to index              2011.09.15 previous lecture note             LECTURE NOTE   2011.09.20           2011.09.22 next lecture note


Comment: First part of the lecture - presentation of the
Physical Optics part.
                                                2 presentations discussed

Plan:
         Pair interaction result in more detail
         Schrödinger equation from variational method
         Variational method - deriving Hartree-Fock Equations 
         Hartree-Fock Equations 
         Total energy and the selfconsistent orbital energies
(not finished)

Hartree and Hartree-Fock - Variational derivation

Detail derivation - counting the nonzero terms (Pair interaction result in more detail)
      1-how-many-nonzero-terms.png

       1-how-many-nonzero-terms.png

Sum over pairs of coordinates is transformed into a sum over pairs of orbitals
      2-pairs-coordinates-TO-pairs-orbitals.png

       2-pairs-coordinates-TO-pairs-orbitals.png

Schrödinger Equation from variational approach - how to do that
      3-Schroedinger_from_variation.png

       3-Schroedinger_from_variation.png

Schrödinger Equation from variational approach - include the normalization
as an extra condition - minimum with a constraint - Lagrange Multiplier
      4-conditional_minimum_variation.png

       4-conditional_minimum_variation.png
( above is an attempt to illustrate how the minimum is moving until it is placed on yhe "condition curve" )


      5-Schroedinger_from_variation.png

       5-Schroedinger_from_variation.png

This is the first attempt to derive Hartree (neglecting exchange terms)  and Hartree Fock (including exchange terms)
      6-Hartree-from-variation-incomplete.png

       6-Hartree-from-variation-incomplete.png
So we start once more with more detail

PART 1 - without considering exchange part
      7-Hartree-from-variation-no-exchange.png

       7-Hartree-from-variation-no-exchange.png

PART 2 - with the exchange part included
 
... the formulae are copied and extended
      8-Hartree-fwith-exchange-variation.png

       8-Hartree-fwith-exchange-variation.png
This is summarized in the following copy from the notes:


      9-Hartree-Fock-variation-summary-nonlocal.png

       9-Hartree-Fock-variation-summary-nonlocal.png

Next time:
      Non-local potential discussion
     Total energy and the selfconsistent orbital energies

     Starting the first part of physical optics


to index              2011.09.15 previous lecture note             LECTURE NOTE   2011.09.20           2011.09.22 next lecture note