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Overview

1. Time dependent quantum mechanics:

two isolated states, contrasted to

one isolated level

energetically embedded in (quasi-) continuum of states

2. derivation and understanding of the transition rate (probability change
per time unit)

3. Time dependent perturbation theory

4. Fermi Golden rule derivation

5. The delta function (often mentioned as energy conservation; that is not
precise).
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6. In contrast to the delta function, the Lorentzian shape; finite line width
(also known as Breit-Wigner formula or shape)

7. Electromagnetic field is an extended (actually continuous) system, there-
fore we must learn how to understeand eigenmodes of large system.
Coupled oscillators transformed to a system of independent, de-coupled
eigenmodes.

8. Any harmonic oscillator can be described by so called creation and ani-
hilation operators. Harmonic oscillator via the algebraic method.

9. Follows quantization of the radiation field; photons

10. Evaluation of the transmissin rate for the emission proces

11. Spontaneous and Stimulated Emission

Go to list of topics
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1 Time dependent Q.M. illustrated on the

two-well problem

Go to list of topics

Figure 1: Above: Well with 1 bound state; Below: Two wells. System
(particle) placed in a state which is not an eigenstate
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The two eigenstates in each of the isolated wells are ϕ1 and ϕ2.

The static eigenstates of the particle confined to both of the wells are approx-
imated by

ψ+ =
1√
2

(ϕ1 + ϕ2)

ψ− =
1√
2

(ϕ1 − ϕ2)

clearly,

ϕ1 =
1√
2

(ψ+ + ψ−)

ϕ2 =
1√
2

(ψ+ − ψ−)

The states ψ+, ψ− are eigenstates of the Hamiltonian, but ϕ1, ϕ2 are not, they
are eigenstates for each isolated well. Go to list of topics
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If at t = 0 the system is brought into the state ϕ1,

Ψ(t = 0) = ϕ1 =
1√
2

(ψ+ + ψ−)

then at any other later time

Ψ(t) =
1√
2

(
ψ+e

iE+t/h̄ + ψ−e
iE−t/h̄

)
This can be rewritten schematically as

Ψ(t) = C(t)
(
ψ+ + ψ−e

iωt
)

so that we can see immediately that for

tn = n
π

ω

the Ψ(tn) will be a multiple of ϕ1,i.e.concentrated to the left, for even n, and a
multiple of ϕ2,i.e.concentrated to the right, for odd n. At general times there
would be a continuously changing distribution between the two regions. List

of topics
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Figure 2: Above: 2 isolated states in two equal potential wells ; starting in
left well - oscillations. Below: Many states in two potential wells; starting
in left well - decay Go to list of topics
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2 Time-Dependent Schrödinger Equation

Go to list of topics

The time-dependent Schrödinger equation

i h̄
∂

∂t
| ψ(t) 〉 = H(t) | ψ(t) 〉 (3)

is very often solved via a transformation to the matrix formulation. The matrix
formulation arises from expansion of the unknown wavefunction | ψ(t) 〉 in a
set of basis functions | φi 〉 , much in analogy with Fourier series or expansions
using orthogonal polynomials

| ψ(t) 〉 =
∑

αi(t) | φi 〉 (4)

The unknown quantities to be found are the expansion coefficients, which form
a vector. In this formulation, the time-dependent Schrödinger equation (eq.
(3) above) is replaced by a set of coupled differential equations.
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The system of coupled equations is conveniently expressed by matrix notation

i h̄
d

dt


α1

α2

.
αn

 =


H11(t) H12(t) ... H1n(t)
H21(t) H22(t) ... H2n(t)
... ... ... ...

Hn1(t) Hn2(t) ... Hnn(t)



α1

α2

.
αn


where

Hij(t) = 〈 φi | H(t) | φj 〉
This can also be written as

i h̄


α̇1

α̇2

.
α̇n

 =


H11(t) H12(t) ... H1n(t)
H21(t) H22(t) ... H2n(t)
... ... ... ...

Hn1(t) Hn2(t) ... Hnn(t)



α1

α2

.
αn


which is a short-hand notation for

i h̄ α̇k =
∑
i

Hki(t) αi

Go to list of topics

11



3 Perturbation theory for the Time-dependent

Schrödinger Equation

Go to list of topics

To apply the perturbation theory, we must identify the small additional energy.
It is usually a Hamiltonian H(t), which differs only slightly from well known
Hamiltonian H0

H(t) = H0 + H ′(t) (5)

If the H ′(t) were not present, and chosing then as | φk 〉 the eigensolutions of

H0 | φk 〉 = Ek | φk 〉 (6)

the matrix for H(t)→ H0 would be diagonal with the eigenenergies Ek on the
diagonal. The solutions for the the αk(t) would be then very simply

αk(t) = e−iEkt/h̄ (7)
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and for usual stationary states only one of the αk(t) would be different from
zero. Since the probability Pa of the system being in a state a is

Pa(t) = |αa(t)|2

it means that the system with probability 1 is in that state a, and with 0 in
any other state, i.e.

|αk(t = 0)| = δka (8)

If the perturbation really is small, the |αa(t)| remains ≈ 1 for all times t, while
all others remain close to zero.

We will thus use the so called perturbation theory, an approximate method to
solve the system of equations

i h̄ α̇k =
∑
i

Hki(t) αi

while keeping
|αa(t)| ≈ 1 −→ αa(t) = 1

and preserving Go to list of topics

|αk(t = 0)| = δka −→ |αk(t > 0)| ≈ 0 for k 6= a
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To work with these assumptions we make a substitution αk(t)→ ck(t) exp(−iEk

h̄
t).

Inserting this into the last equation

i h̄ α̇k =
∑
i

Hki(t) αi

we get (using d/dt(c exp(−iEt)) = ċ exp(−iEt) +−iE c exp(−iEt) )

(i h̄ ċk + Ek ck) exp(−iEk
h̄
t) =

∑
i

H0
ki ci exp(−iEi

h̄
t) +

∑
i

Hki(t) ci exp(−iEi
h̄
t)

With H0
ki = Ekδki ωka =

Ek − Ea
h̄

(9)

i h̄ ċk + Ek ck = Ek ck +
∑
i

H ′ki(t) ci exp(i
Ek − Ei

h̄
t)

i h̄


ċ1

ċ2

.
ċn

 =


H ′11(t) H ′12(t)eiω12t ... H ′1n(t)eiω13t

H ′21(t)eiω21t H ′22(t) ... H ′2n(t)eiω2nt

... ... ... ...
H ′n1(t)eiωn1t H ′n2(t)eiωn2t ... H ′nn(t)



c1

c2

.
cn


Go to list of topics
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Taking the perturbation theory assumptions

|αa(t)| ≈ 1 |αk 6=a(t > 0)| ≈ 0 −→ |αk(t = 0)| = δka

the above matrix system of coupled equations decouple - we get independent
equations for each ck(t)

i h̄
d

dt
ck(t) = Hka(t)e

iωkat (10)

where we made a substitution αk(t)→ ck(t) exp(−iEk

h̄
t).

We say that the original assumption about the coefficients is a ’zero-th order
approximation, thus the superscript (0),

c
(0)
k = δka (δ(k−a)) (11)

while the above equation is the first order, thus we rewrite it

ċ
(1)
b =

1

ih̄
H ′e(iωbat) (12)

A detailed description of perturbation theory pictures it as an iterative process.
Each order is obtained by applying the preceeding order of the approximation.
Go to list of topics
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Equation of the form ċ = f(t) is easily solved by integration

c
(1)
b (t) =

1

ih̄

∫ t

tb

H ′e(iωbat
′)dt′ H ′(t) ≡ H ′ (13)

So the transition probability for going from a state ’a’ to a state ’b’ is defined
like Go to list of topics

Pba(t) = |c(1)
b (t)|2 (14)

Now we evaluate the integral in eq.(13), which is elementary for a constant
potential: Go to list of topics

c
(1)
b (t) = H ′ba

1

ih̄

∫ t

t0
eiωbatdt ; t0 = 0

= H ′ba
1

ih̄

1

iωba
(eiωbat − 1)

= − H ′ba
h̄ωba

(eiωbat − 1)

(15)
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and rearrange (eiωt − 1) (in the following: ωba −→ ω )

e(iωt) − 1 = e(iωt
2

)
[
e(iωt

2
) − e(−iωt

2
)
]

= 2ie(iωt
2

) sin
ωt

2

Inserting this back into eq.(13)

c
(1)
b (t) =

1

ih̄

∫ t

t0
H ′eiωt

′
dt′ (16)

|c(1)
b (t)|2 =

1

h̄2 |H
′
ba|2F (t, ω) (17)

where the phase factor reduces to its absolute value one.

Go to list of topics
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4 Dirac delta-function

Go to list of topics

It is easy to find that the ’F’ is a function of t and ω, and for each time ’t’ it
is equal to

F (t, ω) = 4 ·
sin2 ωt

2

ω2

= 4 · t
2

4
·

sin2 ωt
2

ω2t2

4

= t2 · sin2 x

x2
; x =

ωt

2
(18)

It can be seen that the function F (ω, t) for larger and larger t approaches the
shape of the Dirac delta-function, (see the drawing). (Animated on the www)
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Approaching the δ-function with increasing t: Go to list of topics

F (ω, t) = 4 ·
sin2 ωt

2

ω2
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Trying to integrate the function ’F’ over ω shows this

t2
∫ ∞
−∞

sin2 x

x2
dω = 2t

∫ ∞
−∞

sin2 x

x2
· d(

ωt

2
)

= 2t
∫ ∞
−∞

sin2 x

x2
dx

= 2πt

(19)

that for large t it really behaves as

F (t, ω) =
sin2 ωt

2

(ω
2
)2
−→ 2πtδ(ω) (20)

The summation over all the states used for the expansion can be assumed to be
replaced by the integration over ω or the energy E = h̄ω. This however needs
to determine the factor ρ(E) which accounts for the density of states. Since
the ’F’ approaches delta-function, we only need the density of states close to
the final state b:
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P̄ba(t) =
1

h̄2

∫ Eb+η

Eb−η
|H ′ba|2F (t, ω)ρ(E)dE (21)

and also integration over dω gives

∫
δ(ω)dω =

∫
δ(E)dE

δ(ω) = δ(E) · dE
dω

= h̄δ(E − Eb)
(22)

Go to list of topics
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5 Fermi Golden Rule

Go to list of topics

The final result is

Pba(t) =
1

h̄

∫ Eb+η

Eb−η
2πt|H ′ba|2δ(E − Eb)ρ(E)dE

=
2π

h̄
t| < b|H ′|a > |2ρ(Eb)

(23)

The derivation of the above formula has been based on the assumption of a
small perturbation. It shows that the probability of transition to the state b
or states close to b increases linearly with time. Thus the rate of probability
change per time is given by

dPba
dt

= Wba =
2π

h̄
| < b|H ′|a > |2ρ(Eb) (24)

This result is known as Golden Rule formula or Fermi Golden Rule.
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6 Constant rate and exponential decay

Go to list of topics

Fermi golden rule gives a constant rate

dPf
dt

= w (25)

or if we consider the probability decrease to find the system in the original
state,

dPi
dt

= −w (26)

If this, instead of a definition, is taken as a differential equation

Pi = P0 − wt (27)

can quickly become negative.However, one can quite easily realize that the
correct differential equation must be

dPi
dt

= −wPi (28)
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since the loss of probability must be proportional to ’how much is left’, i.e. the
Pi itself.It can also be guessed from the differential equations of Q.M. (leading

to the
dPf

dt
) , since they contained the amplitude, which we replaced by 1.

The last differential equation leads to the well known exponential decay, since
its solution is

Pi = e−wt (29)

since Pi(t = 0) = 1

Go to list of topics
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7 Line width from exponential decay

Go to list of topics

In the equation (10) the expansion coefficient of the initial state α0(t)→ 1 for
all times leads to the delta function for energy (frequency). In order to take
into account the flow of probability from the initial state 0, the relation

αk(t) = δka

when working with the time dependent problem must be changed to

|αk(t)| = δka exp(−w
2
t)

where w is the constant rate factor obtained in the perturbation theory.

If we take into account the result of previous section 6, we have |c0(t)| →
exp(−wt/2). Inserting this into equation (10), the integrals can still be per-
formed, but the expressions which were found to converge to the δ-function in
frequency (energy) for time going to infinity are not obtained. The term∫

Vbae
iωbatdt
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leading to

−Vba
1

ωba
(eiωbat − 1)

which has been shown to lead to δ-function like behaviour when integrated
over ω is now replaced by

ei(ω−ωba)te−wt/2 − 1

i(ω − ωba)− w
2

at large times t this leads to∣∣∣∣∣ 1

i(ω − ωba)− w
2

∣∣∣∣∣
2

=
1

(ω − ωba)2 + 1
4
w2

The rate, which has the dimension of frequency becomes the energy width

Γ = h̄w

when multiplied by h̄. the so called Lorentz shape of the line,

I(E) ≈ I0

(
Γ
2

)2

(E − E0)2 +
(

Γ
2

)2 (30)
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Thus a more realistic treatment than the perturbation theory with constant
decay rate leads to the natural width of the energy spectrum of the ejeced
photons as observed. This behaviour has been illustrated in our Golden Rule
Simulator program Go to list of topics
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8 Generally on quantum treatment of extended

systems - fields.

Go to list of topics

The system to be considered consists of an atom and the electromagnetic field.

The field has in principle infinitely many degrees of freedom, i.e. the values of
field variables in each point of space.

The electromagnetic field can be treated by wave equations, it is thus a sort
of harmonic system. The energy of a finite harmonic system can always be
transformed to a sum of independent harmonic oscillators, each of them is in
fact the eigenmode.

Each harmonic oscillator can be then described using the equations for har-
monic oscillator, with the algebraic method and number of quanta states - The
creation and annihilation operators - click 10.

The normal modes or eigenmodes for a general harmonic system are discussed
in the section 9.
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The prescription

1. identify the eigenmodes

2. quantize each of the modes as independent harmonic oscillator

3. use quanta of eigenmodes

4. express the general coordinates of the system using the eigenmode co-
ordinates (inverse transformations to those discussed in section 9. Each
coordinate χi will then be replaced by its combination of the creation
and annihilation operators as discussed in section 10.

Go to list of topics
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9 Normal Coordinates for coupled harmonic

vibrations.

Go to list of topics

Transformation to normal coordinates can be described as follows:

Take the total energy, x represents the vector of all coordinates, xT represents
the transposed vctor, M is the mass matrix, V is the matrix which gives the
potential energy, including the couplings.

Note that the mass matrix is written in a very general form, most often this
matrix would be diagonal.

E =
1

2
ẋTMẋ +

1

2
xTVx

First we transform the kinetic energy to a ”spherical” form
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1

2
ẋTMẋ =

1

2
η̇TSTMSη̇ =

1

2
η̇Tη̇

This transformation does not conserve the lengths. The N-dimensional ellip-
soid is transformed to an N-dim. sphere.

STMS = 1

If Mij = mjδij, it is quite easy to find Sij = mj
−1/2δij, Transformation S

simplifies the kinetic energy, but the potential remains complicated. Therefore
we use one more, from η to χ,

1

2
xTVx =

1

2
ηTSTVSη =

1

2
χTU−1STVSUχ

Transformation η = Uχ is a simple rotation obtained by diagonalizing the
matrix of potential energy: Go to list of topics

(
U−1STVSU

)
ij

= Ω2
j δij = Wij
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Therefore we took U−1 = UT . We can see that the ” length ” is conserved.

1

2
η̇T η̇ =

1

2
χ̇TU−1Uχ̇ =

1

2
χ̇T χ̇

E =
1

2
ẋTMẋ +

1

2
xTVx =

1

2
χ̇Tχ̇+

1

2
χTWχ

This expression however is a sum over the new mutually independent degrees
of freedom, since W is diagonal.

1

2
χ̇T χ̇+

1

2
χTWχ =

N∑
i=1

(
1

2
χ̇2

i +
1

2
Ω2

i χ
2
i

)

N∑
i=1

1

2
miẋ

2
i +

1

2

N∑
i,j=1

Vijxixj →
N∑
i=1

(
1

2
χ̇2

i +
1

2
Ω2

i χ
2
i

)

Go to list of topics
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Example Go to list of topics

A string of balls of mass m connected by springs of equal spring constant
is described by displacements ui. We can label the displacements ui = u(xi)
where xi is the equilibrium position of the i-th ball. In the limit of infinitisemal
small balls and short springs this would then lead to a ”wave equations” for a
continuous elastic string, with continuously observed displacement u(x).

The total energy is:

1

2

∑
i

m (u̇(xi))
2 +

1

2
k
∑
i

(u(xi)− u(xi + 1))2 +
1

2
ku(x1)2 +

1

2
ku(xN)2

The last two terms represent the fixed end springs. The matrix M is simply
a diagonal matrix with m as all diagonal elements. The matrix V is a band
matrix (below).

The transformation from u(xi) to χi can also be reversed. The reversed trans-
formation in this case simply consists of eigenvectors of the matrix V, so that
each of the eigenmodes is simply given by a function of time

χk(t) = χk0e
iΩkt

34



where χk0 is the amplitude, and the actual displacements for the k-th mode
can be written as

uk(xi) = Ski χk(t) = Ski χk0e
iΩkt

where Ski is the i-th component of the k-th eigenmode with the frequency Ωk

The matrix V has the form

+2 −1 0 0 0 ... 0
−1 +2 −1 0 0 ... 0

0 −1 +2 −1 0 ... 0
0 0 −1 +2 −1 ... 0
0 ... ... ... ... ... ...
0 ... ... ... +2 −1 0
0 ... ... ... −1 +2 −1
0 ... ... ... 0 −1 +2


The eigenvectors - giving the eigenmodes - are eigenvectors of this band matrix.
The modes are ”standing waves”, in the string limit. For infinite system -
traveling waves. leads to Fourier expansions for fields ) see (link) A(r)
expressed in eigenmodes Go to list of topics
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Figure 3: Components of eigenmodes at positions xi. For N = 20 first and
second node, fo N = 100 nodes 1,2, and 6. Go to list of topics
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10 Algebraic Method for Harmonic Oscilla-

tor.

Go to list of topics

In this section we show how one can work with the harmonic oscillator intro-
ducing so called ladder operators which move from state to state, the states
being separated by the same ’quantum of energy’.

The classical hamiltonian can be transformed:

1

2m
p2 +

mω2

2
q2 transforms to

h̄ω

2

(
P 2 +Q2

)

P =

√
1

h̄mω
p Q =

√
mω

h̄
q

With this the commutator
[ q, p ] = ih̄

becomes
[Q,P ] = i
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This simplifies the equation and brings it into a form where the energy is
expressed in h̄ω.

The main transformation, however, is to go over to linear combinations of P
and Q

a =
1√
2
Q +

i√
2
P and a+ =

1√
2
Q − i√

2
P

By a very simple algebra we find that for their commutator[
a, a+

]
= 1

and the energy is transferred to Go to list of topics

h̄ω

2

(
P 2 +Q2

)
→ h̄ω

2

(
a a+ + a+a

)
Using the commutator a a+ − a+a = 1 we finally get

H = h̄ω a+a +
h̄ω

2
= h̄ω N +

h̄ω

2
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where we already include that

N = a+a

will be a number operator.

Why number? Let us play with [ a, a+ ] = 1 or alternatively a a+ − a+a = 1
and the operator N . We quickly derive that[

N, a+
]

= a+ and [N, a ] = −a

This is done simply by writing out Go to list of topics[
N, a+

]
= Na+−a+N = (a+a) a+−a+(a+a) = a+(a a+−a+a) = a+

[
a, a+

]
= a+

Since H = h̄ω N + h̄ω
2

we also have[
H, a+

]
= h̄ω a+ and [H, a ] = − h̄ω a

These are the last equations which bring the physical interpretation.

If there is a Q.M. state ψ(q)→ |ψ〉 such that

H |ψ〉 = E |ψ〉
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then

H (a |ψ〉 ) = a H |ψ〉 − h̄ω a | ψ〉 = a E |ψ〉 − h̄ω a | ψ〉 = (E − h̄ω ) (a |ψ〉 )

that means that (a |ψ〉 ) is also an eigenstate. It has energy lower by h̄ω .
This we can continue again and again, getting eigenstates for

E − h̄ω , E − 2 h̄ω , E − 3 h̄ω , E − 4 h̄ω , E − 5h̄ω .......

Since this cannot go on infinitely, we get finally a state such that

a |ψ0 〉 = 0

We quickly verify that this state has Go to list of topics

E0 =
h̄ω

2

further that the same thing is possible with a+ only with opposite sign, so that
we get energies

E0 , E0 + h̄ω , E0 + 2 h̄ω , E0 + 3 h̄ω , E0 + 4 h̄ω , E0 + 5h̄ω .......
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Each of the eigenstates is an eigenstate of both H and N with obvious number
of quanta. Therefore we call a+ and a creation and annihilation operators.
They make states with one more ore one less quantum h̄ω

We can complete this treatment by a complete solution for the wavefunction:

a |ψ0 〉 = 0 a =
1√
2

(Q + i P ) P = −i ∂
∂Q

Thus, writing |ψ0 〉 −→ ψ0(Q)

a |ψ0 〉 = 0 −→
(
Q +

∂

∂Q

)
ψ0(Q) = 0

The solution of 1. order differential eq. to the left is easy

ψ0(Q) = C0 e
−Q2/2

and using the expression for a+ and the |ψn 〉 Go to list of topics

ψ1(Q) = C1

(
Q − ∂

∂Q

)
e−Q

2/2 ψ2(Q) = C2

(
Q − ∂

∂Q

)(
Q − ∂

∂Q

)
e−Q

2/2

and n times for general |ψn 〉. cf. recursion relations for Hermite polynomials.
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11 Electromagnetic fields

Go to list of topics

In atomic physics we prefer to work in Gaussian units, where the strengths of
the fields have the same physical dimension. In vacuum ~D = ~E and ~H = ~B

The classical electromagnetic field is described by electric and magnetic field
vectors ~E and ~B , which satisfy Maxwell’s equations:

∇ · ~E = 4πρ (31)

∇ · ~B = 0 (32)

∇× ~E = −1

c

∂ ~B

∂t
(33)

∇× ~B =
1

c

∂ ~E
∂t

+ 4π ~J

 (34)
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The electric field ~E and magnetic field ~B can be generated from scalar and
vector potentials φ and ~A by

~E(~r, t) = −∇φ(~r, t)− 1

c

∂

∂t
~A(~r, t) (35)

~B(~r, t) = ∇× ~A(~r, t) (36)

The potentials are not unique, observable field strengths ~E(~r, t) and ~B(~r, t)
remain the same when the potentials are changed by

~A(~r, t)→ ~A(~r, t) +∇λ(~r, t)

φ(~r, t)→ φ(~r, t)− ∂λ(~r, t)

∂t

where λ(~r, t) is any scalar field. Go to list of topics

This property is called gauge invariance. It allows us to choose ~A so that

∇ · ~A = 0 (37)
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When ~A satisfies this condition, we are using the ”Coulomb Gauge”. From
Maxwell’s equations (without sources) we can show that ~A satisfies the wave
equation

∇2 ~A− 1

c2

∂2 ~A

∂t2
= 0 (38)

Also φ, ~B and ~E satisfy wave equations, but for radiation problems in empty
space (vacuum) we have the potential φ = 0 since there are no charges there.

The energy stored or contained in the electromagnetic field is given by the
formula

Hfie`d =
1

8π

∫
d3r (E · E + B ·B) (39)

Eigenmode in ”infinite box” - a plane wave solution of equations (37) and (38)
, with angular frequency ω (i.e. the frequency ν = ω/2π) is given by the vector

potential ~A Go to list of topics

~A(ω; r, t) = 2 ~A0(ω) cos(k · r − ωt+ δω)

= ~A0(ω) [exp[i(k · r − ωt+ δω)] + c.c.] (40)
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12 The Quantum Theory of Electromagnetic

Field

Go to list of topics

The energy stored or contained in the electromagnetic field is given by the
formula

Hfie`d =
1

8π

∫
d3r (E · E + B ·B) (41)

Gaussian units, the electric and magnetic field strengths have the same physical
dimension.

The energy of extended system can be written as a sum of energies in eigen-
modes. The eigenmodes in ”infinite box” are the plane waves.

The sum over plane waves gives the form of Fourier series - for the operator of
the vector potential ~A(~r)

~A(~r) =
∑
~kλ

√
2πh̄c2

V ωk
ê~kλ

(
a~kλe

i~k·~r + a†~kλe
−i~k·~r

)
(42)
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The sum includes all the possible values of the propagation vector ~k and also
the two possible polarizations λ = 1, 2.In a finite box the boundary conditions
lead to quantization of ~k as discussed in ”Density of states” section. Periodicity
on the box walls gives allowed values (nx, ny, nz)

2π
L

where ni are integers.

The dimensional factor √
2πh̄c2

V ωk

is determined by the necessity that Go to list of topics

〈Φ|Hrad |Φ〉 = 〈Φ|
∫
V
H dV |Φ〉 = 〈Φ|

∫
V

(E2 +B2)

8π
dV |Φ〉 (43)

must give the total energy of the electromagnetic field inside the box, when
written as sum over quantized eigenmodes

〈Φ|Hrad |Φ〉 = 〈Φ|
∑
~kλ

H~kλ |Φ〉 = 〈Φ|
∑
~kλ

h̄ωka
†
~kλ
a~kλ |Φ〉 (44)

This is done using

~B(~r) = i~k × ~A(~r) ~E(~r) = i
ωk
c
~A(~r) ωk = kc
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The operators a~kλ, a
†
~kλ

and N~kλ are ”annihilation”, is called ”creation” and
number operators for photons in each eigenmode.

One ignores the term 1
2

∑
~kλ h̄ωk that refers to ”zero point energy” (infinite

number of modes - Casimir effect).

The state of the field can be written as a direct product of the vector states
for each of the oscillators Go to list of topics

|Φ〉 →
∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 = |· · ·〉 · · ·

∣∣∣n~kλ〉 · · · ∣∣∣n~k′λ′〉 · · · (45)

For such state vectors:

a~kλ

∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 =
√
n~kλ

∣∣∣· · ·n~kλ − 1 · · ·n~k′λ′ · · ·
〉

(46)

a†~kλ

∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 =
√
n~kλ + 1

∣∣∣· · ·n~kλ + 1 · · ·n~k′λ′ · · ·
〉

(47)

N~kλ

∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 = n~kλ

∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 (48)

H~kλ

∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 = h̄ωkn~kλ

∣∣∣· · ·n~kλ · · ·n~k′λ′ · · ·〉 (49)

where

n~kλ = 0, 1, 2, 3, . . . ,∞
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13 Density of States

Go to list of topics

We consider the electromagnetic field enclosed in a box with volume V . For a
finite volume there is a discrete number of modes satisfying the imposed bound-
ary conditions. Therefore the sum over final states is an ordinary sum. As this
volume approaches infinite size, the summation over ~k, will be approaching an
integral.

The density of states factor is found from performing such a limiting process,
using following relations.

The summation will be replaced by an integral∑
~k

−→
∫
ρ(~k) d~k (50)

ρ(~k) is the density of states in the K-space.

The allowed discrete values of ~k are obtained by combinations of components

k(nx)
x =

2π

L
nx k(ny)

y =
2π

L
ny k(nz)

z =
2π

L
nz (51)
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where the numbers nx,ny,nz are positive and negative integers. It means that

each of the allowed vectors ~k occupies a small volume of the K-space

∆kx∆ky∆kz =
(

2π

L

)3

=
(2π)3

V
(52)

The density of states in the K-space is thus a constant (i.e. one per the above
small k-space volume), and the above relation can be written as

∑
~k

−→ V

(2π)3

∫
d~k (53)

Since the derivation of the golden rule assumes integration over frequencies, or
energies, we shall transform this integral over momenta (i.e. wave numbers k)
to integral over energy, Go to list of topics

V

(2π)3

∫
d~k −→

∫
ρ(E)dE

V

(2π)3

∫
d~k =

V

(2π)3

∫
Ωk

dΩk

∫
k2 dk =

∫
Ωk

∫ [
V

(2π)3
k2 dk

dE
dΩk

]
dE (54)
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so that the ρ(E) can be identified as

V

(2π)3
k2 dk

dE

∫
Ωk

dΩk (55)

If the processes depend on the direction of the wave vector, which is true
in photon emission case, we must keep the angular information inside of the
density of states, and perform the angular integration afterwards.

We must now evaluate the above density of states in terms of energy only,
using

k =
ω

c
E = h̄kc

Setting these relations of k and E, we obtain the expression for ρ(E)

ρ(E) =
V

(2π)3
· E2

(h̄c)3
dΩk =

V

(2π)3
· 1

h̄
· ω

2

c3
dΩk (56)

Go to list of topics
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14 Charged Particles In an Electromagnetic

Field

Go to list of topics

The Hamiltonian of a spinless particle q and mass m in an electromagnetic
field is

H =
1

2m
(~p− q

c
~A)2 + qφ (57)

where p is the generalized momentum of the particle. The Hamiltonian of an
electron of mass m in an electromagnetic field is given by the above equation,
with q = −e. In order to describe a hydrogenic atom, as an example, in
an electromagnetic field we must also take into account the presence of the
nucleus, of charge Ze and mass M . We must include in the Hamiltonian the
electrostatic Coulomb potential −Ze2

r
between the electron and the nucleus.

This electrostatic interaction is an additional potential energy term, while
the radiation field which perturbs the atom is described in terms of a vector
potential ~A alone
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The time dependent Schrödinger equation for a hydrogenic atom in an elec-
tromagnetic field then reads

ih̄
∂

∂t
ψ(r, t) =

[
1/2m(−ih̄∇+ e ~A)2 − Ze2

(4πε0)r

]
ψ(r, t) (58)

where we have written p = −ih̄∇ . Because of the gauge condition ∇ · ~A = 0,
we have

∇ · ( ~Aψ) = ~A · (∇ψ) + (∇ · ~A)︸ ︷︷ ︸
0

ψ = ~A · (∇ψ) (59)

so that ∇ and ~A effectively commute. Then

ih̄
∂

∂t
ψ(r, t) =

[
−h̄2

2m
∇2 − Ze2

4πε0r
− ih̄e

m
~A · ∇+

e2

2m
~A2

]
ψ(r, t) (60)

In ”weak field case” the term with ~A2 is small compared with the linear term
~A .

Go to list of topics
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15 The Hamiltonian of Interaction

Go to list of topics

Now, we study the interaction between radiation and atomic system. In this
case the total Hamiltonian of the system is written as

H = Hatom +Hrad +HI

= H0 +HI (61)

Hatom is the Hamiltonian of the atomic system and Hrad is the Hamiltonian
of the free radiation field. HI shows the Hamiltonian of the interaction effect
between two previous systems. By replacing HI , we replace ~p by ~p + e/c ~A in
Hatom we can construct HI as

HI =
e

mc
~p · ~A+

e2

2mc2
~A2 HI →

e

mc
~p · ~A (62)

As we see the first term of the eq.(62), is proportional to ~A that contributes in
the transitions involving the emission or absorption of a single photon and the
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next term that’s proportional to ~A2 contributes in the transitions involving the
emission or absorption of two photons. We can also see that the first term; ~A;
contains just one creation or annihilation operator, but ~A2 contains the terms
as : a~kλa~kλ , a

†
~kλ
a†~kλ , a~kλa

†
~kλ
, a†~kλa~kλ which correspond to absorption of two

photons; emission of two photons. Here we study the first term. The proba-
bility for a transition involving two photons contains e4 while this probability
for one photon is proportional to e2. This extra power of e2 will lead to one
more power of α ' 1/137.

The eigenfunctions of the unperturbed Hamiltonian H◦ are direct products of
the atomic and radiation wave functions

ψatomψrad = |ψa;n1, n2, . . . , ni, . . .〉 (63)

where ψa is the wave function of the atomic Hamiltonian, ni ≡ n~kiλi is the

wave function describing the mode ~kiλi in the radiation field.

Go to list of topics
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16 Emission of Radiation By an Excited Atom:

Go to list of topics

Here we study the emission of a single photon by an excited atom, and we use
the time-dependent perturbation theory to find the transition probability for
atom.If we consider |i〉 as the initial state and |f〉 as the final state, then the
probability per unit time for a transition by the emission of a single photon
from the initial to final state is given by

Wi→f (~k, λ) =
2π

h̄
|〈f |Hp|i〉|2 ρ(Ef ) (64)

where h̄~k denotes the momentum and λ denotes the polarization, and Hp is
the perturbing Hamiltonian. This equation is known as Fermi’s Golden Rule.

The perturbing Hamiltonian for this process is

Hp = − e

mc
~p · ~A (65)
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by referring to the eq.(42), we have

Hp = − e

mc

∑
~kλ

√
2πh̄c2

V ωk
~p · ê~kλ

(
a~kλe

i~k·~r + a†~kλe
−i~k·~r−

)
(66)

The initial and final states |i〉; |f〉;, i.e. the unperturbed wavefunctions before
and after the emission of one photon is

|i〉 = |a〉
∣∣∣· · ·n~kλ · · ·〉 (67)

|f〉 = |b〉
∣∣∣· · ·n~kλ + 1 · · ·

〉
(68)

The energy difference of these two states is

Ef − Ei =
(
Eb + n~kλh̄ωk + h̄ωk

)
−
(
Ea + n~kλh̄ωk

)
= Eb − Ea + h̄ωk (69)

For spontaneous emission, no photon is present in the initial state: n~k → 0
and (n~k + 1)→ 1

Go to list of topics
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17 The matrix element reduction

Go to list of topics

Inserting the final and initial states and the Hamiltonian into the matrix ele-
ment, we obtain

〈f |Hp| i〉 = − e

mc

√
2πh̄c2

V ωk

〈
b
∣∣∣~p · ê~kλe−i~k·~r∣∣∣ a〉√n~kλ + 1 (70)

For spontaneous emission, no photon is present in the initial state: n~k → 0
and (n~k + 1)→ 1

By considering the eq.(70) we can transform the Golden Rule formula eq.(64)
for spontaneous emission

Wi→f (~k, λ) =
2π

h̄

(
e

mc

)2
(

2πh̄c2

V ωk

) ∣∣∣〈b ∣∣∣~p · ê~kλe−i~k·~r∣∣∣ a〉∣∣∣2 ρ(Ef ) (71)
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18 Dipole Approximation

Go to list of topics

An important simplification is obtained by applying the so called dipole ap-
proximation, considering the case kr � 1. This means that the wavelength of
the emitted photon is much larger than atomic dimension. The electric dipole
approximation is obtained by replacing, to a good approximation,

ei
~k·r ≈ 1

i.e.
〈b
∣∣∣~pe−i~k·~r∣∣∣ a〉 → 〈b |~p| a〉

This approximation is limited by these requirements:

λ� 1Å and h̄ω � 10 keV.

Here we also derive the relation between matrix element of momentum and
coordinate using the following commutation relations[

r, p2
]

= p [r, p] + [r, p] p = 2ih̄p (72)
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[~r,Hatom] =
ih̄

m
~p (73)

we change the matrix element of the momentum to a matrix element of the
special coordinate of the atomic electron

〈b | ~p | a〉 =
m

ih̄
〈b |[~r,Hatom]| a〉

=
im

h̄
(Ea − Eb) 〈b |~r | a〉

= imωab 〈b |~r | a〉 (74)

Go to list of topics
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19 Detailed Evaluation of Emission rate

Go to list of topics

For spontaneous emissionis that, we first perform the summation over the two
possible polarizations by considering the following figure, fig.4. The figure
shows that placing for a moment the z-axis in the direction of the wavevector
~k, the directions of the polarization vectors ê~kλ, for λ = 1, 2 can then define
the x- and y-axes, so that

∑
λ=1,2

∣∣∣〈b ∣∣∣~p · ê~kλe−i~k·~r∣∣∣ a〉∣∣∣2 =
∣∣∣〈b ∣∣∣~pe−i~k·~r∣∣∣ a〉∣∣∣2 (sin2θcos2φ+ sin2θsin2φ)

=
∣∣∣〈b ∣∣∣~pe−i~k·~r∣∣∣ a〉∣∣∣2 (sin2θ) (75)

where the angle θ is the angle between the wave number ~k and the momen-
tum vector of the electron (if it were classically defined). Conversely, after
performing this reduction, we can think that our z-axis is always placed along
the direction of ~p, so that we can identify the angle θ with the polar angle of
the photon emission to be integrated over.
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Figure 4: As the z-axis is for the moment in the direction of the wavevector ~k, the directions

of the polarization vectors ê~kλ (perpendicular to each other and to the vector ~k, can then

define the x- and y-axes. The angle θ is the angle between the wave number ~k and the
momentum vector of the electron ~p.

Go to list of topics
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By using the eq.(55) and dipole approximation discussed above, we can eval-
uate the integral over all emission angles Ωk,(

1

τ

)
a→b

=
e2

2πm2

ωk
h̄c3

∫
|〈b | ~p | a〉|2 sin2θ dΩk (76)

where the integration angular variables are

dΩk = sin θ dθ dφ (77)

Note that in the above evaluations the volume V in ρ[Ef ] cancels the volume
in the field normalization factor √

2πh̄c2

V ωk

in equation (42).

The last equation eq.(76) then becomes Go to list of topics

(
1

τ

)
a→b

=
e2

2πm2

ωk
h̄c3
|〈b| ~p |a〉|2

∫
dφ

∫
sin2 θ sin θ dθ (78)
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The angular integration is easily seen to yield a factor 8π/3, so that finally(
1

τ

)
a→b

=
4ωabe

2

3h̄m2c3
|〈b| ~p |a〉|2 (79)

Further we use the relation between matrix element of momentum and coordinate
eq. (74) in section 18 〈b | ~p | a〉 = imωab 〈b |~r | a〉 and thus eq.(79) becomes

Wsp. em. =

(
1

τ

)
a→b

(80)

=
4e2ω3

ab

3h̄c3
|〈b |~r | a〉|2 (81)

=
4

3

(
ε◦
h̄

)(
h̄ωab
ε◦

)3

α3

∣∣∣∣〈b ∣∣∣∣ ~ra◦
∣∣∣∣ a〉∣∣∣∣2 (82)

a◦ = h̄2/me2 ε◦ = 2Ryd = e2/a◦ = 27.21 eV Go to list of topics
α = e2/h̄c = 1/137.04, the fine structure constant .
For one-electron hydrogenlike atoms (or ions), the life time of the transition of
2p −→ 1s of one photon is given by(

1

τ

)
2p−→1s

= 0.6× 109 Z4 sec−1 (83)
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20 Stimulated emission

Go to list of topics

For the case of stimulated emission, that is dependent on the number of photons
in the field (intensity), we must keep the

√
n~kλ + 1 term of the n~kλ initial

photon state and start from

Wi→f (~k, λ) =
2π

h̄

(
e

mc

)2
(

2πh̄c2

V ωk

)
(n~kλ + 1)

∣∣∣〈b ∣∣∣~p · ê~kλe−i~k·~r∣∣∣ a〉∣∣∣2 ρ(Ef ) (84)

The emission rate then becomes

Wst. em. =
(

1

τ

)
a→b

(85)

=
4

3

(
ε◦
h̄

)(
h̄ωab
ε◦

)3

α3 (nω + 1)

∣∣∣∣∣
〈
b

∣∣∣∣∣ ~ra◦
∣∣∣∣∣ a
〉∣∣∣∣∣

2

(86)

where nω represents the number of photons in the field, with the energy of
Eω = h̄ω.
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The last equation can be considered as a sum of two terms; one is proportional
to the number of photons in the field n~kλ, so it’s radiation field intensity-
dependent, and describes the stimulated emission; the other one (expressed by
number one in the paranthesis) is independent of the field intensity.

The term with is the said to account for the spontaneous emission contribution.

Go to list of topics
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21 Fermi Golden Rule Simulation

———- Go to list of topics ———- Time dependent wavefunction ———-
Model realization ———- The Hamiltonian of the model ———-

The physical problem: solve the time-dependent Schrödinger equation with
hamiltonian as in the derivations of the Fermi Golden Rule.

continuum of textbook derivation −→ quasicontinuum here, i.e. a set of
many equidistantly closely spaced levels.

The idea is to demonstrate how the line width is proportional to the density
of states and the strength of the coupling.

Only the couplings from the discrete states to continuum and back are nonzero,
have a constant value.
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22 Realization of the model

———- Start of the simulator part ———- Go to list of topics ———-

Figure 5: Schematic representation of the Energy levels

The figure 5 shows the energy levels: the single discrete level and the two
quasicontinua. Note that each has a different density of levels.
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———- Go to list of topics ———- Start of the simulator part ———-

The Hamilton operator matrix - see figure 7

Figure 6: Schematic representation of the population probabilities, drawn at
the energy levels
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23 The time-dependent wavefunction

———- Start of the simulator part ———- Go to list of topics ———-

The time-dependent wavefunction Ψ(t) is expanded in terms of the model
states ϕi(t) as

Ψ(t) =
∑
i

ci(t) ϕi(t)

with the initial condition

c1(0) = 1, c2(0) = 0, c3(0) = 0, · · · · ··

and inserted in the Schrödinger equation

ih̄
∂

∂t
Ψ(t) = H Ψ(t)

In the usual way this results in a set of coupled equations. The populations of
the states, i.e. the absolute value squared of the expansion coefficients ci(t) is
shown in fig. 6.
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Figure 7: Schematic representation of Hamiltonian Matrix

Go to list of topics

71



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

N1=61 V1=0        N2=121 V2=0.035      Sc=15.5877

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t

|a
2|

2

Figure 8: Decay in the simulator
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Overview of the topics
Time dependent QM- two-well problem Time-Dependent Schrödinger Equation
Perturbation theory for TDSE Dirac delta-function
Fermi Golden Rule Constant rate and exponential decay
Line width from exponential decay Quantum theory of extended systems - fields
Eigenmodes for coupled vibrations. Algebraic Method for Harmonic Oscillator.
Electromagnetic fields The Quantum Theory of Electromag. Field
Density of States Charged Particles In an Electromag. Field
The Hamiltonian of Interaction Emission of Radiation by an Excited Atom
The matrix element reduction Dipole Approximation
Detailed Evaluation of Emission rate Stimulated emission
Golden Rule Simulator part Time-Dependent Schrödinger

Equation in Simulator
One level in continuum

Final W = 1/τ result
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