ Vy -> V(x)y(x)

End of lecture 16.10.2008

