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1 Filling up the shells with electrons

In order to know and to, more or less, understand in which state an electron
is bound we can use some basic rules. The generel idea is that the lowest
energy-state is the most stable one. The exited states can in most cases fall in
the lower state or ground state by emission of light.
The principles one need to know how to fill up the shells are the Pauli-principle
and the Hund’s rule.
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2 Pauli-principle

The filling of the shells observed was explained by Pauli by formulating the
Pauli exclusion principle:

Two electrons can not be in the same state, a state defined by all four possible
quantum numbers n, l, m and ms

Here n is principal the quantum number of the shell,

l, the angular momentum quantum number of the subshell,

m the magnetic quantum number

ms denotes spin ”up” and spin ”down”, ms = 1/2 or ms = −1/2

The Pauli principle was formulated mathematically by requiring that the mul-
tiparticle wavefunction is antisymmetric with respect to exchange of two par-
ticles.

If two particles coordinates are exchanged, the function must change sign. If
two particles are in the same state, this requirement leads to zero wavefunc-
tion, thus impossible. List of topics



Figure 1: Atomic levels (shells)List of topics



Figure 2: Atomic levels (shells) filled up to the element ....List of topics



3 Antisymmetric product function for n-particles

Ψ(x1, x2, ...xn) =
∑

perm(α,β,...ν)

(−1)P (perm(α,β,...ν))perm (φαφβ....φν) (x1)(x2)....(xn)

where each term in the sum looks as φβ(x1)...φν(x2)...φα..., summing over all
permutations, and P (perm(α, β, ...ν)) is the number of swaps of the given
permutation perm(α, β, ...ν)

This is very close to the definition of the determinant

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

Ai,σ(i)

)
The above in this notation

Ψ(x1, x2, ...xn) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

φασ(i)
(xi)
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Slater determinant

The antisymmetric combination for n-particles can be written as a determinant
in this way: ∣∣∣∣∣∣∣∣

φα(x1) φα(x2) ... φα(xn)
φβ(x1) φβ(x2) ... φβ(xn)
... ... ... ...

φν(x1) φν(x2) ... φν(xn)

∣∣∣∣∣∣∣∣
For 3 particles:

3 particle Slater determinant∣∣∣∣∣∣
φα(x1) φα(x2) φα(x3)
φβ(x1) φβ(x2) φβ(x3)
φγ(x1) φγ(x2) φγ(x3)

∣∣∣∣∣∣
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3 × 3 determinant

∣

∣

∣

∣

∣

∣

∣

φα(1) φα(2) φα(3)
φβ(1) φβ(2) φβ(3)
φγ(1) φγ(2) φγ(3)

∣

∣

∣

∣

∣

∣

∣

φα(1) φα(2) φα(3)

φβ(1) φβ(2) φβ(3)

φγ(1) φγ(2) φγ(3)

φα(1) φα(2) φα(3)

φβ(1) φβ(2) φβ(3)

φα(1) φβ(2) φγ(3) + φβ(1) φγ(2) φα(3) + φγ(1) φα(2) φβ(3)

− φγ(1) φβ(2) φα(3) − φα(1) φγ(2) φβ(3) − φβ(1) φα(2) φγ(3)
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4 Hund’s rule

Hund’s rule is the manifestation of the same effect as we have seen in the
parahelium - orthohelium effect ( the ”second” rule )

Hund’s first rule

Full shells and subshells do have a total circular momentum of zero.

This can be calculated and is allways valid.

Hund’s second rule

The total spin S should allways have the highest possible value. So as many
of the single electron spins as possible should be parallel.

The second rule appears more empirical and applies to a different magnetic
quantum number of the electrons with parallel spins. If is of course not allowed
to break the Pauli-principle.
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5 Example for the Hund’s rule

Figure 3: Electron spins of the first elements.

The elements carbon C, nitrogen N and oxygen O are those where the Hund’s
rule have the biggest influence. We see electrons with parallel spins in the
states m = −1, 0,+1, depending on the element. The magnetic quantum
number m gives more or less the “direction” of the circular moment l. The
s-states are the states where l = 0 and the p-states those where l = 1. The
names for l = (2, 3, 4, ...) are (d, e, f, ...).
The shell-name of the shell n = (1, 2, 3, 4, ...) is (K,L,M,N, ...).
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In cases with more electrons do we get some exceptions. For example is the
4s subshell earlier filled than the 3d. This is caused by the smaller distance
of the 4s to the core and thus by the lower energy, which is more stable. The
mentioned rules work well for general considerations and for atoms with not
to many electrons.

6 Number of states

Usefull to know is the largest possible number of states for a given n which
means until a special shell is filled.

Nmax = 2 ·
n−1∑
l=0

(2l + 1) = 2n2. (2)

We get this formula by adding all the possible quantum number configurations:
We get for each n every l in the range (0, 1, ..., n− 1),
for each l every m in the range (−l, ...,−1, 0, 1, ..., l)
and for each of these states 2 spin possibilities.
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7 Ionization energies

Figure 4: Ionization energies. The shell properties would explain the structure
in general - Periodic table and the Selfconsistent field List of topics



Especially at the first elements, we see the minimums at the elements with just
one electron in the last shell and a maximum at the noble gas elements. The
small minimums are caused by filled subshells or by the maximum of parallel
standing spins. After argon, it is more difficult to observe general tendences.

The shell properties would explain the structure in general

But there should be no closed shell at argon

Details - Periodic table and the Selfconsistent field
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8 Hartree - Selfconsistent field

Interaction energy of two charges depends on their distance|~r1 − ~r2|:

W (|~r1 − ~r2|) =
q1q2

|~r1 − ~r2|

The two charges are an electron and a little volume dV at ~r2 containing charge cloud
of density ρ

q1 → (−e) q2 → ρ(~r2)dV → ρ(~r2)d3r2

The interaction energy of these two charges is

dW (|~r1 − ~r2|) =
(−e)ρ(~r2)
|~r1 − ~r2|

d3r2

Interaction with a cloud; summing over all the small volume elements - it means
integrating over the whole volume of the cloud gives the potential energy

W (~r) =
∫

(−e)ρ(~x)
|~r − ~x|

d3x
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If the charge cloud represents one electron in state ψi(~x)

ρ(~x) = (−e)|ψi(~x)|2

If we have N electrons, each in its state, the total density becomes

ρ(~x) = (−e)
N∑

i=1

|ψi(~x)|2

and again integrating gives the potential energy due to the interaction with a (prob-
ability based density) cloud of electrons List of topics

W (~r) =
∫ (−e)2

N∑
i=1

|ψi(~x)|2

|~r − ~x|
d3x
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Now solving the Schrödinger equation with W (~r),

(T + V +W )ψi(~x) = Eiψi(~x)

We first need to know the W (~r), but that depends on all the other N solutions

W (~r) =
∫ (−e)2

N∑
i=1

|ψi(~x)|2

|~r − ~x|
d3x

Approximation chain: First we choose some simple approximation, e.g. the hydrogen-
like states, or we might know the states foranother atom. We call it

ψ
(0)
i (~x)

From the set of all N ψ
(0)
i we construct

W (1)(~r) =
∫ e2

N∑
i=1

|ψ(0)
i (~x)|2

|~r − ~x|
d3x

In atomic units the whole Schrödinger equation is(
−1

2
∇2 − Z

r
+W (1)(~r)

)
ψ

(1)
i (~x) = E

(1)
i ψ

(1)
i (~x)
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1. step - choose arbitrary set of ψ(0)
i

ψ
(0)
i (~x) → W (1)(~r) =

∫ N∑
i=1

|ψ(0)
i (~x)|2

|~r − ~x|
d3x (3)

(
−1

2
∇2 − Z

r
+W (1)(~r)

)
ψ

(1)
i (~x) = E

(1)
i ψ

(1)
i (~x)

2. step: take the set of ψ(1)
i from the 1. step

ψ
(1)
i (~x) → W (2)(~r) =

∫ N∑
i=1

|ψ(1)
i (~x)|2

|~r − ~x|
d3x

(
−1

2
∇2 − Z

r
+W (2)(~r)

)
ψ

(2)
i (~x) = E

(2)
i ψ

(2)
i (~x)
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3. step: take the set of ψ(2)
i from the 2. step

ψ
(2)
i (~x) → W (3)(~r) =

∫ N∑
i=1

|ψ(2)
i (~x)|2

|~r − ~x|
d3x

(
−1

2
∇2 − Z

r
+W (3)(~r)

)
ψ

(3)
i (~x) = E

(3)
i ψ

(3)
i (~x)

This chain can continue, until the set of ψ(n)
i produces a potential W (n+1) which

is the same as W (n), which was the one to determine ψ
(n)
i . The potentials and

functions become consistent, hence the name Selfconsistent field.

Criterium for self-consistency: the (n+1)-th solution does not differ from th n-th
solution ∫ N∑

i=1

∣∣∣ |ψ(n+1)
i (~x)|2 − |ψ(n)

i (~x)|2
∣∣∣ d3x < ε (4)

where ε ∝ 10−8 as a typical value.
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9 Ionization potentials of atoms
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Screened potential and Centrifugal barrier
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(
−Z
r

)
+
L(L+ 1)

r2
vs.

(
−Z − 1

r
e−αr − 1

r

)
+
L(L+ 1)

r2
(5)
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Figure 5: Selfconsistent field calculations compared to coulomb - real results

Here we note the position of the turning point - same for both Coulomb and
SCF case. This is true only for the 1s states. List of topics



Figure 6: Hartree Atomic potential

This figure shows results for oxygen with the potential and energies obtained
from a calculation with SCF program
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10 Energy for N-particles

The Slater determinant

ΦHF
a,b,...N (r1, r2, ...rN) →

∣∣∣∣∣∣∣∣
ψa(r1)ψb(r1)......ψN(r1)
ψa(r2)ψb(r2)......ψN(r2)
.......
ψa(rN)ψb(rN)......ψN(rN)

∣∣∣∣∣∣∣∣
Evaluates to 〈

ΦHF
∣∣H ∣∣ΦHF

〉
=

N∑
j=1

〈ψj|T −
Ze2

r
|ψj〉

+
∑

(i,j)pairs

〈ψjψi|
e2

|~r − ~r′|
|ψj ψi 〉

−
∑

(i,j)pairs

〈ψjψi|
e2

|~r − ~r′|
|ψi ψj 〉 (6)

The last term - exchange energy
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For Helium

2

r
1r

2

r
12

+Ze

r

−e
−e

1

[
− h̄2

2me

∇ 2
r1
− Z e2

r1
− h̄2

2me

∇ 2
r2
− Z e2

r2
+

e2

|r1 − r2|

]
Ψ (r1, r2) = E Ψ (r1, r2)

ΦHF
a,b (r1, r2) =

1√
2

∣∣∣∣ ψa(r1) ψb(r1)
ψa(r2) ψb(r2)

∣∣∣∣ =
1√
2

[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)]

and the energy becomes〈
ΦHF

∣∣H ∣∣ΦHF
〉

= 〈ψa|T −
Ze2

r
|ψa〉+ 〈ψb|T −

Ze2

r
|ψb〉

+ 〈ψaψb|
e2

|~r − ~r′|
|ψa ψb 〉 − 〈ψaψb|

e2

|~r − ~r′|
|ψb ψa 〉 (7)

The last term - exchange energy - and there is only one pair.
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For N-particles - the repulsion - we sum over pairs of coordinates N∑
i=1

(
−1

2
∇2

ri
− Ze2

ri

)
+

∑
(i,j)pairs

e2

|~ri − ~rj|

Φ (r1, r2, ...rN) = EΦ (r1, r2, ...rN)

With independent particles - Product function

Φ (r1, r2, ...rN) ≈ ψ1(r1)ψ2(r2)......ψN(rN)

E = 〈Φ|H |Φ〉 →
N∑

j=1

〈ψj|T −
Ze2

r
|ψj〉+

∑
(i,j)pairs

〈ψjψi|
e2

|~r − ~r′|
|ψj ψi 〉

The sum over coordinate pairs becomes sum over pairs of orbitals
This remains true for Slater determinants - but it must be shown.
There are N ! terms in the Slater determinant, the left and right give (N !)2

terms, and there are N(N + 1) coordinate pairs. Thus N(N + 1)(N !)2 terms.
Due to the normalization, this becomes only 2N(N+1) terms, N(N+1)
direct terms and N(N + 1) exchange term
Next slide: Lithium example -with coordinates
Following after: Counting the number of nonzero terms ( Lithium )
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r
1r

2

r
12

rr
3

23
r

r
13

−e
3

−e
1

−e2

+Ze

r

Lithium 6× 6× 3-pair terms[
− h̄2

2me
∇ 2

r1
− Z e2

r1
− h̄2

2me
∇ 2

r2
− Z e2

r2
− h̄2

2me
∇ 2

r3
− Z e2

r3

+
e2

|r1 − r2|
+

e2

|r1 − r3|
+

e2

|r2 − r3|

]
Ψ(r1, r2, r3) = E Ψ(r1, r2, r3)

(8)

1√
3!
{ ψα(1) ψβ(2) ψγ(3) + ψβ(1) ψγ(2) ψα(3) + ψγ(1) ψα(2) ψβ(3)

− ψγ(1) ψβ(2) ψα(3) − ψα(1) ψγ(2) ψβ(3) − ψβ(1) ψα(2) ψγ(3)}
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+
c a b

+
b c a

−
−b a c

−
−c b a

−
a c b

+
a b c

+
a b c

+
c a b

+
a b c

r2 3

e2

r2 3

e2

r2 3

e2

−
b a c

+
a b c r2 3

e2
−

+
a b c r2 3

e2
−

+
a b c r2 3

e2
−

−
−c b a

−
a c b

+
a b c

r2 3

e2

r2 3

e2

r2 3

e2

r2 3

e2

r2 3

e2

r2 3

e2

b c

b c

b c

b c

b c

b c

+
b c a

+
a b c

+ + −

+

+

1

3!

b c

a b

c a

a c

b a

c b

a

a

a

a

a

c

b

b

c

a

a a

Evaluation of the first six terms of the total 36 terms. For each further group
of 6 a very similar procedure would follow. From each six, two remain, totaling
12 nonzero terms List of topics



11 N particles in Slater determinant - Total

Energy Summary

〈Φ| H |Φ〉 =
N∑

j=1

〈ψj|T −
Ze2

r
|ψj〉+

∑
(i,j)pairs

〈ψjψi|
e2

|~r − ~r′|
|ψj ψi 〉

−
∑

(i,j)pairs

〈ψjψi|
e2

|~r − ~r′|
|ψi ψj 〉 (9)

We will use also a more compact notation, instead of orbitals ψi we use orbitals
|α〉, i.e. the index becomes the name of the function

〈Φ| H |Φ〉 =
∑

α

〈α|(T + V )|α〉+
∑

pairs αβ

[〈αβ|Vee|αβ〉 − 〈αβ|Vee|βα〉] (10)
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Schrödinger equation from variational principle: minimize

〈Φ|H |Φ〉
〈Φ | Φ〉

which can be written as minimalization with constraint 〈Φ | Φ〉 = 1 ; minimize

〈Φ|H |Φ〉 − λ 〈Φ | Φ〉 〈Φ | Φ〉 − 1 = 0 λ Lagrange multiplier

Derivative - differential

f(x) → df(x)
dx

→ df =
df(x)
dx

dx

Functional derivative - functional F(f); variation of the functions f(x), δf

F(f) → δF(f)
δf

→ δF =
δF(f)
δf

δf (11)

Variation of 〈Φ|H |Φ〉 is taken (considering the complex nature of |Φ〉 ) as

δ (〈Φ|H |Φ〉) = 〈δΦ|H |Φ〉

With arbitrary variations |δΦ〉

〈δΦ|H |Φ〉 − λ 〈δΦ | Φ〉 −→ H |Φ〉 − λ |Φ〉 = 0 −→ H |Φ〉 = λ |Φ〉

Thus the Lagrange multiplier plays the role of energy eigenvalue List of topics



Deriving Hartree-Fock: For N electrons this energy must be minimized

〈Φ| H |Φ〉 =
∑
α

〈α|(T + V )|α〉+
∑

pairs αβ

[〈αβ|Vee|αβ〉 − 〈αβ|Vee|βα〉] (12)

with respect to the N orbitals |α〉, |β〉, etc. ,

with N conditions 〈α|α〉 = 1, 〈β|β〉 = 1, i.e.

with N Lagrange multipliers εα, εβ .......

〈δΦ(α→ δα)| H |Φ〉 − εα 〈δα | α〉 = 0

Which results in N equations (one for each of the N orbitals)

〈δα|(T + V )|α〉+
∑
β

[〈(δα)β|Vee|αβ〉 − 〈(δα)β|Vee|βα〉]− εα 〈δα | α〉 = 0 (13)

Leaving for a while out the exchange-related term, we can as in prev. slide reduce
this by removing 〈δα|

(T + V )|α〉+
∑
β

[〈β|Vee|β〉] |α〉 − εα | α〉 = 0

which is exactly the Hartree method. The exchange term leads to complications →
List of topics



Reducing the full equation

〈δα|(T + V )|α〉+
∑
β

[〈(δα)β|Vee|αβ〉 − 〈(δα)β|Vee|βα〉]− εα 〈δα | α〉 = 0 (14)

we get the Hartree Fock Equations (N orbitals)

(T + V )|α〉+
∑
β

[〈β|Vee|β〉] |α〉 −
∑
β

[〈β|Vee|α〉] |β〉 − εα | α〉 = 0

The complexity of the exchange term becomes clear when we write it explicitely
with coordinates and integrations.
Hartree Fock Equations: The direct term and the exchange term:

WHF = Wd − Wex

WHFψa(r) =

[
occ∑
b

∫
ψb(x)

e2

|r− x|
ψb(x)d3x

]
ψa(r)−

[
occ∑
b

ψb(r)
∫
ψb(x)

e2

|r− x|
ψa(x)d3x

]
where the exchange potential is nonlocal

Wdψa →Wd(r)ψa(r) Wexψa(r) →
∫
Wex(r,x)ψa(x)d3x
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Hartree-Fock total energy and sum of orbital energies

with a shorthand notation

ϕα(r) → |ϕα〉 → |α〉

Slater determinant
Φα,β,....,ν → |α, β, ...., ν〉

We have started our work with the Hartree-Fock equations by evaluating

〈Φα,β,....,ν |

[
T + V +

∑
pairs ij

e2

|ri − rj|

]
|Φα,β,....,ν〉 (15)

This we have evaluated as

〈Φ| H |Φ〉 =
∑

α

〈α|(T + V )|α〉+
∑

pairs αβ

[〈αβ|Vee|αβ〉 − 〈αβ|Vee|βα〉] (16)

From this expression we have obtained Hartree-Fock equations by the varia-
tional procedure.
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The Hartree-Fock equation can be then written as[
T + V +

∑
β

〈β| e2

|r− r′|
|β〉

]
|α〉 −

∑
β

[
〈β| e2

|r− r′|
|α〉
]
|β〉 = εα |α〉 (17)

We form the matrix element with the given 〈α|

〈α|

[
T + V +

∑
β

〈β| e2

|r− r′|
|β〉

]
|α〉 − 〈α|

[∑
β

〈β| e2

|r− r′|
|α〉

]
|β〉 = εα

(18)
since 〈α|α〉 = 1. This can be rewritten as

εα = 〈α|(T + V )|α〉+
∑
β 6=α

[〈βα|Vee|βα〉 − 〈βα|Vee|αβ〉] (19)

And now we can explore what is the sum of all εα∑
α

εα =
∑

α

〈α|(T + V )|α〉+
∑

α

∑
β 6=α

[〈βα|Vee|βα〉 − 〈βα|Vee|αβ〉] (20)



which we can compare with the above 〈Φ| H |Φ〉

〈Φ| H |Φ〉 =
∑

α

〈α|(T + V )|α〉+
∑

pairs αβ

[〈αβ|Vee|αβ〉 − 〈αβ|Vee|βα〉] (21)

The two expressions are very similar, but they differ in fact by all the interac-
tion term, since it is counted twice in the sum:∑

α

∑
β 6=α

Fαβ = 2
∑

pairs αβ

Fαβ

for any set of objects that are symmetric Fαβ = Fβα

Our objects are symmetric, because they are in fact of the type Hαβ,αβ. The
wavefunctions are antisymmetric, |αβ〉 = −|βα〉.
Thus, surprisingly perhaps

〈Φ| H |Φ〉 6=
∑

α

εα

but as we derived here List of topics

〈Φ| H |Φ〉 =
∑

α

εα −
∑

pairs αβ

[〈αβ|Vee|αβ〉 − 〈αβ|Vee|βα〉] (22)



Evaluation of the repulsion term using the multipole expansion

1

|r1 − r2|
=
∑
LM

4π

2L+ 1

rL
<

rL+1
>

Y ?
LM (r̂1)YLM (r̂2) (23)

where
r< = r1, r> = r2 for |r1| < |r2|
r< = r2, r> = r1 for |r1| > |r2|

Evaluation of the matrix element in general case∫
d3r1

∫
d3r2ψ

?
n1l1m1

(r1)ψ
?
n2l2m2

(r2)
1

|r1 − r2|
ψn1l1m1 (r1)ψn2l2m2 (r2) (24)

is performed separately over the radial and angular parts∫
r2
1dr1

∫
dr̂1

∫
r2
2dr2

∫
dr̂2 R?

n1l1
(r1)Y

?
l1m1

(r̂1)R
?
n2l2

(r2)Y
?
l2m2

(r̂2)

1

|r1 − r2|
Rn1l1(r1)Yl1m1 (r̂1)Rn2l2(r2)Yl2m2 (r̂2)(25)

where dr̂i means the integration over dΩi = sin θidθidϕi. List of topics



The evaluation of general case - angular integrals of three Ylm’s

CL =

∫
Y ?

limi
(θ, ϕ)YLM(θ, ϕ)Ylimi

(θ, ϕ)dΩ (26)

For the case of both s-states, li = 0 mi = 0 only L = 0 M = 0 are non-
zero; The sum reduces to one term. The angular factors give value one, since
the (YL=0M=0)

2 = (4π)−1 cancels the corresponding factor in the multipole
expansion and due to the normalization.
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12 Configuration mixing

Consider the usual:
Hx(x)ϕα(x) = Eαϕα(x)

Hy(y)χβ(y) = Eβχβ(y)

For any Φ(x)

Φ(x) =
∑

cαϕα(x)

For any Ξ(x)

Ξ(y) =
∑

dβχβ(y)

Take now a general Ψ(x, y). First look at y as a parameter, Ψ(x, y0)

Ψ(x, y0) → Φ(x) =
∑

cα(y0)ϕα(x)

for every y0 ; Thus we get a new function of y;

cα(y) =
∑

dβ(α)χβ(y)



Inserting back:

Ψ(x, y) =
∑

dβ(α)χβ(y)ϕα(x)

Or, with a simpler notation

Ψ(x, y) =
∑

dβαχβ(y)ϕα(x)

In the case of Helium, for example, the H(x) and H(y) are identical

and so are the χβ(y) and ϕα(x). This becomes configuration mixing.

Ψ(x, y) =
∑

dβαϕβ(y)ϕα(x)

The coefficients are found by diagonalization.

For three coordinate sets - e.g. for Lithium :

Ψ(x, y, z) =
∑

Dγβαϕ(z)ϕβ(y)ϕα(x)
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END OF THE PRESENTATION
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