\documentstyle[12pt]{article} \topmargin -.85in \oddsidemargin -.05in \textheight 10.2in \textwidth 6.5in \pagestyle{empty} \begin{document} \parskip 0cm \parindent 0cm \Large Unit of length is the Bohr radius: $$ a_0 = {\hbar^2 \over { m_e e^2 } } \left( \ \ = 4 \pi \epsilon_0 {\hbar^2 \over { m_e e^2 } } \ \ \right) $$ The first is in atomic units, second in SI-units. This quantity can be remembered by recalling the virial theorem, i.e. that in absolute value, half of the potential energy is equal to the kinetic energy. This gives us $$ {1 \over 2} {e^2 \over a_0 } = {\hbar^2 \over { 2 m_e {a_0}^2 } } $$ and if we accept this relation, we have the above value of $ a_0 $. The so called fine structure constant $$ \alpha = \frac{ e^2 } { \hbar c } $$ expresses in general the {\it weakness} of electromagnetic interaction. \vskip 0.7cm \centerline { \bf Some Constants and Quantities} \parskip 0.3cm \parindent 0.9cm $ v_0 = \alpha c = 2.187 10^{6}$ m s$^-1$ \ \ \ \ \ \ \ \ \ \ Bohr velocity $ a_0 = 0.529177 \ 10^{-10}$ m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Bohr radius $ \hbar = 0.6582 \ 10^{-15}$ eV s \ \ \ \ \ \ \ \ \ \ \ \ Planck's constant $k_{B} = 0.8625 \ 10^{-4}$ eV \char'27\hskip -0.2emK$^{-1}$ \ \ \ \ \ \ Boltzmann constant \vskip 0.3cm R = $N_{A} k_{B}$ $N_{A} = 6.0222 \ 10^{23}$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Avogadro's number \vskip 0.3cm $\mu_{B} = 0.579 \ 10^{-4}$ eV (Tesla)$^{-1}$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Bohr magneton \vskip 0.3cm \vskip 0.7cm \centerline { \bf Plank's formula} $$ \rho(\omega_{ba}) \ = \ \frac{\hbar \omega^3_{ba} }{\pi^2 c^3 } \ \frac{1} {e^{\hbar \omega/kT}-1} $$ %%%%Bohr magneton: %%%%$\mu_{B} = 0.579 \ 10^{-5}$ eV (Tesla)$^{-1}$ %%%%\vskip 0.8cm %%%%\vskip 5.0cm %%%%\parskip 0cm %%%%\parindent 0cm \end{document}