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(1)

Coordinate system, Schrödinger Equation 3 slides
Evaluation of repulsion term 2 slides

Radial Integral - details 3 slides
Two electrons and spin 1 slide
Figures -helium spectra 3 slides
Symmetry and Antisymmetry of wavefunctions 2 slides in Para...
Parahelium and Orthohelium 4 slides + 1

Parahelium and Orthohelium in literature 1 slide + 1
Approximations to describe helium atom 3 slides
Helium atom - Exchange interaction 1 slide
Table - binding energies (or with discussion ) 2+1 slides
Variational method and proof 〈 φ |H| φ 〉 ≥ Eg.s. 1 + 5 slides
Variational method with correlated function 1 slide
Configuration mixing 2 slides
Doubly excited states of Helium 3 slides + 4

Spin - Spin interaction - Ferromagnetism 2 slides

Atomic Units and formulae optional
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1 Description of Helium - 2 electron atom

List of topics

A helium atom consists of a nucleus of charge +2 surrounded by two electrons.
The coordinates are shown in the drawing
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The total energy is kinetic energy of the electrons (2 terms),

interaction of electrons with the nucleus (2 terms)

and the repulsion between the 2 electrons (1 term)
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H = T1(r1) + V1(r1) + T2(r2) + V2(r2) + V12(r1, r2)
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[
− h̄2

2me

∇ 2
r1
− Z e2

r1

− h̄2

2me

∇ 2
r2
− Z e2

r2

+
e2

|r1 − r2|

]
Ψ (r1, r2) = E Ψ (r1, r2)
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The wavefunction is a function of 6 variables, r1 and r2,
i.e. x1, y1, z1, x2, y2, z2.

Ψ (r1, r2)

The details of the operators:

H = T1(r1) + V1(r1) + T2(r2) + V2(r2) + V12(r1, r2)

T1(r1) −→ − h̄2

2me

∇ 2
r1

T2(r2) −→ − h̄2

2me

∇ 2
r2

V1(r1) = −Z e2

|r1|
−→ −Z e2

r1

V2(r2) = −Z e2

r2

V12(r1, r2) = +
e2

|r1 − r2|
−→ +

e2

r12

Last term in the potential is repulsion between the electrons. Because of this
term potential is not spherically symmetric in any two of the r1, r2.

There are 4 terms which work only on r1 or r2, but the repulsion term ”mixes”
the two sets of variables
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2 Two electrons and spin

Spin is a new degree of freedom, discovered already in 1920’s (W. Pauli)

Even if spin is not present in our Hamilton operator, it plays a very important
role in the spectra.

Parahelium and Orthohelium

We will show:

Parahelium - singlet - includes the ground state

Orthohelium - triplet - excited states

(transitions ”forbidden”)

Addition of spin (or angular momentum):

S = s1 + s2 L = l1 + l2 J = j1 + j2

J2 = J·J J2|j1j2; JM〉 = J(J+1)|j1j2; JM〉 |j1−j2| ≤ J ≤ j1+j2

List of topics
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plet spin function eq. (4) to generate the 23S state. The two-elec-
tron probability distributions for these two states are given by:

3!ðr1; r2Þ ¼
1

2
’2
1sðr1Þ’

2
2sðr2Þ þ

1

2
’2
2sðr1Þ’

2
1sðr2Þ

% ’1sðr1Þ’2sðr1Þ’1sðr2Þ’2sðr2Þ ð9Þ

1!ðr1; r2Þ ¼
1

2
’2
1sðr1Þ’

2
2sðr2Þ þ

1

2
’2
2sðr1Þ’

2
1sðr2Þ

þ ’1sðr1Þ’2sðr1Þ’1sðr2Þ’2sðr2Þ: ð10Þ

In contrast to the 11S ground state eq. (6), !(r1, r2) can no lon-
ger be factorized into a product of one-electron functions. The
spatial motion of one electron now depends on the motion of
the other electron and their motion in space is therefore Fermi
correlated.

Comparing the probability distributions of the singlet and tri-
plet excited states, we note that they differ only in the last term,
which have opposite signs. Therefore, wherever this term
reduces the triplet probability, the singlet probability increases
by that same amount and vice versa. Moreover, in the triplet
state, the probability decreases to zero as the two electrons
approach each other, creating a Fermi hole. By contrast, in the
singlet state, the probability of locating the two electrons at the
same point in space doubles, creating a Fermi heap. This behav-
ior of Fermi correlation is illustrated in Figure 1. For the triplet
state, there is zero probability along the diagonal, where the
electrons are at the same distance from the nucleus; for the sin-
glet state, on the other hand, there is an increased probability
along the diagonal, reflecting a tendency for the two electrons to
be at the same distance from the nucleus. The dip in the singlet
density arises whenever one electron is at distance 1a0 from the
nucleus, due to the node in the 2s orbital.

From the very different two-electron densities of the singlet
and triplet excited states, we see that Fermi correlation can dra-
matically affect the relative motion of the electrons in an atom: in
the triplet state, the electrons avoid each other; in the singlet state,
they stay close together. Even though these two states have the
same overall electron density (with the same orbital occupations),
the electron repulsion will be lower for the triplet than for the sin-
glet. We emphasize that the different relative motions of the elec-
trons in these states has nothing to do with the charges of the
electrons but arises from their fermionic character.

Calculation of the Energy

Our description of the helium atom has not yet been made quan-
titative. According to the variation principle, the best approxi-
mate description for a given spin (singlet or triplet) is that which
gives the lowest electronic energy. The application of this prin-
ciple to our orbital description of the helium atom means that
we should modify the shape of the orbitals until the lowest
energy is attained, separately for the singlet 11S ground state
and the triplet 23S excited state. To test the quality of our
description, we must compare with experiment. Since total ener-
gies cannot be measured, we compare instead with the ionization
potential (IP), obtained by subtracting the helium energy from
the energy of the helium cation %2Eh ¼ %54.422 eV. The
resulting IPs are listed in Table1, together with the fully con-
verged results using Hylleraas’ method and experimental values.
It is possible but less straightforward to apply the variation prin-
ciple to states of higher energy. Instead, we have used the 23S
orbitals to calculate, without further optimization, the IP of the
21S state.

From Table 1, we note that our orbital calculations give a
rather good picture of the energetics, although with an error of
5% in the ground-state IP we cannot claim quantitative agree-
ment with experiment. In Figure 2, we have depicted the lowest
energy levels of the helium atom. The 11S ground state, in
which the 1s orbital is doubly occupied, lies far below all other
states. The singly excited 23S and 21S states are close in energy,
which can be understood from the fact that they have the same
orbital occupations 1s2s and therefore the same electron den-
sities in our simple orbital description, the small energy differ-
ence arising from Fermi correlation. We note that states of even
higher energy exist, not depicted here, where both electrons
have been promoted from the 1s orbital. In conclusion, the or-
bital picture captures most of the physics—in particular, the sin-
glet-triplet splitting of the 1s2s configuration due to Fermi corre-
lation.

Table 1. Calculated and Experimental IPs and Energy Differences of

Helium in eV.

Orbital Hylleraas Experiment6

IP (11S) 23.447 24.591 24.587

IP (23S) 4.742 4.768 4.767

IP (21S) 3.976 3.972 3.972
DE (23S%11S) 18.706 19.823 19.820

DE (21S%23S) 0.766 0.796 0.796

Figure 2. The lowest helium energy levels, calculated from experi-
mental IPs.
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Figure 1:
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The He atom: ‘‘spectral complexity‘‘

Figure 2: Para- and Ortho - Helium List of topics

8



Symmetry - Exclusion Principle Consider independent particles (prod-
uct functions)

without symmetry (exclusion principle):

Ψ(1, 2) = φa(1)φb(2) (2)

Pauli principle:

Ψ(1, 2) = [ φa(1)φb(2)− φb(1)φa(2) ] /
√

2

Including ”spin variables” ξ1, ξ1,

Ψ(1, 2) −→ Ψ(r1, ξ1, r2, ξ2)

Thus the total (independent) two particle wave function should be:

Ψ(r1, ξ1, r2, ξ2) = [ φa(r1)χα(ξ1)φb(r2)χβ(ξ2)− φb(r1)χβ(ξ1)φa(r2)χα(ξ2) ] /
√

2

But this is not the case; since spin and space are independent, we must at the
same time have

Ψ(1, 2) = Φspace(1, 2) · Ξspin(1, 2)

How to combine these two - make each antisymmetric? List of topics
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The total function must be product of space and spin part and change sign on
exchange 1 −→ 2

Ψ(1, 2) = ΦSym(r1, r2) ΞAsym(ξ1, ξ2)

Ψ(1, 2) = ΦAsym(r1, r2) ΞSym(ξ1, ξ2)

This means in detail for the two types: symmetric space, antisymmetric spin(
1√
2

[ φa(r1)φb(r2) + φb(r1)φa(r2)]

)(
1√
2

[χα(ξ1)χβ(ξ2)− χβ(ξ1)χα(ξ2)]

)

or antisymmetric space, symmetric spin(
1√
2

[ φa(r1)φb(r2)− φb(r1)φa(r2)]

)(
1√
2

[χα(ξ1)χβ(ξ2) + χβ(ξ1)χα(ξ2)]

)

The mixed antisymmetric function mentioned first

Ψ(r1, ξ1, r2, ξ2) = [ φa(r1)χα(ξ1)φb(r2)χβ(ξ2)− φb(r1)χβ(ξ1)φa(r2)χα(ξ2) ] /
√

2

describes space and spin coupled. That is spin-orbit coupling or j-j coupling; in heavy

atoms, not in helium. List of topics
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There are four product combinations:
χ↑(ξ1)χ↑(ξ2), χ↓(ξ1)χ↓(ξ2), χ↑(ξ1)χ↓(ξ2) and χ↓(ξ1)χ↑(ξ2)

They can be combined to three symmetric (triplet) and a single one antisymmetric
(singlet)

χ↑(ξ1)χ↑(ξ2)

χ↓(ξ1)χ↓(ξ2)

1√
2

[χ↑(ξ1)χ↓(ξ2) + χ↓(ξ1)χ↑(ξ2)]

1√
2

[χ↑(ξ1)χ↓(ξ2)− χ↓(ξ1)χ↑(ξ2)]

We can also use a more compact notation

↑ (1) ↑ (2)

↓ (1) ↓ (2)

1√
2

[↑ (1) ↓ (2)+ ↓ (1) ↑ (2)]

1√
2

[↑ (1) ↓ (2)− ↓ (1) ↑ (2)]

List of topics
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3 Why are the Ortho-helium states lower in

energy than the Para-helium states?

List of topics
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The SPATIAL symmetric combination

ΨS(r1, r2) =
1√
2

[ φa(r1)φb(r2) + φb(r1)φa(r2) ]
e2

|r1 − r2|

when r1 → r2

ΨS(r, r)→ 1√
2

[ φa(r)φb(r) + φb(r)φa(r) ]→
√

2φa(r)φb(r) S = 0

i.e. close to maximum. The the repulsion as large as possible, in the S = 0 singlet

The SPATIAL antisymmetric combination (spin must be thus symmetric; triplet)

ΨA(r1, r2) =
1√
2

[ φa(r1)φb(r2)− φb(r1)φa(r2) ]

when r1 → r2

ΨA(r, r)→ 1√
2

[ φa(r)φb(r)− φb(r)φa(r) ]→ 0 S = 1

Repulsion term - exchange interaction
Singlet, S = 0, space symmetric — Repulsion large
Triplet, S = 1, space antisymmetric — Repulsion small

Can also be related to the sign of Exchange term List of topics
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4 Various formulations found in literature

The probability for small separations of the electrons is less for anti-symmetric than
for symmetric space wave functions. (our formulation is better! )

If then the electrons are further apart on average, there will be less shielding of the
nucleus by the ground state electron,and thus the excited state electron will be more
exposed to the nucleus.

This implies that the ortho-helium states will be more tightly bound and of lower
energy. (our formulation is much better and much more correct ! )

Helium energy levels (singly excited)

1) np state spin anti-parallel to the spin of 1s state: S=0, singlet state, Para-helium

2) np state spin parallel to the spin of 1s state: S=1, triplet state, Ortho-helium

The S = 0 and S = 1 difference can also be related to the sign of Exchange term
List of topics
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5 Spin - Spin interaction - Ferromagnetism

The triplet - singlet difference in energy acts as a result of an effective spin-spin in-
teraction. When spins are parallel (S = 1) repulsion weaker - i.e. effective attraction

S = s1 + s2 S2 = S · S = (s1 + s2) · (s1 + s2) = s2
1 + s2

2 + 2 s1 · s2

〈S|S2|S〉 = S(S + 1) =
3

4
+

3

4
+ 2〈S|s1 · s2|S〉 → 〈S|s1 · s2|S〉 =

S(S + 1)

2
− 3

4

We see then that for the triplet |1〉 and singlet |0〉

〈1|s1 · s2|1〉 =
1

4
〈0|s1 · s2|0〉 = −3

4

We now attempt to write the two energies E(S) as function of 〈S|s1 · s2|S〉

E(S) = A−B 〈S|s1 · s2|S〉 E(1) = A−B 1

4
E(0) = A+B

3

4

It is easily seen that the energy constants A and B must be

A =
3

4
E(1) +

1

4
E(0) B = E(0)− E(1) (B > 0)

The energy difference E(0) - E (1) can be seen as a result of an effective interaction

V (s1, s2) = A−B (s1 · s2)

15



As one would expect, s1 · s2 is positive for triplets S=1, the spins are parallel, and
negative for S=0 singlet, the spins are antiparallel, as we have seen above in

〈1|s1 · s2|1〉 =
1

4
〈0|s1 · s2|0〉 = −3

4

The energy difference is caused by the electrostatic repulsion term, being suppressed
in the triplet (S=1) case due to the space-antisymmetry, or we can say Pauli prin-
ciple.

The nature of ferromagnetism is such spin-spin interaction, i.e. the correlation of
spins is caused by electrostatic (atomic) interactions (that is why it is so strong).
This correlates the spin magnetic moments, so that a magnetised material has a
magnetic moment.

The magnetic spin-spin interactions is much weaker and could not cause a permanent
correlation.

List of topics
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6 Approximations to describe helium atom

To obtain simplified solutions the Schrödinger we first disregard the repulsion term
( and then treat the repulsion using approximations )

[
− h̄2

2me
∇ 2
r1 −

Z e2

r1
− h̄2

2me
∇ 2
r2 −

Z e2

r2
+

e2

|r1 − r2|

]
Ψ (r1, r2) = E Ψ (r1, r2)

Independent electron approach −→ wave function is separable[
− h̄2

2me
∇ 2
r1 −

Z e2

r1
− h̄2

2me
∇ 2
r2 −

Z e2

r2

]
Ψ1 (r1) Ψ2 (r2) = (E1+E2) Ψ1 (r1) Ψ2 (r2)

[
− h̄2

2me
∇ 2
r1 −

Z e2

r1

]
Ψ1 (r1) = E1 Ψ1 (r1)

[
− h̄2

2me
∇ 2
r2 −

Z e2

r2

]
Ψ2 (r2) = E2 Ψ2 (r2)

Finally, the repulsion term can be included, - introducing various approximation
methods (Perturbation theory, Variational method )

Go to List of topics
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The above two eqs. Are identical to Schrödinger eq. for H-atom - but where Nuclear
charge is +Ze instead of +e

To obtain simplest approximation to the solutions of the Schrödinger we started
by disregarding the repulsion term alltogether.

The above Schrödinger equation is now separable into two equations - each for one
electron (Independent electron approach: wave function is separable )

The energy of the ground state (see the table)

E = E1s(Z) + E1s(Z) = 2Z2 1

2
E0

Next approximation: perturbation theory

Keep the same ”Independent electron approach” wavefunctions, but evaluate ex-
pectation value of the repulsion integral〈

e2

|r1 − r2|

〉
Z

=
5

8
Z E0 ( = 17 eV for Z = 1 ) ( = 34 eV for Z = 2 )

Next improvement of independent (separable) wavefunction: Variational method

Best results: functions including correlations; non-separable; not independent elec-
trons

Go to List of topics
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Figure 3: Table of approximation results (in electronVolts)

E1s(Z = 1) = −13.6eV = −0.5E0

( E0 = 27.2eV is the atomic unit of energy )

E1s(Z) = −Z213.6eV = −0.5Z2 E0

〈
e2

|r1 − r2|

〉
Z

=
5

8
Z E0 ( = 17 eV for Z = 1 ) ( = 34 eV for Z = 2 )
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For general states in Helium

2

r
1r

2

r
12

+Ze

r

−e
−e

1

[
− h̄2

2me
∇ 2
r1 −

Z e2

r1
− h̄2

2me
∇ 2
r2 −

Z e2

r2
+

e2

|r1 − r2|

]
Ψ (r1, r2) = E Ψ (r1, r2)

ΦHF
a,b (r1, r2) =

1√
2

∣∣∣∣∣ ψa(r1) ψb(r1)
ψa(r2) ψb(r2)

∣∣∣∣∣ =
1√
2

[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)]

and the energy becomes〈
ΦHF

∣∣∣H ∣∣∣ΦHF
〉

= 〈ψa|T −
Ze2

r
|ψa〉+ 〈ψb|T −

Ze2

r
|ψb〉

+ 〈ψaψb|
e2

|r− r′ |
|ψa ψb 〉 − 〈ψaψb|

e2

|r− r′ |
|ψb ψa 〉 (3)

The last term - exchange energy. THIS APPLIES to TRIPLET STATES.
For SINGLET STATES - the exchange term sign is changed to +.

List of topics
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7 Repulsion term - multipole expansion

1

|r1 − r2|
=
∑
LM

4π

2L+ 1

rL<
rL+1
>

Y ?
LM (r̂1)YLM (r̂2) (4)

where
r< = r1, r> = r2 for |r1| < |r2|

r< = r2, r> = r1 for |r1| > |r2|

Evaluation of the matrix element in general case∫
d3r1

∫
d3r2ψ

?
n1l1m1

(r1)ψ?n2l2m2
(r2)

1

|r1 − r2|
ψn1l1m1 (r1)ψn2l2m2 (r2) (5)

is performed separately over the radial and angular parts∫
r2

1dr1

∫
dr̂1

∫
r2

2dr2

∫
dr̂2 R?n1l1(r1)Y ?

l1m1
(r̂1)R?n2l2(r2)Y ?

l2m2
(r̂2)

1

|r1 − r2|
Rn1l1(r1)Yl1m1 (r̂1)Rn2l2(r2)Yl2m2 (r̂2) (6)

where dr̂i means the integration over dΩi = sin θidθidϕi.

Go to List of topics
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The evaluation of general case - angular integrals of three Ylm’s

CL =

∫
Y ?
limi

(θ, ϕ)YLM (θ, ϕ)Ylimi
(θ, ϕ)dΩ (7)

For the case of both s-states, li = 0 mi = 0 only L = 0 M = 0 are non-
zero; The sum reduces to one term. The angular factors give value one, since the
(YL=0M=0)2 = (4π)−1 cancels the corresponding factor in the multipole expansion
and due to the normalization.

Thus the repulsion matrix element with the e2 encluded∫
d3r1

∫
d3r2ψ

?
100 (r1)ψ?100 (r2)

e2

|r1 − r2|
ψ100 (r1)ψ100 (r2) (8)

is evaluated as the radial integral only∫
r2

1dr1

∫
r2

2dr2R
?
10(r1)R?10(r2)

e2

r>
R10(r1)R10(r2) (9)

List of topics
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8 Calculating the Radial Integral

∫
r2

1dr1

∫
r2

2dr2R
?
10(r1)R?10(r2)

e2

r>
R10(r1)R10(r2) (10)

Radial Part R1,0(r) = 2 ·
(
Z

a0

) 3
2

· e−
Z·r
a0 = R∗1,0(r)

Integral: ∫ ∞
0

∫ ∞
0

r2
1 · r2

2 ·R1,0(r1)2 ·R1,0(r2)2 e
2

r>
dr1dr2

=

∫ ∞
0

∫ ∞
0

24
(
Z

a0

)6

e
− 2Z

a0
(r1+r2)

r2
1 · r2

2

e2

r>
dr1dr2

= 24
(
Z

a0

)6

· e2
∫ ∞

0

∫ ∞
0

e
− 2Z

a0
(r1+r2)

r2
1 · r2

2

1

r>
dr1dr2

With substitutions 2Z
a0
r1 → r1 and 2Z

a0
r2 → r2

=
1

2

Ze2

a0

∫ ∞
0

∫ ∞
0

r2
1r

2
2e
−r1e−r2

1

r>
dr1dr2︸ ︷︷ ︸

intA

with
e2

a0
= 1a.u. = E0

List of topics

23



We split the integrtion into two integrals. For each r1 are we taking the integral
over r2 and than can we take the integrale over r1:

intA =

∫ ∞
0

(∫ r1

0
e−r1−r2r1r

2
2dr2

)
dr1 +

∫ ∞
0

(∫ ∞
r1

e−r1−r2r2
1r2dr2

)
dr1

=

∫ ∞
0

r1e
−r1

∫ r1

0
r2

2e
−r2dr2︸ ︷︷ ︸

intB

dr1 +

∫ ∞
0

r2
1e
−r1

∫ ∞
r1

e−r2r2dr2︸ ︷︷ ︸
intC

dr1

With partial integration one get:

intB = 2− e−r1(r2
1 + 2r1 + 2)

intC = e−r1(r1 + 1)

And with this you get by again merging the two split integrals:

intA =

∫ ∞
0

2r1e
−r1 − e−2r1(r2

1 + 2r1)dr1

We use ∫ ∞
0

xne−xdx = n!
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If the exponent contains α, we make substitution

x =
1

α
y dx =

1

α
dy

so that ∫ ∞
0

xn dx e−αx =
1

αn+1

∫ ∞
0

yn dy e−y

We re-write intA as

intA =

∫ ∞
0

2r1e
−r1dr1 −

∫ ∞
0

e−2r1r2
1dr1 −

∫ ∞
0

e−2r12r1dr1

We see that the first integral has n = 1 and no constant in the exponential; thus we
get 2. Second term contains n = 2 and α = 2. It thus gives

− 1

23
2! =

1

4

The third term has n = 1 and α = 2. It gives

−2
1

22
1! =

1

2

List of topics
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The final expression for

A =

∫ ∞
0

∫ ∞
0

r2
1r

2
2e
−r1e−r2

1

r>
dr1dr2 (11)

is thus

A = 2− 1

4
− 1

2
=

5

4

And with this the whole integral becomes∫
d3r1

∫
d3r2 ψ

?
100 (r1)ψ?100 (r2)

e2

|r1 − r2|
ψ100 (r1)ψ100 (r2) =

5

8

Ze2

a0
(12)

Acknowledgement: Alexander Sauter (PHYS261 fall 2006) has done lots of work on
this part of the document
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Variational methods for quantum mechanics are mainly based on this:

The functional 〈 φ |H| φ 〉 ≥ Eg.s.
it means
〈 φ |H| φ 〉 has an absolute minimum for | φ 〉 → |ϕg.s.〉

Suppose we know the exact solutions |ϕα〉 (ground state |ϕg.s.〉 )

H |ϕα〉 = Eα |ϕα〉 Eα ≥ Eg.s.

For any |φ〉 - i.e. also any approximation - we can use the expansion

| φ 〉 =
∑

cα |ϕα〉 (13)

〈 φ |H| φ 〉 =
∑

c∗β
∑

cα 〈ϕβ|H|ϕα〉 =
∑

c∗β
∑

cα Eα〈ϕβ|ϕα〉

Thus
〈 φ |H| φ 〉 =

∑
|cα|2 Eα ≥

∑
|cα|2 Eg.s.

And thus

〈 φ |H| φ 〉 ≥ Eg.s. 〈 φ |H| φ 〉 ≥ 〈ϕg.s.|H|ϕg.s.〉

As the approximation | φ 〉 improves, it approaches Eg.s. from above.
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9 The variational method for Helium

List of topics

We start with hydrogen-like (one electron) problem

H = T1 + V1.

We remember that the kinetic energy contains only second derivatives of the wave-
function, while

Vi = −Ze
2

ri
.

We know that the ground state energy is (and the wave function)

E1s(Z) = −1

2
Z2 e

2

a0
Ψ1,0,0(r) =

√
1

π

(
Z

a0

) 3
2

· e−
Z·r
a0

We avoid unnecessary evaluations by using virial theorem. It states:

〈T 〉 = −1

2
〈V 〉
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For the one-electron case, since

〈H〉 = E1s(Z) = −1

2
Z2 e

2

a0
= −1

2
Z2 E0

and
〈H〉 = 〈T 〉+ 〈V 〉

and we can see that the Z-dependence is carried by the radial function. In the
variational approach we assume an effective nuclear charge, say z instead of Z. The
(unknown) effective charge number z, defines then the wavefunctions.

The kinetic energy contains only second derivatives, no Z. That means that when z
becomes different from Z, there can only be z in the kinetic energy. The potential
energy operator contains only Z, not Z2.

− h̄2

2me
∇ 2
r1 − Z e2

r1

2

(
Z

a0

) 3
2

e
−Zr

a0 −→ 〈T 〉Z =
1

2
Z2 E0 〈V 〉Z = −Z2 E0

2

(
z

a0

) 3
2

e
− zr

a0 −→ 〈T 〉z =
1

2
z2 E0 〈V 〉z = −Zz E0
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The effective z is to be determined from minimising the total energy for two electrons
including their repulsion (see page)

H = T1 + T2 + V1 + V2 + V12 (14)

The repulsion term V12 is known for the hydrogen like orbitals, or repulsion be-
tween two electrons where both are in 1s orbital. The operator does not contain Z
explicitly, thus

〈V12〉Z =
5

8

Ze2

a0
=

5

8
Z E0 〈V12〉z =

5

8
z E0

We summarize for the orbitals with Z and with effective z like this:

. − h̄2

2me
∇ 2
r1 − Z e2

r1
− h̄2

2me
∇ 2
r2 − Z e2

r2
+

e2

|r1 − r2|

2

(
Z

a0

) 3
2

e
−Zr

a0 −→ +
1

2
Z2 E0 −Z2 E0 +

1

2
Z2 E0 −Z2 E0 +

5

8
Z E0

2

(
z

a0

) 3
2

e
− zr

a0 −→ +
1

2
z2 E0 −zZ E0 +

1

2
z2 E0 −zZ E0 +

5

8
z E0
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Thus

E(z) = E0

(
1

2
z2 − zZ

)
+ E0

(
1

2
z2 − zZ

)
+ E0

5

8
z.

or

E(z) =

(
z2 − 2zZ +

5

8
z

)
E0.

The variational method says that for the ground state the energy functional

E(z) =

(
z2 − 2zZ +

5

8
z

)
E0.

must be extremal:
d

dz
E(z) = 0

⇔ 2z − 2Z +
5

8
= 0

⇔ z = Z − 5

16
.
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E1s(Z = 1) = −13.6eV = −0.5E0

( E0 = 27.2eV is the atomic unit of energy )

E1s(Z) = −Z213.6eV = −0.5Z2 E0

〈
e2

|r1 − r2|

〉
Z

=
5

8
Z E0 ( = 17 eV for Z = 1 = 34 eV for Z = 2 )

List of topics

34



10 Hylleraas variational function for ground

state of helium

Our variational method assumed the product function for two electrons.

One can construct various functions where the variables can not be separated into
a product

Ψ(r1, r2) −→ ψ(r1)ψ(r2) ψ1,0,0(ri) =

√
1

π

(
Z

a0

) 3
2

· e−
Zri
a0

Already in 1929 Norwegian physicist Egil Hylleraas worked with variational method
for a ”correlated function” of a special type - using transformed coordinates

(r1, r2) −→ s = r1 + r2 t = r1 − r2 u = r12 = |r1 − r2|
s ∈ (0,∞) t ∈ (−∞,∞) u ∈ (0,∞)

Ψ(r1, r2) −→ ψ(s, t, u) = e−zs
N∑

l,m,n=0

cl,2m,n s
l t2m un

The variational parameters here are the constant z and all the coefficients cl,2m,n
Note that e−zs = e−zr1e−zr2 is up to a normalisation the product function with the
effective charge number z used in our variational method.

Hylleraas (1929) used 6 variational parameters. List of topics
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11 Configuration mixing

Consider the usual:
Hx(x)ϕα(x) = Eαϕα(x)

Hy(y)χβ(y) = Eβχβ(y)

For any Φ(x)
Φ(x) =

∑
cαϕα(x)

For any Ξ(x)
Ξ(y) =

∑
dβχβ(y)

Take now a general Ψ(x, y). First look at y as a parameter, Ψ(x, y0)

Ψ(x, y0)→ Φ(x) =
∑

cα(y0)ϕα(x)

for every y0 ; Thus we get a new function of y;

cα(y) =
∑

dβ(α)χβ(y)

Inserting back:
Ψ(x, y) =

∑∑
dβ(α)χβ(y)ϕα(x)

Or, with a simpler notation

Ψ(x, y) =
∑∑

dβαχβ(y)ϕα(x)
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In the case of Helium, for example, the H(x) and H(y) are identical

and so are the χβ(y) and ϕα(x). This becomes configuration mixing.

Ψ(x, y) =
∑∑

dβα ϕβ(y)ϕα(x)

The coefficients are found by diagonalization.

For three coordinate sets - e.g. for Lithium :

Ψ(x, y, z) =
∑∑∑

Dγβα ϕγ(z)ϕβ(y)ϕα(x)
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Resonances as discussed in the topic Light and Atoms
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12 Atomic Units

Unit of length is the Bohr radius:

a0 =
h̄2

mee2

(
= 4πε0

h̄2

mee2

)

The first is in atomic units, second in SI-units. This quantity can be remembered by
recalling the virial theorem, i.e. that in absolute value, half of the potential energy
is equal to the kinetic energy. This gives us

1

2

e2

a0
=

h̄2

2mea0
2

and if we accept this relation, we have the above value of a0.

The so called fine structure constant

α =
e2

h̄c

expresses in general the weakness of electromagnetic interaction.
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Some Constants and Quantities

v0 = αc = 2.187106 m s−1 Bohr velocity

a0 = 0.529177 10−10 m Bohr radius

h̄ = 0.6582 10−15 eV s Planck’s constant

kB = 0.8625 10−4 eV K̊−1 Boltzmann constant

R = NAkB

NA = 6.0222 1023 Avogadro’s number

µB = 0.579 10−4 eV (Tesla)−1 Bohr magneton

Plank’s formula

ρ(ωba) =
h̄ω3

ba

π2c3

1

eh̄ω/kT − 1

Useful formulae and informations

P0 (cosθ) = 1 P1 (cosθ) = cosθ
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Calculations from other sources - future extension - must be modified

List of topics

Part 1

eiK·r = 4π
∑
LM

iLjL(Kr)Y ∗LM (K̂)YLM (r̂) (15)

Part 2

1

|rj −R(t)|
=
∑
LM

4π

2L+ 1

rL<
rL+1
>

Y ?
LM (R̂)YLM (r̂) (16)

Part 3

Vfi =< Φf (r)|
∑
LM

4π

2L+ 1

rL<
rL+1
>

Y ?
LM (R̂)YLM (r̂)|Φi(r) > (17)

where
r< = r, r> = R for |r| < |R|

r< = R, r> = r for |r| > |R|

then:
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Vfi =< R?f (r)Y ?
lfmf

(r̂)|
∑
LM

4π

2L+ 1

rL<
rL+1
>

Y ?
LM (R̂)YLM (r̂)|Ri(r)Ylimi

(r̂) > (18)

Vfi =
∑
LM

4π

2L+ 1

∫ R

0
r2dr

rL

RL+1
R?f (r)[Y ?

lfmf
(r̂)Y ?

LM (R̂)YLM (r̂)]Ri(r)Ylimi
(r̂)+

∫ ∞
R

r2dr
RL

rL+1
R?f (r)[Y ?

lfmf
(r̂)YLM (r̂)Y ?

LM (R̂)]Ri(r)Ylimi
(r̂) (19)

This can be described by a simple notation

Vfi =
∑
LM

4π

2L+ 1
[GLfi(R(t))][Y ?

LM (R̂)][CL] (20)

where GLfi(R(t)) is called The G-function and CL is composed of Clebsch-Gordan
coefficients. The matrix element is different from zero only if:

M = mi +mf

and
|li − lf | ≤ L ≤ |li + lf |
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on

lf + L+ li

is even.

As can be seen above, we denote

GLfi[R(t)] =

∫ ∞
0

R?f (r)
rL <

rL+1 >
Ri(r)r2dr =

1

RL+1

∫ R

0
rLr2drR?f (r)Ri(r) +RL

∫ ∞
R

1

rL+1
r2drR?f (r)Ri(r) (21)

Ri(r) and Rf (r) are the radial wave functions for initial and final states.
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The integration over the angular parts, which is the integral over three spherical
harmonics, gives

CL =

∫
Y ?
lfmf

(θ, ϕ)YLM (θ, ϕ)Ylimi
(θ, ϕ)dΩ (22)

(−1)mf [
(2lf + 1)(2L+ 1)(2li + 1)

4π
]
1
2(

lf L li
−mf M mi

)(
lf L li
0 0 0

)

This is known as Gaunts formula, and the numerical values

(
a b c
d e f

)
are Wigner-

3j symbols, up to a factor equal to Clebsch-Gordan coefficients.
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