
Evaluating matrix elements of Coulomb repulsion

We calculate matrix element of Coulomb interaction
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with
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and
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using the multipole expansion

1

|~r1 − ~r2|
=

∑
LM

4π

2L + 1

rL
<

rL+1
>

Y ?
LM(r̂1)YLM(r̂2) (4)

where
r< = r1, r> = r2 for |~r1| < |~r2|
r< = r2, r> = r1 for |~r2| < |~r1|

Then this can be separated in several integrals
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with the notation
r̂1 −→ ( θ1 φ1 ) (6)

and the integrations ∫
dr̂1 −→

∫ π

0
sin θ1 dθ1

∫ 2π

0
dφ (7)

For s-states, when la = 0, ma = 0 each of the angular integrals simply give
√

4π and
cancel that factor in the first term.

What remains to be evaluated is the double integral∫
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which for hydrogen-like states reduces to elementary integrations.

EXERCISE: by expanding the inequalities, write out the two double integrals to be
evaluated.

Substitutions: ∫ ∞

0
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