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Lagrange equations
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For conservative systems, i.e. with usual forces from potential energy
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but the Lorentz force depends on velocity. Lagrange function L(r
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be modified.

Lorentz force

F = q
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With � and A the scalar and vector potentials
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the Lorentz force becomes

F = q
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with �(r, t) and A(r, t) describing the fields
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With only the scalar potential �(r, t) the Lagrange function would be
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and the Lagrange equation would lead to the electrostatic

mr̈ = �qr�

It can be shown that the Newton equation with the electromagnetic Lorentz
force

mr̈ = q
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can be derived from a surprisingly simple Lagrange function (see below)
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when inserted into the three Lagrange equations (r1 ! x, r2 ! y , r3 ! z)
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This is because the term v⇥[r⇥A] can be expressed without vector products.
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Transforming the term v ⇥ [r⇥A]

This contains time derivatives as well as the x, y, z derivatives

v ⇥ [r⇥A] �! ṙ⇥ [r⇥A]

consider first the total time derivative Ȧ,
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Take now its x-component and re-arrange
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Take now x-component of v ⇥ [r⇥A]
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and now re-arrange - adding and subtracting (and compare with above)
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Comparing those expressions we can replace the second term
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and now it can be written for all components as
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Now we insert this expression into the Lorentz force

F = q
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So that the Lorentz force becomes

F = q
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This can be also written as

F = q
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Lagrange equations in vector form
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Hamiltonian formalism results from a Legendre transform from x
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and its
derivative ẋ
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to a pair of conjugated variables x
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i

, t) H = ṙ · p� L
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