PHYS261 Atomic Physics and Physical Optics

Lecture Thursday 9. October 2008

Topics:

Many-electron atoms

Comment:

After the lecture – to be continued - preliminary version;

Make a link to 2-electron energies Make a link to The LATEX for Helium The Perturbation Theory as we did for Helium

$$
\left[-\frac{\hbar^2}{2m_e}\nabla_{r_1}^2 \; -\; \frac{Z\; e^2}{r_1} \; -\; \frac{\hbar^2}{2m_e}\nabla_{r_2}^{\;2} \; -\; \frac{Z\; e^2}{r_2} + \frac{e^2}{|{\bf r}_1 - {\bf r}_2|} \right] \Psi\left({\bf r}_1, {\bf r}_2\right) \; =\; E\; \Psi\left({\bf r}_1, {\bf r}_2\right)
$$

Repulsion expectation Value

Evaluation of the repulsion term using the multipole expansion

$$
\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} = \sum_{LM} \frac{4\pi}{2L+1} \; \frac{r_{<}^{L}}{r_{>}^{L+1}} \; Y_{LM}^{\star} \left(\hat{r}_{1}\right) Y_{LM} \left(\hat{r}_{2}\right)
$$

where

$$
r_{<}=r_{1}, \quad r_{>} = r_{2} \quad \text{for} \quad |\mathbf{r}_{1}| \; < \; |\mathbf{r}_{2}|
$$
\n
$$
r_{<}=r_{2}, \quad r_{>} = r_{1} \quad \text{for} \quad |\mathbf{r}_{1}| \; > \; |\mathbf{r}_{2}|
$$
\n
$$
\int d^{3} \mathbf{r}_{1} \int d^{3} \mathbf{r}_{2} \; \psi_{100}^{\star}(\mathbf{r}_{1}) \, \psi_{100}^{\star}(\mathbf{r}_{2}) \, \frac{e^{2}}{|\mathbf{r}_{1}-\mathbf{r}_{2}|} \psi_{100}(\mathbf{r}_{1}) \, \psi_{100}(\mathbf{r}_{2}) = \frac{5}{8} \frac{Ze^{2}}{a_{0}}
$$
\n2007 result:

Perturbation the

How does this work for Lithium – 3 electrons ?

The picture of the Helium Atom (coordinates)

Lithium – 3 electrons

Make a link to 2-electron energies Make a link to The LATEX for Helium

$$
\Psi(x_1,x_2,...x_n)\,=\,\sum_{perm(\alpha,\beta,...\nu)}(-1)^{P(perm(\alpha,\beta,...\nu))}perm\left(\phi_{\alpha}\phi_{\beta}....\phi_{\nu}\right)(x_1)(x_2)....(x_n)
$$

where each term in the sum looks as $\phi_{\beta}(x_1)...\phi_{\nu}(x_2)...\phi_{\alpha}...$, summing over all permutations, and $P(perm(\alpha, \beta, ... \nu))$ is the number of swaps of the given permutation $perm(\alpha, \beta, ... \nu)$

This is very close to the definition of the determinant

$$
\det(A) \,\, = \,\, \sum_{\sigma \in S_n} \bigg(\, \text{sgn}(\sigma) \,\, \prod_{i=1}^n A_{i,\sigma(i)} \bigg)
$$

The above in this notation

$\Psi(x_1, x_2, ... x_n) = \sum_{\sigma \in S_n} \text{ sgn}(\sigma) \; \prod_{i=1}^n \phi_{\alpha_{\sigma(i)}}(x_i)$

Slater determinant

The antisymmetric combination for n-particles can be written as a determinant in this way:

$$
\begin{vmatrix}\n\phi_{\alpha}(x_1) & \phi_{\alpha}(x_2) & \dots & \phi_{\alpha}(x_n) \\
\phi_{\beta}(x_1) & \phi_{\beta}(x_2) & \dots & \phi_{\beta}(x_n) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_{\nu}(x_1) & \phi_{\nu}(x_2) & \dots & \phi_{\nu}(x_n)\n\end{vmatrix}
$$

For 3 particles:

3 particle Slater determinant

$$
\left|\begin{array}{cccc} \phi_{\alpha}(x_1) & \phi_{\alpha}(x_2) & \phi_{\alpha}(x_3) \\ \phi_{\beta}(x_1) & \phi_{\beta}(x_2) & \phi_{\beta}(x_3) \\ \phi_{\gamma}(x_1) & \phi_{\gamma}(x_2) & \phi_{\gamma}(x_3) \end{array}\right.
$$

See the Latex Document

3×3 determinant

 $\phi_{\alpha}(1)$ $\phi_{\beta}(2)$ $\phi_{\gamma}(3)$ + $\phi_{\beta}(1)$ $\phi_{\gamma}(2)$ $\phi_{\alpha}(3)$ + $\phi_{\gamma}(1)$ $\phi_{\alpha}(2)$ $\phi_{\beta}(3)$

 $-\phi_{\gamma}(1)\phi_{\beta}(2)\phi_{\alpha}(3) - \phi_{\alpha}(1)\phi_{\gamma}(2)\phi_{\beta}(3) - \phi_{\beta}(1)\phi_{\alpha}(2)\phi_{\gamma}(3)$

He:
$$
T_{1}+T_{2}+V_{1}+V_{2}+V_{12}
$$

\n $\angle 2+erms I5+erms I2+erms$
\nLi
\n $T_{1}+T_{2}+T_{3}+V_{1}+V_{2}+V_{3}$
\n*n.* perman_{th} $\frac{W_{0n,1}}{W_{0n,1}}+V_{12}+V_{13}+V_{23}$
\n $\varphi(r_{1},r_{2},r_{3})$ is Slater determinant, $\frac{6}{5}$ terms
\n $\frac{\angle 6 + \angle 19 + \angle 19}{\frac{1}{11}+7_{2}+7_{3}+7_{4}+V_{4}+V_{4}+V_{5}+V_{6}}$
\n $V_{12}+V_{13}+V_{14}+V_{23}+V_{24}+V_{34}+V_{44}$
\n $\varphi(r_{1}r_{2}r_{3}r_{4})$

PHYS261 Autumn term 2008 page 8

Many of these terms will be zero ! Normalization for general antisymmetrized state of Helium

\n
$$
\langle 2 \text{ terms} | 2 \text{ terms} \rangle = 2
$$
\n
$$
\langle \varphi_a(n) \phi_{\beta}(a) - \phi_{\alpha}(n) \phi_a(2) \rangle
$$
\n
$$
\langle \varphi_a(n) \phi_{\beta}(a) - \phi_{\alpha}(n) \phi_{\alpha}(2) \rangle
$$
\n
$$
\langle \varphi_{a}(n) \phi_{\beta}(a) \rangle = 1 \quad (2 \text{ terms})
$$
\n
$$
\langle \varphi_{a}(n) \phi_{\alpha}(n) \phi_{\alpha}(a) \rangle = 1 \quad (2 \text{ terms})
$$
\n
$$
\int \varphi_a(n) \phi_{\alpha}(n) \phi_{\alpha}(n) \phi_{\beta}(2) d1 d2
$$
\n
$$
\int \varphi_a(n) \phi_{\alpha}(n) \phi_{\alpha}(2) d1 d1 \int \varphi_{\alpha}(n) \phi_{\beta}(2) d2
$$
\n
$$
\langle \varphi_{a}(n) \varphi_{\alpha}(n) \phi_{\alpha}(2) \rangle = 0 \quad (2 \text{ terms})
$$

 φ_{β} (1) φ_{α} (2) φ_{γ} (3)

φ_{γ} (1) φ_{β} (2) φ_{α} (3)

 φ_{α} (1) φ_{β} (2) φ_{γ} (3)

 $\varphi_{\beta}(1)$ $\varphi_{\alpha}(2)$ $\varphi_{\gamma}(3)$

For the text document: Play with the permutations of «orbitals» and coordinates

Download ODP and do as homework

 $\varphi_{\beta}(1)$ $\varphi_{\alpha}(2)$ $\varphi_{\gamma}(3)$ φ_{β} (1) φ_{α} (2) φ_{γ} (3)

 $\alpha(n) \beta(n) \lambda(n) \alpha + \beta(n) \lambda(n) \alpha(3) + \lambda(n) \alpha(5) \beta(3)$ $-\gamma(1)\overline{\beta(2)}\overline{\kappa(3)}-\beta(1)\times(2)\gamma(3)=\alpha(1)\gamma(2)\overline{\beta(3)}$ $-1800 = 18010$ $(a|s0| \times \beta \gamma) + | \beta \gamma \alpha \rangle$. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\langle \alpha | \alpha \rangle$ $\langle \beta | \beta \rangle \langle \gamma | \gamma \rangle = 1$ $\leq \alpha 1 < \gamma 1 < \beta$) $\alpha > |\beta > \gamma >$ $\langle \alpha | \alpha \rangle$ $\langle \gamma | \beta \rangle$ $\langle \beta | \gamma \rangle = 0$ Only $n!$ houzero terms $2nb4$

 $<\!\!\alpha\ \ \, \beta\,\gamma\,\mid\ \ \, \overline{\mathsf{T}}_{2}\mid\ \, \alpha\ \, \beta\,\,\gamma\!>\,\,$ $<\underset{<\alpha_{1}\alpha>}{\alpha}\underset{<\beta|B>}{\beta}\underset{$ T_2 , T_3 $\leq \alpha 1 < \gamma 1 < \beta$) $T_{1}|\alpha > |\beta > |\gamma >$ $\langle \alpha | \tau_{1} | \alpha \rangle$ $\langle \gamma | \beta \rangle$ $\langle \beta | \gamma \rangle = 0$ Also for 1 partide terms Only $n!$ houzer of $\binom{terms}{h!}$ and M of such terms $But there are$

Sum over particles for 1-particle operations -> Sum over «orbitals»

 $<\propto \beta \gamma \mid V_{23} \mid \propto \beta \gamma >$ $\int d2 \int d3 \psi_1^*(z) \psi_1(s) V_2(s) \psi_1(s) \psi_1(s)$ $<\!\!\alpha\ \beta\ \gamma\ \vert\ v_{2\ 3}\ \vert\ \alpha\ \gamma\ \beta> \ =$ $\left\{ \alpha / \alpha \right\}$ $\bigotimes \beta \gamma |V_{23}| \gamma \beta \bigg>$ $<\propto \beta \gamma |V_{23}|\beta \propto \gamma > = 0$

 $=$ $\langle \alpha | \beta \rangle$ $\langle \beta | \gamma | V_{23} | \alpha \gamma \rangle$ Either the serve pair; or reversed pair

 $\left\langle 6+erms \right|$ 3 pavirs $|$ S terms $>$ $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ $\{x\beta \mid pair \mid x\beta\}$ $6.6.3$ terms $\langle \alpha \beta |$ pair $|\beta \alpha \rangle$ $\begin{array}{c} <\propto \beta \mid V_{12} \mid \propto \beta > \\ f < \beta \gamma \mid V_{11} \mid \beta \gamma > \end{array}$ $-\frac{1}{2} \leq \alpha \beta I_{1} V_{12} \log N$ $-\frac{1}{2}<\beta y+\frac{1}{2}y+\frac$ $+ <\alpha \gamma$ ¹ V_{12} ¹ $\alpha \gamma$ Sum over pairof courdinates becomes
Sum over pairs of
orbitals but with exchange term

Smu of orbitale Sam over parts
of orbitals

End of Lecture Thursday 9. October 2008

Torsdag 7. mars 2002

