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Overview

1. Time dependent quantum mechanics:

two isolated states, contrasted to

one isolated level

energetically embedded in (quasi-) continuum of states

2. derivation and understanding of the transition rate (probability change
per time unit)

3. Time dependent perturbation theory

4. Fermi Golden rule derivation

5. The delta function (often mentioned as energy conservation; that is not
precise).
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6. In contrast to the delta function, the Lorentzian shape; finite line width
(also known as Breit-Wigner formula or shape)

7. Electromagnetic field is an extended (actually continuous) system, there-
fore we must learn how to understeand eigenmodes of large system.
Coupled oscillators transformed to a system of independent, de-coupled
eigenmodes.

8. Any harmonic oscillator can be described by so called creation and ani-
hilation operators. Harmonic oscillator via the algebraic method.

9. Follows quantization of the radiation field; photons

10. Evaluation of the transmissin rate for the emission proces

11. Spontaneous and Stimulated Emission

Go to list of topics
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1 Time dependent Q.M. - Two-well problem

time

|c
1

2(t)|

Figure 1: Top left: Well with 1 bound state; Bottom left: Two wells. System
(particle) placed in a state which is not an eigenstate Right column: Eigen-
states and time oscillations of population

Go to list of topics
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The two eigenstates in each of the isolated wells are '1 and '2.

The static eigenstates of the particle confined to both of the wells are approx-
imated by

 + =
1p
2
('1 + '2)

 � =
1p
2
('1 � '2)

Clearly,

'1 =
1p
2
( + +  �)

'2 =
1p
2
( + �  �)

The states  +, � are eigenstates of the Hamiltonian, but
'1,'2 are not, they are eigenstates for each isolated well.
Go to list of topics
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If at t = 0 the system is brought into the state '1,

 (t = 0) = '1 =
1p
2
( + +  �)

then at any other later time

 (t) =
1p
2

⇣
 +e

iE+t/h̄ +  �e
iE�t/h̄

⌘

This can be rewritten schematically as

 (t) = C(t)
⇣
 + +  �e

i!t

⌘

so that we can see immediately that for

t
n

= n
⇡

!

the  (t
n

) will be a multiple of '1, i.e. concentrated to the left,
for even n, and a multiple of '2, i.e. to the right, for odd n.
At other times there would be a changing distribution between
the two regions.
List of topics 7



time

|c
1

2(t)|

time

|c
1

2(t)|

Figure 2: Above: 2 isolated states in two equal potential wells ; starting in
left well - oscillations. Below: Many states in two potential wells; starting
in left well - decay Go to list of topics
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time

|c
1

2(t)|
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2 Time-Dependent Schrödinger Equation

Go to list of topics

The time-dependent Schrödinger equation

i h̄
@

@t
|  (t) i = H(t) |  (t) i (3)

is very often solved via a transformation to the matrix formulation. The matrix
formulation arises from expansion of the unknown wavefunction |  (t) i in a
set of basis functions | �

i

i , much in analogy with Fourier series or expansions
using orthogonal polynomials

|  (t) i =
X

↵
i

(t) | �
i

i (4)

The unknown quantities to be found are the expansion coe�cients, which form
a vector. In this formulation, the time-dependent Schrödinger equation (eq.
(3) above) is replaced by a set of coupled di↵erential equations.
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The system of coupled equations is conveniently expressed by matrix notation

i h̄
d

dt

2

6664

↵1

↵2

.
↵
n

3

7775 =

2

6664

H11(t) H12(t) ... H1n(t)
H21(t) H22(t) ... H2n(t)
... ... ... ...

H
n1(t) H

n2(t) ... H
nn

(t)

3

7775

2

6664

↵1

↵2

.
↵
n

3

7775

where
H

ij

(t) = h �
i

| H(t) | �
j

i
This can also be written as

i h̄

2

6664

↵̇1

↵̇2

.
↵̇
n

3

7775 =

2

6664

H11(t) H12(t) ... H1n(t)
H21(t) H22(t) ... H2n(t)
... ... ... ...

H
n1(t) H

n2(t) ... H
nn

(t)

3

7775

2

6664

↵1

↵2

.
↵
n

3

7775

which is a short-hand notation for

i h̄ ↵̇
k

=
X

i

H
ki

(t) ↵
i

Go to list of topics

11



3 Perturbation theory for the Time-dependent
Schrödinger Equation

Go to list of topics

To apply the perturbation theory, we must identify the small perturbation
term. Usually the Hamiltonian H(t), di↵ers only slightly from well known
Hamiltonian H0 so that the perturbation H 0(t)

H(t) = H0 + H 0(t) (5)

If the perturbation H 0(t) were not present, and chosing then as | �
k

i the
eigensolutions of

H0 | �
k

i = E
k

| �
k

i (6)

the matrix for H(t) ! H0 would be diagonal with the eigenenergies E
k

on the
diagonal. The solutions for the the ↵

k

(t) would be then very simply

↵
k

(t) = e�iE

k

t/h̄ (7)

and for usual stationary states only one of the ↵
k

(t) would be di↵erent from
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zero. Since the probability P
a

of the system being in a state a is

P
a

(t) = |↵
a

(t)|2

it means that the system with probability 1 is in that state a, and with 0 in
any other state, i.e.

|↵
k

(t = 0)| = �
ka

(8)

If the perturbation really is small, the |↵
a

(t)| remains ⇡ 1 for all times t, while
all others remain close to zero.

We will thus use the so called perturbation theory, an approximate method to
solve the system of equations

i h̄ ↵̇
k

=
X

i

H
ki

(t) ↵
i

while keeping
|↵

a

(t)| ⇡ 1 �! ↵
a

(t) = 1

and ”preserving” Go to list of topics

|↵
k

(t = 0)| = �
ka

�! |↵
k

(t > 0)| ⇡ 0 for k 6= a
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To simplify the notation we make a substitution ↵
k

(t) ! c
k

(t) exp(�iEk

h̄

t).
Inserting this into the last equation

i h̄ ↵̇
k

=
X

i

H
ki

(t) ↵
i

we get (using d/dt(c exp(�iEt)) = ċ exp(�iEt) +�iE c exp(�iEt) )

(i h̄ ċ
k

+ E
k

c
k

) exp(�i
E

k

h̄
t) =

X

i

H0
ki

c
i

exp(�i
E

i

h̄
t) +

X

i

H
ki

(t) c
i

exp(�i
E

i

h̄
t)

With H0
ki

= E
k

�
ki

!
ka

=
E

k

� E
a

h̄
(9)

i h̄ ċ
k

+ E
k

c
k

= E
k

c
k

+
X

i

H 0
ki

(t) c
i

exp(i
E

k

� E
i

h̄
t)

i h̄

2

6664

ċ1
ċ2
.
ċ
n

3

7775 =

2

6664

H 0
11(t) H 0

12(t)e
i!12t ... H 0

1n(t)e
i!13t

H 0
21(t)e

i!21t H 0
22(t) ... H 0

2n(t)e
i!2nt

... ... ... ...
H 0

n1(t)e
i!

n1t H 0
n2(t)e

i!

n2t ... H 0
nn

(t)

3

7775

2

6664

c1
c2
.
c
n

3

7775
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Taking the perturbation theory assumptions

|↵
a

(t)| ⇡ 1 |↵
k 6=a

(t > 0)| ⇡ 0 �! |↵
k

(t = 0)| = �
ka

the above matrix system of coupled equations decouple - we get independent
equations for each c

k

(t)

i h̄
d

dt
c
k

(t) = H
ka

(t)ei!ka

t (10)

where we made a substitution ↵
k

(t) ! c
k

(t) exp(�iEk

h̄

t).

We say that the original assumption about the coe�cients is a ’zero-th order

approximation, thus the superscript (0),

c
(0)
k

= �
ka

(�(k�a)) (11)

while the above equation is the first order, thus we rewrite it

ċ
(1)
b

=
1

ih̄
H 0e(i!ba

t) (12)

A detailed description of perturbation theory pictures it as an iterative process.
Each order is obtained by applying the preceeding order of the approximation.
Go to list of topics
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Equation of the form ċ = f(t) is easily solved by integration

c
(1)
b

(t) =
1

ih̄

Z
t

t

b

H 0e(i!ba

t

0)dt0 H 0(t) ⌘ H 0 (13)

So the transition probability for going from a state ’a’ to a state ’b’ is defined
like Go to list of topics

P
ba

(t) = |c(1)
b

(t)|2 (14)

Now we evaluate the integral in eq.(13), which is elementary for a constant
potential: Go to list of topics

c
(1)
b

(t) = H 0
ba

1

ih̄

Z
t

t0

ei!ba

tdt ; t0 = 0

= H 0
ba

1

ih̄

1

i!
ba

(ei!ba

t � 1)

= � H 0
ba

h̄!
ba

(ei!ba

t � 1)

(15)
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and rearrange (ei!t � 1) (in the following: !
ba

�! ! )

e(i!t) � 1 = e(i
!t

2 )
h
e(i

!t

2 ) � e(�i

!t

2 )
i

= 2ie(i
!t

2 ) sin
!t

2

Inserting this back into eq.(13)

c
(1)
b

(t) =
1

ih̄

Z
t

t0

H 0ei!t
0
dt0 (16)

|c(1)
b

(t)|2 = 1

h̄2 |H 0
ba

|2F (t,!) F (t,!) = 4 · sin
2 !t

2

!2
(17)

where the phase factor reduces to its absolute value one.

Go to list of topics
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4 Dirac delta-function

Go to list of topics

It is easy to find that the ’F’ is a function of t and !, and for each time ’t’ it
is equal to

F (t,!) = 4 · sin
2 !t

2

!2

= 4 · t
2

4
· sin

2 !t

2
!

2
t

2

4

= t2 · sin
2 x

x2
; x =

!t

2
(18)

It can be seen that the function F (!, t) for larger and larger t approaches the
shape of the Dirac delta-function, (see the drawing). (Animated on the www)
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F (!, t) = 4 · sin
2 !t

2

!2
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Trying to integrate the function ’F’ over ! shows this

t2
Z 1

�1

sin2 x

x2
d! = 2t

Z 1

�1

sin2 x

x2
· d(!t

2
)

= 2t
Z 1

�1

sin2 x

x2
dx

= 2⇡t

(19)

that for large t it really behaves as

F (t,!) =
sin2 !t

2

(!2 )
2

�! 2⇡t�(!) (20)

The summation over all the states used for the expansion can be assumed to be
replaced by the integration over ! or the energy E = h̄!. This however needs
to determine the factor ⇢(E) which accounts for the density of states. Since
the ’F’ approaches delta-function, we only need the density of states close to
the final state b:
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P̄
ba

(t) =
1

h̄2

Z
E

b

+⌘

E

b

�⌘

|H 0
ba

|2F (t,!)⇢(E)dE (21)

and also integration over d! gives

Z
�(!)d! =

Z
�(E)dE

�(!) = �(E) · dE
d!

= h̄�(E � E
b

)

(22)

Go to list of topics
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5 Fermi Golden Rule

Go to list of topics

The final result for the probability of populating the group of states close to
the final state | b > is

P
ba

(t) =
1

h̄

Z
E

b

+⌘

E

b

�⌘

2⇡t|H 0
ba

|2�(E � E
b

)⇢(E)dE

=
2⇡

h̄
t| < b|H 0|a > |2⇢(E

b

) (23)

The derivation of the above formula has been based on the assumption of a
small perturbation. It shows that the probability of transition to the state b
or states close to b increases linearly with time. Thus the rate of probability
change per time is given by

dP
ba

dt
= W

ba

=
2⇡

h̄
| < b|H 0|a > |2⇢(E

b

) (24)

This result is known as Golden Rule formula or Fermi Golden Rule.
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6 Constant rate and exponential decay

Go to list of topics

Fermi golden rule gives a constant rate

dP
f

dt
= w (25)

or if we consider the probability decrease to find the system in the original
state,

dP
i

dt
= �w (26)

If this, instead of a definition, is taken as a di↵erential equation

P
i

= P0 � wt (27)

can quickly become negative.However, one can quite easily realize that the
correct di↵erential equation must be

dP
i

dt
= �wP

i

(28)
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since the loss of probability must be proportional to ’how much is left’, i.e. the
P
i

itself.It can also be guessed from the di↵erential equations of Q.M. (leading
to thedPf

dt

) , since they contained the amplitude, which we replaced by 1.

The last di↵erential equation leads to the well known exponential decay, since
its solution is

P
i

= e�wt (29)

since P
i

(t = 0) = 1

Go to list of topics
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7 Line width from exponential decay

Go to list of topics

In the equation (10) the expansion coe�cient of the initial state ↵0(t) ! 1 for
all times leads to the delta function for energy (frequency). In order to take
into account the flow of probability from the initial state 0, the relation

↵
k

(t) = �
ka

when working with the time dependent problem must be changed to

|↵
k

(t)| = �
ka

exp(�w

2
t)

where w is the constant rate factor obtained in the perturbation theory.

If we take into account the result of previous section 6, we have |c0(t)| !
exp(�wt/2). Inserting this into equation (10), the integrals can still be per-
formed, but the expressions which were found to converge to the �-function in
frequency (energy) for time going to infinity are not obtained. The term

Z
V
ba

ei!ba

tdt

26



leading to

�V
ba

1

!
ba

(ei!ba

t � 1)

which has been shown to lead to �-function like behaviour when integrated
over ! is now replaced by

ei(!�!

ba

)te�wt/2 � 1

i(! � !
ba

)� w

2

at large times t the factor e�wt/2 �! 0 and this leads to
�����

1

i(! � !
ba

)� w

2

�����

2

=
1

(! � !
ba

)2 + 1
4w

2

The rate, which has the dimension of frequency becomes the energy width

� = h̄w

when multiplied by h̄. the so called Lorentz shape of the line,

I(E) ⇡ I0

⇣
�
2

⌘2

(E � E0)
2 +

⇣
�
2

⌘2 (30)
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Thus a more realistic treatment than the perturbation theory with constant
decay rate leads to the natural width of the energy spectrum of the ejeced
photons as observed. This behaviour has been illustrated in our Golden Rule
Simulator program Go to list of topics
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8 Generally on quantum treatment of extended
systems - fields.

Go to list of topics

The system to be considered consists of an atom and the electromagnetic field.

The field has in principle infinitely many degrees of freedom, i.e. the values of
field variables in each point of space.

The electromagnetic field can be treated by wave equations, it is thus a sort
of a harmonic system. The energy of a finite harmonic system can always
be transformed to a sum of independent harmonic oscillators, each of them is
in fact an eigenmode.

Each harmonic oscillator can be then described using the equations for har-
monic oscillator, with the algebraic method and number of quanta states - The
creation and annihilation operators - click 10.

The normal modes or eigenmodes for a general harmonic system are discussed
in the section 9.
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The prescription

1. identify the eigenmodes

2. quantize each of the modes as independent harmonic oscillator

3. use quanta of eigenmodes

4. express the general coordinates of the system using the eigenmode co-
ordinates (inverse transformations to those discussed in section 9. Each
coordinate �

i

will then be replaced by its combination of the creation
and annihilation operators as discussed in section 10.

Go to list of topics
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9 Normal Coordinates for coupled harmonic
vibrations.

Go to list of topics

Transformation to normal coordinates can be described as follows:

Take the total energy, x represents the vector of all coordinates, xT represents
the transposed vctor, M is the mass matrix, V is the matrix which gives the
potential energy, including the couplings.

Note that the mass matrix is written in a very general form, most often this
matrix would be diagonal.

E =
1

2
ẋTMẋ +

1

2
xTVx

First we transform the kinetic energy to a ”spherical” form
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1

2
ẋTMẋ =

1

2
⌘̇TSTMS⌘̇ =

1

2
⌘̇T⌘̇

This transformation does not conserve the lengths. The N-dimensional ellip-
soid is transformed to an N-dim. sphere.

STMS = 1

If M
ij

= mj�ij, it is quite easy to find S
ij

= mj
�1/2�ij, Transformation S

simplifies the kinetic energy, but the potential remains complicated. Therefore
we use one more, from ⌘ to �,

1

2
xTVx =

1

2
⌘TSTVS⌘ =

1

2
�TU�1STVSU�

Transformation ⌘ = U� is a simple rotation obtained by diagonalizing the
matrix of potential energy: Go to list of topics

⇣
U�1STVSU

⌘

ij
= ⌦2

j �ij = Wij
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Therefore we took U�1 = UT . We can see that the ” length ” is conserved.

1

2
⌘̇T ⌘̇ =

1

2
�̇TU�1U�̇ =

1

2
�̇T �̇

E =
1

2
ẋTMẋ +

1

2
xTVx =

1

2
�̇T�̇+

1

2
�TW�

This expression however is a sum over the new mutually independent degrees
of freedom, since W is diagonal.

1

2
�̇T �̇+

1

2
�TW� =

NX

i=1

✓
1

2
�̇2
i +

1

2
⌦2

i �
2
i

◆

Summary: for any type of coupled oscillations normal modes or eigenmodes

can be found by linear transformations (diagonalization)

NX

i=1

1

2
miẋ

2
i +

1

2

NX

i,j=1

Vijxixj �!
NX

i=1

✓
1

2
�̇2
i +

1

2
⌦2

i �
2
i

◆
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Example Go to list of topics

A string of balls of mass m connected by springs of equal spring constant
is described by displacements u

i

. We can label the displacements u
i

= u(x
i

)
where x

i

is the equilibrium position of the i-th ball. In the limit of infinitisemal
small balls and short springs this would then lead to a ”wave equations” for a
continuous elastic string, with continuously observed displacement u(x).

The total energy is:

1

2

X

i

m (u̇(x
i

))2 +
1

2
k
X

i

(u(x
i

)� u(x
i

+ 1))2 +
1

2
ku(x1)

2 +
1

2
ku(x

N

)2

The last two terms represent the fixed end springs. The matrix M is simply
a diagonal matrix with m as all diagonal elements. The matrix V is a band
matrix (below).

The transformation from u(x
i

) to �
i

can also be reversed. The reversed trans-
formation in this case simply consists of eigenvectors of the matrix V, so that
each of the eigenmodes is simply given by a function of time

�
k

(t) = �
k0e

i⌦
k

t
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where �
k0 is the amplitude, and the actual displacements for the k-th mode

can be written as
u
k

(x
i

) = Sk

i

�
k

(t) = Sk

i

�
k0e

i⌦
k

t

where Sk

i

is the i-th component of the k-th eigenmode with the frequency ⌦
k

The matrix V has the form
2

66666666666664

+2 �1 0 0 0 ... 0
�1 +2 �1 0 0 ... 0
0 �1 +2 �1 0 ... 0
0 0 �1 +2 �1 ... 0
0 ... ... ... ... ... ...
0 ... ... ... +2 �1 0
0 ... ... ... �1 +2 �1
0 ... ... ... 0 �1 +2

3

77777777777775

The eigenvectors - giving the eigenmodes - are eigenvectors of this band matrix.
The modes are ”standing waves”, in the string limit. For infinite system -
traveling waves. leads to Fourier expansions for fields ) see (link) A(r)
expressed in eigenmodes Go to list of topics
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Figure 3: Components of eigenmodes at positions x
i

. For N = 20 first and
second node, fo N = 100 nodes 1,2, and 6. Go to list of topics
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10 Algebraic Method for Harmonic Oscilla-
tor.

Go to list of topics

In this section we show how one can work with the harmonic oscillator intro-
ducing so called ladder operators which move from state to state, the states
being separated by the same ’quantum of energy’.

The classical hamiltonian can be transformed:

1

2m
p2 +

m!2

2
q2 transforms to

h̄!

2

⇣
P 2 +Q2

⌘

P =

s
1

h̄m!
p Q =

r
m!

h̄
q

With this the commutator
[ q, p ] = ih̄

becomes
[Q,P ] = i
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This simplifies the equation and brings it into a form where the energy is
expressed in h̄!.

The main transformation, however, is to go over to linear combinations of P
and Q

a =
1p
2
Q +

ip
2
P and a+ =

1p
2
Q � ip

2
P

By a very simple algebra we find that for their commutator
h
a, a+

i
= 1

and the energy is transferred to Go to list of topics

h̄!

2

⇣
P 2 +Q2

⌘
! h̄!

2

⇣
a a+ + a+a

⌘

Using the commutator a a+ � a+a = 1 we finally get

H = h̄! a+a +
h̄!

2
= h̄! N +

h̄!

2
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where we already include that

N = a+a

will be a number operator.

Why number? Let us play with [ a, a+ ] = 1 or alternatively a a+ � a+a = 1
and the operator N . We quickly derive that

h
N, a+

i
= a+ and [N, a ] = �a

This is done simply by writing out Go to list of topics
h
N, a+

i
= Na+�a+N = (a+a) a+�a+(a+a) = a+(a a+�a+a) = a+

h
a, a+

i
= a+

Since H = h̄! N + h̄!

2 we also have
h
H, a+

i
= h̄! a+ and [H, a ] = � h̄! a

These are the last equations which bring the physical interpretation.

If there is a Q.M. state  (q) ! | i such that

H | i = E | i
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then

H (a | i ) = a H | i � h̄! a |  i = a E | i � h̄! a |  i = (E � h̄! ) (a | i )
that means that (a | i ) is also an eigenstate. It has energy lower by h̄! .
This we can continue again and again, getting eigenstates for

E � h̄! , E � 2 h̄! , E � 3 h̄! , E � 4 h̄! , E � 5h̄! .......

Since this cannot go on infinitely, we get finally a state such that

a | 0 i = 0

We quickly verify that this state has Go to list of topics

E0 =
h̄!

2

further that the same thing is possible with a+ only with opposite sign, so that
we get energies

E0 , E0 + h̄! , E0 + 2 h̄! , E0 + 3 h̄! , E0 + 4 h̄! , E0 + 5h̄! .......
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Each of the eigenstates is an eigenstate of both H and N with obvious number
of quanta. Therefore we call a+ and a creation and annihilation operators.
They make states with one more ore one less quantum h̄!

We can complete this treatment by a complete solution for the wavefunction:

a | 0 i = 0 a =
1p
2
(Q + i P ) P = �i

@

@Q

Thus, writing | 0 i �!  0(Q)

a | 0 i = 0 �!
 

Q +
@

@Q

!

 0(Q) = 0

The solution of 1. order di↵erential eq. to the left is easy

 0(Q) = C0 e�Q

2
/2

and using the expression for a+ and the | 
n

i Go to list of topics

 1(Q) = C1

 

Q � @

@Q

!

e�Q

2
/2  2(Q) = C2

 

Q � @

@Q

! 

Q � @

@Q

!

e�Q

2
/2

and n times for general | 
n

i. cf. recursion relations for Hermite polynomials.
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11 Electromagnetic fields

Go to list of topics

In atomic physics we prefer to work in Gaussian units, where the strengths of
the fields have the same physical dimension. In vacuum D = E and H = B

The classical electromagnetic field is described by electric and magnetic field
vectors E and B , which satisfy Maxwell’s equations:

r · E = 4⇡⇢ (31)

r ·B = 0 (32)

r⇥ E = �1

c

@B

@t
(33)

r⇥B =
1

c

 
@E

@t
+ 4⇡J

!

(34)
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The electric field E and magnetic field B can be generated from scalar and
vector potentials � and A by

E(r, t) = �r�(r, t)� 1

c

@

@t
A(r, t) (35)

B(r, t) = r⇥A(r, t) (36)

The potentials are not unique, observable field strengths E(r, t) and B(r, t)
remain the same when the potentials are changed by

A(r, t) ! A(r, t) +r�(r, t)

�(r, t) ! �(r, t)� @�(r, t)

@t

where �(r, t) is any scalar field. Go to list of topics

This property is called gauge invariance. It allows us to choose A so that

r ·A = 0 (37)
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When A satisfies this condition, we are using the ”Coulomb Gauge”. From
Maxwell’s equations (without sources) we can show that A satisfies the wave
equation

r2A� 1

c2
@2A

@t2
= 0 (38)

Also �, B and E satisfy wave equations, but for radiation problems in empty
space (vacuum) we have the potential � = 0 since there are no charges there.

The energy stored or contained in the electromagnetic field is given by the
formula

H
fie`d

=
1

8⇡

Z
d3r (E · E+B ·B) (39)

Eigenmode in an ”infinite box” is a plane wave solution of equations (37) and
(38) with angular frequency ! (i.e. the frequency ⌫ = !/2⇡) is given by the
vector potential A Go to list of topics

A(!; r, t) = 2A0(!) cos(k · r� !t+ �
!

)

= A0(!) [exp[i(k · r� !t+ �
!

)] + c.c.] (40)
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12 The Quantum Theory of Electromagnetic
Field

Go to list of topics

The energy stored or contained in the electromagnetic field is given by the
formula

H
fie`d

=
1

8⇡

Z
d3r (E · E+B ·B) (41)

Gaussian units, the electric and magnetic field strengths have the same physical
dimension.

The energy of extended system can be written as a sum of energies in eigen-
modes. The eigenmodes in ”infinite box” are the plane waves.

The sum over plane waves gives the form of Fourier series - for the operator of
the vector potential A(r)

A(r) =
X

k�

s
2⇡h̄c2

V !
k

bek�
⇣
ak�e

ik·r + a+k�e
�ik·r

⌘
(42)

The sum includes all the possible values of the propagation vector k and also
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the two possible polarizations � = 1, 2.In a finite box the boundary conditions
lead to quantization of wave vectors k as discussed in ”Density of states”
section. Periodicity on the box walls gives allowed values (n

x

, n
y

, n
z

)2⇡
L

where
n
i

are integers.

The dimensional factor s
2⇡h̄c2

V !
k

is determined by the necessity that Go to list of topics

h�|H
rad

|�i = h�|
Z

V

H dV |�i = h�|
Z

V

(E2 +B2)

8⇡
dV |�i (43)

must give the total energy of the electromagnetic field inside the box, when
written as sum over quantized eigenmodes

h�|H
rad

|�i = h�|X
k�

Hk� |�i = h�|X
k�

h̄!
k

a+k�ak� |�i (44)

This is done using

B(r) = i k⇥A(r) E(r) = i
!
k

c
A(r) !

k

= kc

46



The operators ak�, a
+
k� and Nk� are ”annihilation”, is called ”creation” and

number operators for photons in each eigenmode.

One ignores the term 1
2

P
k� h̄!k

that refers to ”zero point energy” (infinite
number of modes - Casimir e↵ect).

The state of the field can be written as a direct product of the vector states
for each of the oscillators Go to list of topics

|�i ! |· · ·nk� · · ·nk0
�

0 · · ·i = |· · ·i · · · |nk�i · · · |nk0
�

0i · · · (45)

For such state vectors:

ak� |· · ·nk� · · ·nk0
�

0 · · ·i = p
nk� |· · ·nk� � 1 · · ·nk0

�

0 · · ·i (46)

a+k� |· · ·nk� · · ·nk0
�

0 · · ·i = p
nk� + 1 |· · ·nk� + 1 · · ·nk0

�

0 · · ·i (47)

Nk� |· · ·nk� · · ·nk0
�

0 · · ·i = nk� |· · ·nk� · · ·nk0
�

0 · · ·i (48)

Hk� |· · ·nk� · · ·nk0
�

0 · · ·i = h̄!
k

nk� |· · ·nk� · · ·nk0
�

0 · · ·i (49)

where

nk� = 0, 1, 2, 3, . . . ,1
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13 Density of States

Go to list of topics

We consider the electromagnetic field enclosed in a box with volume V . For a
finite volume there is a discrete number of modes satisfying the imposed bound-
ary conditions. Therefore the sum over final states is an ordinary sum. As this
volume approaches infinite size, the summation over k, will be approaching an
integral.

The density of states factor is found from performing such a limiting process,
using following relations.

The summation will be replaced by an integral
X

k

�!
Z
⇢(k) dk (50)

⇢(k) is the density of states in the K-space.

The allowed discrete values of k are obtained by combinations of components

k(n
x

)
x

=
2⇡

L
n
x

k(n
y

)
y

=
2⇡

L
n
y

k(n
z

)
z

=
2⇡

L
n
z

(51)
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where the numbers n
x

,n
y

,n
z

are positive and negative integers. It means that
each of the allowed vectors k occupies a small volume of the K-space

�k
x

�k
y

�k
z

=
✓
2⇡

L

◆3

=
(2⇡)3

V
(52)

The density of states in the K-space is thus a constant (i.e. one per the above
small k-space volume), and the above relation can be written as

X

k

�! V

(2⇡)3

Z
dk (53)

Since the derivation of the golden rule assumes integration over frequencies, or
energies, we shall transform this integral over momenta (i.e. wave numbers k)
to integral over energy, Go to list of topics

V

(2⇡)3

Z
dk �!

Z
⇢(E)dE

V

(2⇡)3

Z
dk =

V

(2⇡)3

Z

⌦
k

d⌦
k

Z
k2 dk =

Z

⌦
k

Z "
V

(2⇡)3
k2 dk

dE
d⌦

k

#

dE (54)
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so that the ⇢(E) can be identified as

V

(2⇡)3
k2 dk

dE

Z

⌦
k

d⌦
k

(55)

If the processes depend on the direction of the wave vector, which is true
in photon emission case, we must keep the angular information inside of the
density of states, and perform the angular integration afterwards.

We must now evaluate the above density of states in terms of energy only,
using

k =
!

c
E = h̄kc

Setting these relations of k and E, we obtain the expression for ⇢(E)

⇢(E) =
V

(2⇡)3
· E2

(h̄c)3
d⌦

k

=
V

(2⇡)3
· 1
h̄
· !

2

c3
d⌦

k

(56)

Go to list of topics
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14 Charged Particle In Electromagnetic Field

In classical mechanics Newton equations with the electromagnetic Lorentz force

mr̈ = q

✓
�r�+�1

c

@A

@t
+

1

c
v ⇥ [r⇥A]

◆

can be derived from a surprisingly simple Lagrange function

L(r, ṙ, t) =
1

2
m v2 � q�(r, t) +

q

c
v ·A(r, t)

From this Lagrange function follows the Hamiltonian for a particle of charge q and
mass m

H =
1

2m
(p� q

c
A)2 + q� (57)

where p is the generalized momentum of the particle. For the electron in a hydro-
genic atom q = �e. The electrostatic potential is � = �Ze

2

r

between the electron
and the nucleus. The radiation field which perturbs the atom is described in terms
of a vector potential A alone
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The time dependent Schrödinger equation for a hydrogenic atom in an elec-
tromagnetic field then reads

ih̄
@

@t
 (r, t) =

"
1

2m
(�ih̄r+

e

c
A)2 � Ze2

r

#

 (r, t) (58)

where we have written p = �ih̄r . Because of the gauge condition r ·A = 0,
we have

r · (A ) = A · (r ) + (r ·A)
| {z }

0

 = A · (r ) (59)

so that r and A e↵ectively commute. Then

ih̄
@

@t
 (r, t) =

"

� h̄2

2m
r2 � Ze2

r
� ih̄e

mc
A ·r+

e2

2mc2
A2

#

 (r, t) (60)

In ”weak field case” the term with A2 is small compared
with the linear term A .

Go to list of topics
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15 The Hamiltonian of Interaction

Go to list of topics

Now, we study the interaction between radiation and atomic system. In this
case the total Hamiltonian of the system is written as

H = H
atom

+H
rad

+H
I

= H0 +H
I

(61)

H
atom

is the Hamiltonian of the atomic system and H
rad

is the Hamiltonian
of the free radiation field. H

I

shows the Hamiltonian of the interaction e↵ect
between two previous systems. By replacing H

I

, we replace p by p+ e/cA in
H

atom

we can construct H
I

as

H
I

=
e

mc
p ·A+

e2

2mc2
A2 H

I

! e

mc
p ·A (62)

As we see the first term of the eq.(62), is proportional to A that contributes in
the transitions involving the emission or absorption of a single photon and the
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next term that’s proportional to A2 contributes in the transitions involving
the emission or absorption of two photons. We can also see that the first term;
A; contains just one creation or annihilation operator, but A2 contains the
terms as : ak�ak� , a+k�a

+
k� , ak�a

+
k� , a+k�ak� which correspond to absorption

of two photons; emission of two photons. Here we study the first term. The
probability for a transition involving two photons contains e4 while this prob-
ability for one photon is proportional to e2. This extra power of e2 will lead
to one more power of ↵ ' 1/137.

The eigenfunctions of the unperturbed Hamiltonian H� are direct products of
the atomic and radiation wave functions

 
atom

 
rad

= | 
a

;n1, n2, . . . , ni

, . . .i (63)

where  
a

is the wave function of the atomic Hamiltonian, n
i

⌘ nk
i

�

i

is the
wave function describing the mode k

i

�
i

in the radiation field.

Go to list of topics

54



16 Emission of Radiation By an Excited Atom:

Go to list of topics

Here we study the emission of a single photon by an excited atom, and we use
the time-dependent perturbation theory to find the transition probability for
atom.If we consider |ii as the initial state and |fi as the final state, then the
probability per unit time for a transition by the emission of a single photon
from the initial to final state is given by

W
i!f

(k,�) =
2⇡

h̄
|hf |H

I

|ii|2 ⇢(E
f

) (64)

where h̄k denotes the momentum and � denotes the polarization, and H
I

is
the perturbing Hamiltonian. This equation is known as Fermi’s Golden Rule.

The perturbing Hamiltonian for this process is

H
I

= � e

mc
p ·A (65)
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by referring to the eq.(42), we have

H
I

= � e

mc

X

k�

s
2⇡h̄c2

V !
k

p · bek�
⇣
ak�e

ik·r + a+k�e
�ik·r

⌘
(66)

The initial and final states |ii; |fi;, i.e. the unperturbed wavefunctions before
and after the emission of one photon is

|ii = |ai |· · ·nk� · · ·i (67)

|fi = |bi |· · ·nk� + 1 · · ·i (68)

The energy di↵erence of these two states is

E
f

� E
i

= (E
b

+ nk�h̄!k

+ h̄!
k

)� (E
a

+ nk�h̄!k

) = E
b

� E
a

+ h̄!
k

(69)

For spontaneous emission, no photon is present in the initial state: nk ! 0
and (nk + 1) ! 1

Go to list of topics
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17 The matrix element reduction

Go to list of topics

Inserting the final and initial states and the Hamiltonian into the matrix ele-
ment, we obtain

hf |H
I

| ii = � e

mc

s
2⇡h̄c2

V !
k

D
b
���p · bek�e�ik·r

��� a
Ep

nk� + 1 (70)

For spontaneous emission, no photon is present in the initial state: nk ! 0
and (nk + 1) ! 1

By considering the eq.(70) we can transform the Golden Rule formula eq.(64)
for spontaneous emission

W
i!f

(k,�) =
2⇡

h̄

✓
e

mc

◆2
 
2⇡h̄c2

V !
k

! ���
D
b
���p · bek�e�ik·r

��� a
E���

2
⇢(E

f

) (71)
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a+A
εk
Σ

k
εk

h 2cπ2
Vωk

i ke r ε
i ke r a+h 2cπ2

Vωpp A. Σ .

GSϕ εp . i ke r ϕEXC 0photona+ωh

m c
e

GSϕ ωh 0photon ϕEXC

GSϕ ωh ε
i ke r a+h 2cπ2

VωpΣ . 0photon ϕEXC
m c

e

h 2cπ2
Vωm c

e

Ψfin Ψinit
p  A.

m c
e

m c
e

.p  A

.
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18 Dipole Approximation
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An important simplification is obtained by applying the so called dipole ap-
proximation, considering the case kr ⌧ 1. This means that the wavelength of
the emitted photon is much larger than atomic dimension. The electric dipole
approximation is obtained by replacing, to a good approximation,

eik·r ⇡ 1

i.e.
hb
���pe�ik·r

��� ai ! hb |p| ai
This approximation is limited by these requirements:

�� 1Å and h̄! ⌧ 10 keV.

Here we also derive the relation between matrix element of momentum and
coordinate using the following commutation relations

h
r, p2

i
= p [r, p] + [r, p] p = 2ih̄p (72)
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[r, H
atom

] =
ih̄

m
p (73)

we change the matrix element of the momentum to a matrix element of the
special coordinate of the atomic electron

hb |p | ai =
m

ih̄
hb |[r, H

atom

]| ai

=
im

h̄
(E

a

� E
b

) hb | r | ai
= i m !

ab

hb | r | ai (74)

In summary,
hb
��� p e�ik·r

��� ai �! i m !
ab

hb | r | ai

Go to list of topics
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19 Detailed Evaluation of Emission rate

Go to list of topics

For spontaneous emissionis that, we first perform the summation over the two
possible polarizations by considering the following figure, fig.4. The figure
shows that placing for a moment the z-axis in the direction of the wavevector
k, the directions of the polarization vectors bek�, for � = 1, 2 can then define
the x- and y-axes, so that

X

�=1,2

���
D
b
���p · bek�e�ik·r

��� a
E���

2
=

���
D
b
���pe�ik·r

��� a
E���

2
(sin2✓cos2�+ sin2✓sin2�)

=
���
D
b
���pe�ik·r

��� a
E���

2
(sin2✓) (75)

where the angle ✓ is the angle between the wave number k and the momen-
tum vector of the electron (if it were classically defined). Conversely, after
performing this reduction, we can think that our z-axis is always placed along
the direction of p, so that we can identify the angle ✓ with the polar angle of
the photon emission to be integrated over.
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e
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X

Y

K P

K1
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Figure 4: As the z-axis is for the moment in the direction of the wavevector k, the directions
of the polarization vectors bek� (perpendicular to each other and to the vector k, can then
define the x- and y-axes. The angle ✓ is the angle between the wave number k and the
momentum vector of the electron p.
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By using the eq.(55) and dipole approximation discussed above, we can eval-
uate the integral over all emission angles ⌦

k

,

✓
1

⌧

◆

a!b

=
e2

2⇡m2

!
k

h̄c3

Z
|hb |p | ai|2 sin2✓ d⌦

k

(76)

where the integration angular variables are

d⌦
k

= sin ✓ d✓ d� (77)

Note that in the above evaluations the volume V in ⇢[E
f

] cancels the volume
in the field normalization factor

s
2⇡h̄c2

V !
k

in equation (42).

The last equation eq.(76) then becomes Go to list of topics

✓
1

⌧

◆

a!b

=
e2

2⇡m2

!
k

h̄c3
|hb|p |ai|2

Z
d�

Z
sin2 ✓ sin ✓ d✓ (78)
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The angular integration is easily seen to yield a factor 8⇡/3, so that finally
✓
1

⌧

◆

a!b

=
4!

ab

e2

3h̄m2c3
|hb|p |ai|2 (79)

Further we use the relation between matrix element of momentum and coordinate
eq. (74) in section 18 hb |p | ai = im!

ab

hb | r | ai and thus eq.(79) becomes

W
sp. em.

=
✓
1

⌧

◆

a!b

(80)

=
4e2!3

ab

3h̄c3
|hb | r | ai|2 (81)

=
4

3

✓
"�
h̄

◆✓
h̄!

ab

"�

◆3

↵3
����

⌧
b

����
r

a�

���� a
�����

2

(82)

a� = h̄2/me2 "� = 2Ryd = e2/a� = 27.21 eV

↵ = e2/h̄c = 1/137.04, the fine structure constant h̄ = 0.6582 10�15 eV s
For one-electron hydrogenlike atoms (or ions), the life time of the transition of
2p �! 1s of one photon is given by

✓
1

⌧

◆

2p�!1s
= 0.6⇥ 109 Z4 sec�1 (83)
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20 Stimulated emission

Go to list of topics

For the case of stimulated emission, that is dependent on the number of photons
in the field (intensity), we must keep the

p
nk� + 1 term of the nk� initial

photon state and start from

W
i!f

(k,�) =
2⇡

h̄

✓
e

mc

◆2
 
2⇡h̄c2

V !
k

!

(nk� + 1)
���
D
b
���p · bek�e�ik·r

��� a
E���

2
⇢(E

f

) (84)

The emission rate then becomes

W
st. em.

=
✓
1

⌧

◆

a!b

(85)

=
4

3

✓
"�
h̄

◆ 
h̄!

ab

"�

!3

↵3 (n
!

+ 1)
����

⌧
b
����
r

a�

���� a
�����

2

(86)

where n
!

represents the number of photons in the field, with the energy of
E

!

= h̄!.
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The last equation can be considered as a sum of two terms; one is proportional
to the number of photons in the field nk�, so it’s radiation field intensity-
dependent, and describes the stimulated emission; the other one (expressed by
number one in the paranthesis) is independent of the field intensity.

The term with is the said to account for the spontaneous emission contribution.

Go to list of topics
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21 Fermi Golden Rule Simulation

———- Go to list of topics ———- Time dependent wavefunction ———-
Model realization ———- The Hamiltonian of the model ———-

The physical problem: solve the time-dependent Schrödinger equation with
hamiltonian as in the derivations of the Fermi Golden Rule.

continuum of textbook derivation �! quasicontinuum here, i.e. a set of
many equidistantly closely spaced levels.

The idea is to demonstrate how the line width is proportional to the density
of states and the strength of the coupling.

Only the couplings from the discrete states to continuum and back are nonzero,
have a constant value.
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22 Realization of the model

———- Start of the simulator part ———- Go to list of topics ———-

Figure 5: Schematic representation of the Energy levels

The figure 5 shows the energy levels: the single discrete level and the two
quasicontinua. Note that each has a di↵erent density of levels.
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———- Go to list of topics ———- Start of the simulator part ———-

The Hamilton operator matrix - see figure 7

Figure 6: Schematic representation of the population probabilities, drawn at
the energy levels
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23 The time-dependent wavefunction

———- Start of the simulator part ———- Go to list of topics ———-

The time-dependent wavefunction  (t) is expanded in terms of the model
states '

i

(t) as
 (t) =

X

i

c
i

(t) '
i

(t)

with the initial condition

c1(0) = 1, c2(0) = 0, c3(0) = 0, · · · · ··

and inserted in the Schrödinger equation

ih̄
@

@t
 (t) = H  (t)

In the usual way this results in a set of coupled equations. The populations of
the states, i.e. the absolute value squared of the expansion coe�cients c

i

(t) is
shown in fig. 6.
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Figure 7: Schematic representation of Hamiltonian Matrix

Go to list of topics
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Figure 8: Decay in the simulator

———- Start of the simulator part ———- Go to list of topics ———-
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24 Atomic Units

Unit of length is the Bohr radius:

a0 =
h̄2

m
e

e2

 

= 4⇡✏0
h̄2

m
e

e2

!

The first is in atomic units, second in SI-units. This quantity can be remembered by
recalling the virial theorem, i.e. that in absolute value, half of the potential energy
is equal to the kinetic energy. This gives us

1

2

e2

a0
=

h̄2

2m
e

a02

and if we accept this relation, we have the above value of a0.

The so called fine structure constant

↵ =
e2

h̄c

expresses in general the weakness of electromagnetic interaction. List of topics
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Some Constants and Quantities

v0 = ↵c = 2.187106 m s�1 Bohr velocity

a0 = 0.529177 10�10 m Bohr radius

h̄ = 0.6582 10�15 eV s Planck’s constant

k
B

= 0.8625 10�4 eV K̊�1 Boltzmann constant

R = N
A

k
B

N
A

= 6.0222 1023 Avogadro’s number

µ
B

= 0.579 10�4 eV (Tesla)�1 Bohr magneton

Plank’s formula

⇢(!
ba

) =
h̄!3

ba

⇡2c3
1

eh̄!/kT � 1
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Overview of the topics
Time dependent QM- two-well problem Time-Dependent Schrödinger Equation
Perturbation theory for TDSE Dirac delta-function
Fermi Golden Rule Constant rate and exponential decay
Line width from exponential decay Quantum theory of extended systems - fields
Eigenmodes for coupled vibrations. Algebraic Method for Harmonic Oscillator.
Electromagnetic fields The Quantum Theory of Electromag. Field
Density of States Charged Particles In an Electromag. Field
The Hamiltonian of Interaction Emission of Radiation by an Excited Atom
The matrix element reduction Dipole Approximation
Detailed Evaluation of Emission rate Stimulated emission
Golden Rule Simulator part Time-Dependent Schrödinger

Equation in Simulator
One level in continuum
Final W = 1/⌧ result
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