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1  Description of Helium - 2 electron atom

List of topics

A helium atom consists of a nucleus of charge +2 surrounded by two electrons.
The coordinates are shown in the drawing

r12

+Ze

The total energy is kinetic energy of the electrons (2 terms),
interaction of electrons with the nucleus (2 terms)
and the repulsion between the 2 electrons (1 term)

List of topics



H="T(r1) + Vi(r1) + Ta(r2) + Va(ra) + Vig(ri,r2)

+Ze

W, Zé s

2m, " 1 2m.
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The wavefunction is a function of 6 variables, r; and ry,

L.e. T1, Y1, 21, T2, Y2, 22.
\Ij<r1,I'2)

The details of the operators:

H="T(r1) + Vi(r1) + Ta(ra) + Va(ra) + Via(ry,ro)

Tl(rl) — —2m Vm TQ(I'Q) — —2m VT2
7 é? 7 é? 7 e?
W) = -2 - Va(ra) = —
1(1'1) |I'1| ™ 2(r2) 9
62 62
‘/12(1'1, I'Q) = +W — +7"7
1 — 12 12

Last term in the potential is repulsion between the electrons. Because of this
term potential is not spherically symmetric in any two of the ry, r».

There are 4 terms which work only on ry or ry, but the repulsion term ”mixes”
the two sets of variables
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2 Two electrons and spin

Spin is a new degree of freedom, discovered already in 1920’s (W. Pauli)

Even if spin is not present in our Hamilton operator, it plays a very important
role in the spectra.

Parahelium and Orthohelium

We will show:

Parahelium - singlet - includes the ground state
Orthohelium - triplet - excited states
(transitions ”forbidden”)

Addition of spin (or angular momentum):

S:S1+S2 L:ll+12 J:j1+j2
J2=7JJ J?|jija; M) = J(J+1)|j1jo; JM) ji—do) < J < jitio
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Symmetry - Exclusion Principle = Consider independent particles (prod-
uct functions)

without symmetry (exclusion principle):
U(1,2) = ¢a(1)es(2) (2)
Pauli principle:
¥(1,2) = [ $a()dn(2) — 66(1)6a(2) ] /V2
Including ”spin variables” &1, &1,
U(1,2) — U(ri,&,12,6)
Thus the total (independent) two particle wave function should be:

U(ry, &1,12, &) = [ da(r1)Xal(&1)(r2)x5(E2) — du(r1)x5(&1)Pa(r2)Xa(&) ] /V2

But this is not the case; since spin and space are independent, we must at the
same time have
U(1,2) = Pgpace(1,2) - Egpin(1,2)

How to combine these two - make each antisymmetric? List of topics
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The total function must be product of space and spin part and change sign on
exchange 1 — 2

W(1,2) = O™ (ry, 19) EAV™ (&, &)
U(1,2) = @A™ (1, 1p) E¥™ (&1, &)

This means in detail for the two types: symmetric space, antisymmetric spin

(%[ Balr1)n(r2) + ¢b<r1>oa<rz>]) (%wglm(&) _ m(&)xa(@)])

or antisymmetric space, symmetric spin

(%[ Bu(r1)n(r2) — ¢b<rl>¢a<r2>]) (%[xamm(@) ; m(sl)xa(fm)

The mixed antisymmetric function mentioned first

U(ry,&1,12,8) = [ Ga(r1)Xa(61)d(r2)xs(€2) — du(r1)xs(£1)da(r2)Xa(é2) 1 /V2

describes space and spin coupled. That is spin-orbit coupling or j-j coupling; in heavy
atoms, not in helium. List of topics
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There are four product combinations:

x+(€0)x+(€2)s x1(§)x1(€2)s x+(&)x (&2) and x| (§1)x+(&2)

They can be combined to three symmetric (triplet) and a single one antisymmetric

(singlet)

xt+(€1)x1(62)
X1 (§1)x 1 (&2)

;i Der(€0)xu(€) + X1 (60X (E2)]

\}5 Dxr(§0)xg(§2) — xu (&) xp(&2)]

We can also use a more compact notation

List of topics
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3 Why are the Ortho-helium states lower in
energy than the Para-helium states?

List of topics
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The SPATIAL symmetric combination

Vs(rr,r2) = \}5 [ Ga(r1)ép(ra) + dp(r1)da(r2) ]

ry —ro

when r{ — ro

‘Ps(rar)ﬂ\g[¢a(r)¢z)()+éb() $a(r) | = V20a(r)ty(r)  S=0

i.e. close to maximum. The the repulsion as large as possible, in the S = 0 singlet

The SPATIAL antisymmetric combination (spin must be thus symmetric; triplet)

Uy(ry,r) = 7[%(1“1)%(1“2) Pp(r1)@a(rs) |

when rq1 — ro
Ve, r) \2 [ Ga(®)dn(r) — dp(r)dalr) | 50 S=1

Repulsion term - exchange interaction

Singlet, S = 0, space symmetric — Repulsion large
Triplet, S = 1, space antisymmetric — Repulsion small
Can also be related to the sign of Exchange term List of topics
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4  Various formulations found in literature

The probability for small separations of the electrons is less for anti-symmetric than
for symmetric space wave functions. (our formulation is better! )

If then the electrons are further apart on average, there will be less shielding of the
nucleus by the ground state electron,and thus the excited state electron will be more
exposed to the nucleus.

This implies that the ortho-helium states will be more tightly bound and of lower
energy. (our formulation is much better and much more correct ! )

Helium energy levels (singly excited)
1) np state spin anti-parallel to the spin of 1s state: S=0, singlet state, Para-helium
2) np state spin parallel to the spin of 1s state: S=1, triplet state, Ortho-helium

The S = 0 and S = 1 difference can also be related to the sign of Exchange term
List of topics
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5 Spin - Spin interaction - Ferromagnetism

The triplet - singlet difference in energy acts as a result of an effective spin-spin in-
teraction. When spins are parallel (S = 1) repulsion weaker - i.e. effective attraction

S=s81+8s9 SQZS'S:(51+SQ)'(51+S2>:S?—‘FS%—‘FQSl'SQ
S(S+1) 3

3
4 + 1 + 2<S‘S] '52‘S> — <S‘Sl . Sg’S> = T — Z

We see then that for the triplet |1) and singlet |0)

b
©

(S|S%S) = S(S+1) =

1 3
(1]s1 - s2|1) = 1 (O]sy - 82|0) = ~1

We now attempt to write the two energies E(S) as function of (S|s; - s2|S)
1 3
E(S) = A— B (S[s1-52[5) E()=A-B;  EB(0)=A+B;

It is easily seen that the energy constants A and B must be

A=3B0)+ %E(O) B=E(0)—E(l) (B>0)

The energy difference E(0) - E (1) can be seen as a result of an effective interaction

V(Sl,Sg) =A-B (51 . Sg)
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As one would expect, s1 - so is positive for triplets S=1, the spins are parallel, and
negative for S=0 singlet, the spins are antiparallel, as we have seen above in
1 3

1|s1 -s2|1) = ~ 0lsq - s2|0) = ——

(Lls1-s2/1) = 7 (Ols1 - 52/0) = —
The energy difference is caused by the electrostatic repulsion term, being suppressed
in the triplet (S=1) case due to the space-antisymmetry, or we can say Pauli prin-
ciple.

The nature of ferromagnetism is such spin-spin interaction, i.e. the correlation of
spins is caused by electrostatic (atomic) interactions (that is why it is so strong).
This correlates the spin magnetic moments, so that a magnetised material has a
magnetic moment.

The magnetic spin-spin interactions is much weaker and could not cause a permanent
correlation.

List of topics
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6 Approximations to describe helium atom

To obtain simplified solutions the Schrodinger we first disregard the repulsion term
( and then treat the repulsion using approximations )

h? Z e? K2 7 e2 2
_ \V4 2 _ _ \v4 2 S, 7 _BEvU 7
[ 2me 1 r 2me 9 To + ‘I‘l - 1“3‘ (1‘1 1‘2) (1‘1 r2)

Independent electron approach — wave function is separable

— ro

2
l— i v, 2 Z e — LV 2 z 62] Uy (I‘l) Uy (1‘2) = (E1+E2) LA (I‘l) Uy (I'Q)

2me . (t 2me 9
h o, 7 e? K, Zé
— R G 1) =F1 U ] — — N\ = By U
[ 2me 1 1 1 (rl) 1=l (rl) 2, VTQ o 2 (1‘2) 2 ¥2 (I'Q)

Finally, the repulsion term can be included, - introducing various approximation
methods (Perturbation theory, Variational method )

Go to List of topics
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The above two eqs. Are identical to Schrodinger eq. for H-atom - but where Nuclear
charge is +Ze instead of +e

To obtain simplest approximation to the solutions of the Schrodinger we started
by disregarding the repulsion term alltogether.

The above Schrodinger equation is now separable into two equations - each for one
electron (Independent electron approach: wave function is separable )

The energy of the ground state (see the table)

1
E=F\(Z)+E,(2) = 22251@0

Next approximation: perturbation theory

Keep the same ”"Independent electron approach” wavefunctions, but evaluate ex-
pectation value of the repulsion integral

2
<0> 2By (=1TeV for Z=1) (=34 eV for Z=2)
Z

|I‘1 — I‘Q‘ 8
Next improvement of independent (separable) wavefunction: Variational method

Best results: functions including correlations; non-separable; not independent elec-
trons

Go to List of topics
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H- He Li+ Be++ B(3+) C(4+)

V4 1 2 3 4 5 6
lon.pot.[eV] 0.757 24.60 75.62 153.95 259.49 392.22
2.lon.pot 13.600 54.40 122.40 217.60 340.00 489.60
EXP.BindEner -14.357 -79.00 -198.02 -371.55 -599.49 -881.82
21sel. -27.200 -108.80 -244.80 -435.20 -680.00 -979.20
+5/8Z -10.200 -74.80 -193.80 -367.20 -595.00 -877.20
Variational -12.856 -77.46 -196.46 -369.86 -597.66 -879.86
EXP.BindEner -14.357 -79.00 -198.02 -371.55 -599.49 -881.82
Zeff 0.688 1.688 2.688 3.688 4.688 5.688

Figure 3: Table of approximation results (in electronVolts)

Ei(Z=1) = —13.6eV = —0.5E,
( Ep = 27.2eV is the atomic unit of energy )
Es(Z) = —Z%13.6eV = —0.52% Ey
e? 5
— ) =-ZEy (=17€eV forZ=1)(=34€V forZ=2)
|I‘1 — I‘Q‘ o 8

List of topics
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For general states in Helium

o _ ., Zeé? nt_ ., Zeé? e?
B Mg U — EV
[ 2me 1 r 2me vrz ro + ‘rl - r2’ (rla r2) (rlv r2)
I (r1,19) = Volr) | _ L b (i ainra) — (r)oba(ra)]
f y(12) D)

and the energy becomes

(@ B0 = (= 2 )+l 2
2 e2

+ <¢awb’ ’ ’¢a wb > <¢awb| ‘ ’ ’wb ¢a > (3)

The last term - exchange energy. THIS APPLIES to TRIPLET STATES.
For SINGLET STATES - the exchange term sign is changed to +.

List of topics
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7 Repulsion term - multipole expansion

1 47 rﬁ
= Y (71) Yoo (7)
+1 TLM\"1) Y LM T2
|r1—r2| M 2L+1 T>+
where
r<=r1, r>=r9 for [ri| < |ry|

re=ry, r~=r1 for |ri| > |rg

Evaluation of the matrix element in general case

J [ b (40 Bt (2) st (1) Yt (52)

r] — o
is performed separately over the radial and angular parts
[ty [ais [ drs [drs R 0, (1) B, (r2)Yig, (72)

1

T Rmh (Tl)yhml (fl) anlz (TQ)lemz (722)
r1 — 1o

where df; means the integration over df); = sin 6;d6;dy;.

Go to List of topics
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The evaluation of general case - angular integrals of three Y7,,’s
C = [ ¥y (0.9)YV201(60,)Yim, (0, £)d2 ™)

For the case of both s-states, ; = 0 m; = 0Oonly L = 0 M = 0 are non-
zero; The sum reduces to one term. The angular factors give value one, since the
(Yi—on—0)? = (47m)~! cancels the corresponding factor in the multipole expansion
and due to the normalization.

Thus the repulsion matrix element with the e? encluded

2

/d3r1/d r29700 (r1) Yo (r2) i ‘wloo (r1) 100 (r2) (8)
is evaluated as the radial integral only
2 2 e’
/ ridry / T2d7’2RT0(T1)Rfo(T2)7310(7“1)310(7"2) 9)
>

List of topics
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8 Calculating the Radial Integral

2
/T%drl/ngTQRT()(Tl)Rib(TQ)iRlO(Tl)RIO(TQ)

3
Z 2 _Z-r
Radial Part Rip(r)=2- (%) fleTw = = R (r)
Integral:
R B S 2 2 e’
/ / -7y 'Rl,O(Tl) 'RLO(TQ) fd’l“ld’l“g
0 0 r>
e’} 0 7 _2Z 2
- / / 2! () " (T1+T2)T% : T%idrldrz
r>
_2z 1
=2 ( > / / 72 r} - r5—dridre
r>
With substitutions 2Z7“1 — r1 and g?“g — 79
_1Ze? 1 2
¢ / / r2rae e "2 —dridry with < =1awu. = Ey
2 ag T ag

intA

List of topics
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We split the integrtion into two integrals. For each r; are we taking the integral
over ro and than can we take the integrale over ri:

00 1 00 00
intA = / (/ e“”nr%dr2> dri + / (/ 67"1”7”%7“26”2) dry
0 0 0 r1

o) r1 9 0o 9 o)
:/ rle_”/ rye”"2dry dr1+/ 7“16_“/ e "2rodre drq
0 0 0 r1
—_——

(S —
intB intC

With partial integration one get:
intB =2 — e " (r? + 2r; 4 2)
intC =e " (r1 +1)
And with this you get by again merging the two split integrals:

o
intA = /0 2re T — 72 (T% + 2r1)dr

We use
oo
/ z"e Fdx = n!
0

List of topics
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If the exponent contains a, we make substitution

1 1
T=—y dr = — dy
e o

> n —ax 1 > n —y
/0 " dx e :W/o y" dye

We re-write intA as

so that

mtA = / 2rie” "dry —/ e “"ridry —/ e “"2r1dry
0 0 0

We see that the first integral has n = 1 and no constant in the exponential; thus we
get 2. Second term contains n = 2 and o = 2. It thus gives

1 1
—2l=-
23 4
The third term has n =1 and o = 2. It gives
1 1
—2—=1l==
22 2

List of topics
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The final expression for

1
A= / / T1r26_”6_r2—dr1dr2
>

1 1 5
A=2-9-373

is thus

And with this the whole integral becomes

€2 5Ze

/d3r1/d ra oo (r1) ¥lgg (r2) ‘ |¢100 (r1) 100 (r2) = 8 ag

(11)

(12)

Acknowledgement: Alexander Sauter (PHYS261 fall 2006) has done lots of work on

this part of the document
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Variational methods for quantum mechanics are mainly based on this:

The functional ( ¢ |H| ¢ ) > Egs
it means
(¢ |H| ¢ ) has an absolute minimum for | ¢ ) — |¢g.s.)

Suppose we know the exact solutions |¢,) (ground state |¢45.) )
H ‘900!> = EO{ ’9001> Ea Z Eg.s.

For any |¢) - i.e. also any approximation - we can use the expansion

= an |¥a)
(QH[¢) = D c5> ca(vplHlpa) = D5 ca Balpplea)

Z |COz|2 Eq.s

Thus
(o |H| ¢) = D lcal® Ea

v

And thus

(¢ |H| Q) > Eq.s. (¢ |H| ) > <(pg.s.‘H‘90g.s.>

As the approximation | ¢ ) improves, it approaches Eg s from above.

List of topics
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9 The variational method for Helium

List of topics
We start with hydrogen-like (one electron) problem

H=T +V.

We remember that the kinetic energy contains only second derivatives of the wave-

function, while
Ze?
Vi=— <.

T

We know that the ground state energy is (and the wave function)

1 e? T/2Z\? _zr
Es(Z) = 5 77— i00(r) =4/= () e 0
ag s ap

We avoid unnecessary evaluations by using virial theorem. It states:

List of topics
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For the one-electron case, since

62

1 1
(H) = Ew(2) = —5 Z2— = -5 72 E,

ao
and
(H) =(T) +(V)

and we can see that the Z-dependence is carried by the radial function. In the
variational approach we assume an effective nuclear charge, say z instead of Z. The
(unknown) effective charge number z, defines then the wavefunctions.

The kinetic energy contains only second derivatives, no Z. That means that when 2
becomes different from Z, there can only be z in the kinetic energy. The potential
energy operator contains only Z, not Z2.

K2 9 7 2
2me m 1
Z\: _z 1
2 _4r c
2() e w0 — (T, = = Z* Ey V), = —Z* E
ag 2
3 1
yA _ 2T
2() e a0 — (T). = 3 22 Ey V), = —Zz E,
ao B

List of topics
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The effective z is to be determined from minimising the total energy for two electrons
including their repulsion (see page)

H=T1+T+Vi+Vo+ Vi (14)

The repulsion term Vio is known for the hydrogen like orbitals, or repulsion be-
tween two electrons where both are in 1s orbital. The operator does not contain Z
explicitly, thus

5 Ze? 5 5

(Vig)z = —— = < Z Ey (Vig), = 3 z Ey

We summarize for the orbitals with Z and with effective z like this:

o, 7 e? o, Z e? e?
2me ! el 2m. 79 |r; — o
Z\3 _zr 1 1 5
2 () e w — +- 7% F, —7°FEy +4+-=Z>Ey, -Z°E, += Z E,
ag 2 2 8
3
2 _zr 1 1 5
9 <Z> ‘eTiw —y 4-22Ey -27FE, +-22E, —27E, +2 . R,
ago 2 2 8

List of topics
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Thus ] 1 5
E(z) = Ey (2 22— zZ) + Ey (2 22 — zZ) + Eoéz.

or

5)
E(z) = <22 —22Z + 8,2) Ep.

The variational method says that for the ground state the energy functional
9 5
E(z) = (2°—22Z + 37 Ep.

must be extremal:

el -0
5, E()
5}
ey B
z = 16

List of topics
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H- He Li+ Be++ B(3+) C(4+)

z 1 2 3 4 5 6
lon.pot.[au] 0.0278 0.9 2.78 5.66 9.54 14.42
2.lon.pot 0.5 2 4.5 8 12.5 18
EXP.BindEner -0.5278 -2.9 -7.28 -13.66 -22.04 -32.42
21sel. -1.0 -4.0 -9.00 -16.00 -25.00 -36.00
+5/82 -0.375 -2.750 -7.13 -13.50 -21.88 -32.25
Variational -0.473 -2.848 -7.22 -13.60 -21.97 -32.35
EXP.BindEner -0.528 -2.904 -7.28 -13.66 -22.04 -32.42
Zeff 0.688 1.688 2.688 3.688 4.688 5.688

Figure 4: Experimental ionization potentials and results of the approximations.
Energies given in atomic units

List of topics
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H- He Li+ Be++ B(3+) C(4+)

V4 1 2 3 4 5 6
lon.pot.[eV] 0.757 24.60 75.62 153.95 259.49 392.22
2.lon.pot 13.600 54.40 122.40 217.60 340.00 489.60
EXP.BindEner -14.357 -79.00 -198.02 -371.55 -599.49 -881.82
21sel. -27.200 -108.80 -244.80 -435.20 -680.00 -979.20
+5/8Z -10.200 -74.80 -193.80 -367.20 -595.00 -877.20
Variational -12.856 -77.46 -196.46 -369.86 -597.66 -879.86
EXP.BindEner -14.357 -79.00 -198.02 -371.55 -599.49 -881.82
Zeff 0.688 1.688 2.688 3.688 4.688 5.688

Figure 5: Experimental ionization potentials and results of the approximations.
Energies given in electronVolts

List of topics
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Li+
3
75.62

122.40
-198.02

-244.80
-193.80
-196.46
-198.02

2.688

Be++
4
153.95
217.60
-371.55

-435.20
-367.20
-369.86
-371.55

3.688

B(3+)

259.49
340.00
-599.49

-680.00
-595.00
-597.66
-599.49

4.688

C(4+)

392.22
489.60
-881.82

-979.20
-877.20
-879.86
-881.82

5.688

Figure 6: Table of approximation results (in electronVolts)

H- He
z 1 2
lon.pot.[eV] 0.757 24.60
2.lon.pot 13.600 54.40
EXP.BindEner -14.357 -79.00
21sel. -27.200 -108.80
+5/8Z -10.200 74.80
Variational -12.856 -77.46
EXP.BindEner -14.357 -79.00
Zeff 0.688 1.688
E\s(Z=1) = —13.6eV = —0.5E)
( Ep = 27.2eV is the atomic unit of energy )
Es(Z) = —Z%13.6eV = —0.52% Ey
2 =
e ]
—Z Ey

r1 — rof

List of topics
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10 Hylleraas variational function for ground
state of helium

Our variational method assumed the product function for two electrons.

One can construct various functions where the variables can not be separated into
a product

B(ry,rs) — (r1)ib(ra) roo(rs) = \E <Z> T

agp

Already in 1929 Norwegian physicist FEgil Hylleraas worked with variational method
for a ”correlated function” of a special type - using transformed coordinates
(ri,r9) — s =11+ 79 t=1r1 —19 u=ryg = |r] — ro
€ (0,00) t € (—oo, oo) u € (0,00)

U(ry,re) — (s, t,u) =e *° Z clgmnsl £2m oy
l,m,n=0

The variational parameters here are the constant z and all the coefficients c; o n
Note that e7*® = e7*"t¢™*"2 is up to a normalisation the product function with the
effective charge number z used in our variational method.

Hylleraas (1929) used 6 variational parameters. List of topics
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11  Configuration mixing

Consider the usual:
Hx(x)goa(:c) = Ea@@c(x)

Hy(y)xs(y) = Epxs(y)
For any ®(z)
d(z) = an@a(f)
For any =(x)
E(y) =D dsxs(y)
Take now a general W(z,y). First look at y as a parameter, W(zx,yo)

U(z,y0) = () = Y calyo)pa()

for every yo ; Thus we get a new function of y;

caly) = dg(a)xs(y)

Inserting back:
U(z,y) =) ds(a)xs(y)pal(z)

Or, with a simpler notation
V(z,y) = > dsaxs(y)palz)

36



In the case of Helium, for example, the H(x) and H(y) are identical

and so are the x(y) and ¢q(x). This becomes configuration mixing.

) = D dga 08(Y)palx)

The coefficients are found by diagonalization.

For three coordinate sets - e.g. for Lithium :

(7,1,2) = YD > Dyga ¢y(2)0sy)palz)

List of topics
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PHYS261 Autumn term
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Resonances as discussed in the topic Light and Atoms
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12 Atomic Units

Unit of length is the Bohr radius:

h? h?
ag = D) =A4r €0 3
Me€ meé€

The first is in atomic units, second in SI-units. This quantity can be remembered by
recalling the virial theorem, i.e. that in absolute value, half of the potential energy
is equal to the kinetic energy. This gives us

1e? - h?
2a0  2meag?
and if we accept this relation, we have the above value of ag.

The so called fine structure constant
o2

~ he

(0%

expresses in general the weakness of electromagnetic interaction.
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Some Constants and Quantities

vp = ac = 2.18710% m s~1 Bohr velocity
ap = 0.529177 1071° m Bohr radius
h=0.6582 10" eV s Planck’s constant

kp = 0.8625 1074 eV K1 Boltzmann constant

R = Njkp
N4 = 6.0222 1023 Avogadro’s number
pp = 0.579 107* eV (Tesla) ! Bohr magneton

Plank’s formula

hw; 1
p(wha) = chg chw/KT _ |

Useful formulae and informations

Py (cosh) =1 Py (cosf) = cosb
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Calculations from other sources - future extension - must be modified

List of topics

Part 1
LM
Part 2
1 4 rL .
T — R —Y7 " (R)Y] P 16
lr; — R(t)] ZQL_|_1 L+1 L (R)Ya(7) (16)
Part 3
47r rL R X
where
re«=r, r~=R for |r] < |R|
r« =R, r~=r for |r|] > |R]
then:
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. 4 rL X .
Vi =< R}(r)Y],, (T)|§£: [F%l){LA4(}%)}<LA4(7d|]%i(r)iﬁinn(7? > (18)
fs 2L—|—1

47T R 2 7’L e e a o al N ~
Vi = 35 ) e B 6 (Y (R Yaar (R0 i, 7+

o0 R N N
| P e R0 i, ()Yt ()Y (R R () Vi, () (19)
R
This can be described by a simple notation

Vi = 3 g7 g OO (Rl (20)

where GJLci(R(t)) is called The G-function and C* is composed of Clebsch-Gordan
coefficients. The matrix element is different from zero only if:

M=m;+m f
and

i — 1] < L <|l; + 1
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on

lf + L+
is even.
As can be seen above, we denote
GLIR® = [~ Ro(r) === Ry(r)r2dr =
HIRO) = [ RH0)r S Reyrdr =
1 B o L[ 1 o,
W/{) reredr R} (r)Ri(r) + R /R - dr R}(r) R;i(r) (21)

R;(r) and Ry(r) are the radial wave functions for initial and final states.
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The integration over the angular parts, which is the integral over three spherical
harmonics, gives

O = [ Vi (6,)Yia1 (6, 9)Yiom (8, 0)d0 (22

(_Dmf[(mf + 1)(2L4;r 1)(2L; + 1)]

ly L ly L I
—-my M m; 0O 0 O

_ b .
This is known as Gaunts formula, and the numerical values ( @ ¢ ) are Wigner-

d e f
3j symbols, up to a factor equal to Clebsch-Gordan coefficients.

D=

50



Coordinate system

Atomic Units

Approximations to describe helium atom
Evaluation of repulsion term

Radial Integral

Figure -helium spectra

Table - binding energies

Variational method

Doubly excited states of Helium
Parahelium and Orthohelium

51




