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0.1 Boundary Value Problems

0.1.1 Angular-spectrum representations

• Consider a 3D scalar wave field û(r, t) in a linear, homogeneous, non-dispersive,
and isotropic medium.

• In source free regions of space, û(r, t) is a solution of the scalar wave equation(
∇2 − 1

c2
∂2

∂t2

)
û(r, t) = 0 (0.1.1)

where c is the phase velocity in the medium.

• To study monochromatic or quasi-monochromatic phenomena we Fourier de-
compose û(r, t):

û(r, t) =
1

2π

∫ ∞

−∞
u(r, ω)e−iωtdω. (0.1.2)

• Substitution of (0.1.2) in (0.1.1) shows that u(r, ω) satisfies the Helmholtz equa-
tion:

(
∇2 + k2

)
u(r, ω) = 0 ; k =

ω

c
(0.1.3)

• Let the source lie in the half-space z < 0, and let the field be known in the
plane z = 0 (Fig. 1).

z=0

z

Source

u  (x , y , 0)   is known

Figure 1: A source in the half-space z < 0 radiates a field that is assumed to be
known in the plane z = 0. The field in the half-space z > 0 is to be determined.

• Hereafter we consider only one single Fourier component of the field and write
for simplicity u(r) instead of u(r, ω).

• Through Fourier decomposition of u(r) with respect to x and y we have

u(r) =
(

1

2π

)2 ∫∞∫
−∞

ũ(kx, ky; z)e
i(kxx+kyy)dkxdky. (0.1.4)
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• It can readily be shown that

ũ(kx, ky; z) = U(kx, ky)e
ikzz (0.1.5)

so that he field in the half-space z > 0 is given by

u(r) =
(

1

2π

)2 ∫∞∫
−∞

U(kx, ky)e
ik·rdkxdky, (0.1.6)

k · r = kxx+ kyy + kzz (0.1.7)

kz =


√
k2 − k2

x − k2
y for k2 ≥ k2

x + k2
y

i
√
k2
x + k2

y − k2 for k2 < k2
x + k2

y.
(0.1.8)

• Equation (0.1.6) is called an angular-spectrum representation, since the field
u(r) is given as a sum of plane waves exp(ik · r) that propagate in various
directions ŝ, where ŝ = k/k.

• When k2 ≥ k2
x + k2

y, then exp(ik · r) is a homogeneous plane wave.

• When k2 < k2
x + k2

y, then exp(ik · r) is an inhomogeneous or evanescent plane
wave.

• An evanescent plane wave propagates in a direction normal to the z axis and
decays exponentially with increasing z.

• The amplitude U(kx, ky) of each individual plane wave in (0.1.6), called the
angular spectrum, can be determined by setting z = 0 in (0.1.6):

U(kx, ky) = F{u(x, y, 0)} =
∫∞∫
−∞

u(x, y, 0)e−i(kxx+kyy)dxdy. (0.1.9)

• Thus, the angular spectrum U(kx, ky) is the Fourier transform of the field in
the plane z = 0.

• If we know the normal derivative ∂u
∂z

of the field in the plane z = 0 (Fig. 2)
instead of u, then the field in the half-space z > 0 is given by

u(r) =
(

1

2π

)2 ∫∞∫
−∞

U ′(kx, ky)

ikz
eik·rdkxdky, (0.1.10)

where U ′(kx, ky) is the Fourier transform of ∂u
∂z

in the plane z = 0.
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∂
∂

z

u

z

z = 0

Source

is known

Figure 2: A source in the half-space z < 0 radiates a field whose normal derivative is
assumed to be known in the plane z = 0. The field in the half-space z > 0 is to be
determined.

• To distinguish between these two solutions, we denote them by uI and uII :

uI(r) =
(

1

2π

)2 ∫∞∫
−∞

U(kx, ky)e
ik·rdkxdky, (0.1.11)

U(kx, ky) =
∫∞∫
−∞

u(x, y, 0)e−i(kxx+kyy)dxdy, (0.1.12)

uII(r) =
(

1

2π

)2 ∫∞∫
−∞

U ′(kx, ky)

ikz
eik·rdkxdky, (0.1.13)

U ′(kx, ky) =
∫∞∫
−∞

[
∂u(r)

∂z

]
z=0

e−i(kxx+kyy)dxdy. (0.1.14)

• Note that we have made no approximations, so that both solutions are exact.
In other words, uI and uII are identical.

0.1.2 Rayleigh-Sommerfeld’s and Kirchhoff’s diffraction
integrals

• Using the convolution theorem for two-dimensional Fourier transform pairs, we
find

uI(r) =
∫∞∫
−∞

u(x′, y′, 0)h(x− x′, y − y′)dx′dy′ (0.1.15)

where

h(x, y, z) =
(

1

2π

)2 ∫∞∫
−∞

eik·rdkxdky = − 1

2π

∂

∂z

 i

2π

∫∞∫
−∞

eik·r

kz
dkxdky

 . (0.1.16)
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• Weyl’s plane-wave expansion of a spherical wave is given by

eikr

r
=

i

2π

∫∞∫
−∞

eik·r

kz
dkxdky. (0.1.17)

• Thus, (0.1.15) gives Rayleigh-Sommerfeld’s first diffraction integral:

uI(r) = − 1

2π

∫∞∫
−∞

u(x′, y′, 0)
∂

∂z

(
eikR

R

)
dx′dy′ (0.1.18)

where

R = [(x− x′)2 + (y − y′)2 + z2]
1/2. (0.1.19)

• Similarly, Rayleigh-Sommerfeld’s second diffraction integral is given by

uII(r) = − 1

2π

∫∞∫
−∞

[
∂u(x′, y′, z)

∂z

]
z=0

eikR

R
dx′dy′. (0.1.20)

• Since we have made no approximations, both (0.1.18) and (0.1.20) are exact
solutions.

• Kirchhoff’s diffraction integral is half the sum of the two Rayleigh-Sommerfeld
integrals, i.e.

uK(r) =
1

2
[uI(r) + uII(r)]. (0.1.21)

0.2 Diffraction problems

0.2.1 Fresnel and Fraunhofer diffraction

• Consider a field ui that is generated by sources in the half-space z < 0, and
that propagates towards an aperture in the plane z = 0 (see Fig. 3).

• To determine the diffracted field in the half-space z > 0 we use Rayleigh-
Sommerfeld’s first diffraction integral and a variant of the Kirchhoff approxi-
mation.

• Our variant of the Kirchhoff approximation implies that we replace the actual
field in the plane z = 0+ by the incident field inside the aperture and by zero
outside the aperture.
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z=0

A

z

R 2

2 , y 2  , z 2  )( x

u i

Source
Observation point

Figure 3: A source in the half-space z < 0 radiates a field ui that is diffracted through
an aperture A in the plane z = 0. The field in the observation point (x2, y2, z2) in
the half-space z > 0 is to be determined.

• Thus, we have

uI(x2, y2, z2 > 0) =
−1

2π

∫∫
A

ui(x, y, 0)
∂

∂z2

(
eikR2

R2

)
dxdy

= − 1

2π

∫∞∫
−∞

t(x, y)ui(x, y, 0)
∂

∂z2

(
eikR2

R2

)
dxdy (0.2.1)

where A is the aperture area, and t(x, y) has the value 1 inside the aperture
and the value 0 outside the aperture.

• R2 is the distance from an integration point (x, y, 0) in the aperture plane to
the observation point (x2, y2, z2):

R2 =
√

(x− x2)2 + (y − y2)2 + z2
2 . (0.2.2)

• Carrying out the differentiation with respect to z2 in (0.2.1), we find

∂

∂z2

(
eikR2

R2

)
==

z2

R2

ik
eikR2

R2

(
1 +

i

kR2

)
. (0.2.3)

• Assuming that kR2 >> 1, and introducing the paraxial approximation

z2

R2

' 1 (0.2.4)

we have

∂

∂z2

(
eikR2

R2

)
' ik

eikR2

z2

. (0.2.5)

• Note that we have used the paraxial approximation only in the amplitude factor
on the right-hand side of (0.2.3).
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0.2.2 Fresnel diffraction

• Since exp(ikR2) is a rapidly oscillating function compared with R2, we introduce
the Fresnel approximation:

R2 = z2

√√√√1 +
(x− x2)2 + (y − y2)2

z2
2

' z2

{
1 +

1

2

(x− x2)
2 + (y − y2)

2

z2
2

}
(0.2.6)

which requires that

(x− x2)
2 + (y − y2)

2

z2
2

<< 1. (0.2.7)

• Using both the Fresnel and the paraxial approximations, we obtain Fresnel
diffraction:

uI =
C ′

iλz2

∫∞∫
−∞

ui(x, y, 0)t(x, y) exp

[
ik

(
x2 + y2

2z2

− x2x+ y2y

z2

)]
dxdy (0.2.8)

where

C ′ = eikΦ ; Φ = z2 +
x2

2 + y2
2

2z2

. (0.2.9)

0.2.3 Fraunhofer diffraction

• Let the observation distance z2 be so large that we may set the factor exp[ik(x2+
y2)/2z2] in (0.2.8) equal to 1.

• Then we have Fraunhofer diffraction, which requires that

k(x2 + y2)

2z2

<< 1. (0.2.10)

• From (0.2.8) it follows that the diffracted field becomes equal to the Fourier
transform of the field in the aperture:

uI =
C ′

iλz2

A(kx, ky) ; kx =
kx2

z2

; ky =
ky2

z2

(0.2.11)

where
a(x, y) = u(x, y, 0)t(x, y) (0.2.12)

A(kx, ky) = F{a(x, y)} =
∫∞∫
−∞

a(x, y)e−i(kxx+kyy)dxdy. (0.2.13)
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0.2.4 Circular aperture

• Consider a plane wave ui that is normally incident upon a circular aperture of
radius a in the plane z = 0 (Fig. 4).

• Thus, ui = eikz, ui(x, y, 0) = 1, and (see Fig. 4)

t(x, y) =

{
1 for x2 + y2 ≤ a2

0 for x2 + y2 > a2.
(0.2.14)

r

z2

Circular aperture, radius a
Observation point

Normally  incident plane wave

Figure 4: A plane wave is normally incident upon a circular aperture of radius a. The
diffracted field is observed in a plane parallel to the aperture at a distance z2 from it
and at a distance r from the aperture axis.

Fresnel diffraction. Introducing dimensionless co-ordinates u and v defined
by

v = k
(
a

z2

)
r =

2π

λ

(
a

z2

)
r ; u = k

a2

z2

=
2π

λ

(
a

z2

)2

z2 (0.2.15)

we obtain in the Fresnel approximation:

uI = −2iC ′πa
2

λz2

∫ 1

0
J0(vt)e

i 1
2
ut2tdt (0.2.16)

where the zeroth-order Bessel function is given by

J0(x) =
1

2π

∫ 2π

0
e±ix cos(φ−β)dφ. (0.2.17)

Fraunhofer diffraction. As z2 →∞, u in (0.2.15) approaches zero, so that
(0.2.16) gives

uI = 2C
∫ 1

0
J0(vt)tdt = C

2J1(v)

v
; C =

πa2

iλz2

exp

{
ik

(
z2 +

r2

2z2

)}
.

(0.2.18)
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• Then the intensity distribution becomes

I = |uI |2 = I0

(
2J1(v)

v

)2

; I0 =

(
πa2

λz2

)2

. (0.2.19)

• This intensity distribution is called the Airy diffraction pattern.

• The first zero of J1(x) occurs when x = 3.83, so that the diameter of the Airy
pattern is determined by

v = v0 =
2π

λ

a

z2

r0 = 3.83

or

D = 2r0 =
3.83

π

z2

a
λ = 1.22

(
z2

a

)
λ. (0.2.20)

• Introducing the f -number, defined by F = z2
2a

, we get

D = 2.44Fλ. (0.2.21)

• Note that the diameter D of the Airy disc is inversely proportional to a.

Axial field. At axial observation points r = 0, we have in the Fresnel aprrox-
imation:

uI(u, 0) = 2 exp
{
i
[
kz2 +

u

4
− π

2

]}
sin(

u

4
) ; I = 4 sin2(

u

4
). (0.2.22)

• In the limit of Fraunhofer diffraction (u→ 0), we have:

uI(0, 0) =
πa2

λz2

exp
{
i
[
kz2 −

π

2

]}
; I(0, 0) =

(
πa2

λz2

)2

, (0.2.23)

in agreement with the results obtained from (0.2.18) and (0.2.19) in the limit
as v → 0.

• As z2 → 0, the axial intensity oscillates very rapidly. To see this, we note that

|∆u| = 2π
(
a

z2

)2 |∆z2|
λ

. (0.2.24)

• Thus, when z2 = a, a change in |∆z2| of 4λ produces a full cycle of sin(u/4).

• When z2 = 0.01a, a change in ∆z2 of 4λ×10−4 produces a full cycle of sin(u/4).
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0.2.5 Rectangular aperture

• Consider a plane wave that is normally incident upon a rectangular aperture in
the plane z = 0 with midpoint at x = y = 0 and with sides 2a and 2b in the x
and y direction, respectively.

• Then (0.2.8) gives

uI =
C ′

iλz2

∫ a

−a
exp

{
ik

[
x2

2z2

− x2

z2

x

]}
dx
∫ b

−b
exp

{
ik

[
y2

2z2

− y2

z2

y

]}
dy. (0.2.25)

Fraunhofer diffraction. Let us assume that

ka2

2z2

<< 1 og
kb2

2z2

<< 1. (0.2.26)

• Then (0.2.25) gives

uI =
C ′

iλz2

4ab sinc(va) sinc(vb) ; va = k
a

z2

x2 ; vb = k
b

z2

y2. (0.2.27)

• The intensity of the diffraction pattern becomes

I = |uI |2 =

(
4ab

λz2

)2

sinc2(va) sinc2(vb). (0.2.28)

• Since sinc(x) has its first zeros at x = ±π, the extent of the diffraction pattern
between the two first zeros in the x or y direction becomes

Dx =
z2

a
λ ; Dy =

z2

b
λ. (0.2.29)

• For a square aperture (a = b) we get

Dx = Dy =
z2

a
λ (0.2.30)

which is seen to be a little less than the corresponding extent of the Airy disc for
a circular aperture of radius a. In the latter case we have according to (0.2.20)

D = 1.22
z2

a
λ. (0.2.31)
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Fresnel diffraction. When the Fraunhofer condition (0.2.26) is not satisfied,
we have Fresnel diffraction.

• Then we write uI in the form

uI =
C ′

iλz2

IxIy ; C ′ = e
ik[z2+

x2
2+y2

2
2z2

]
. (0.2.32)

where Ix is given by

Ix =

√
λz2

π
e
−ik

x2
2

2z2

{∫ α+
a

0
[cos(α2) + i sin(α2)]dα−

∫ α−a

0
[cos(α2) + i sin(α2)]dα

}
(0.2.33)

with

α±a =

√
π

λz2

(±a− x2) . (0.2.34)

• The Fresnel integrals C(u) and S(u) are defined as

C(u) =

√
2

π

∫ u

0
cos(t2)dt ; S(u) =

√
2

π

∫ u

0
sin(t2)dt. (0.2.35)

• Thus, (0.2.33) can be expressed in terms of C and S in the following manner

Ix =

√
λz2

2
e
−ik

x2
2

2z2

{
C(α+

a )− C(α−a ) + i[S(α+
a )− S(α−a )]

}
. (0.2.36)

• Similarly, we obtain for the integral Iy:

Iy =

√
λz2

2
e
−ik

y2
2

2z2

{
C(α+

b )− C(α−b ) + i[S(α+
b )− S(α−b )]

}
, (0.2.37)

where

α±b =

√
π

λz2

(±b− x2) . (0.2.38)

• According to (0.2.32), the diffracted field for Fresnel diffraction through a rect-
angular aperture is given by

uI = IxIy
C ′

iλz2

; C ′ = e
ik[z2+

x2
2+y2

2
2z2

]
. (0.2.39)
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• Using (0.2.36) and (0.2.37), we get

uI =
1

2i
eikz2{[C(α+

a )− C(α−a )] + i[S(α+
a )− S(α−a )]} ×

{[C(α+
b )− C(α−b )] + i[S(α+

b )− S(α−b )]}. (0.2.40)

• The intensity distribution for Fresnel diffraction through a rectangular aperture
becomes:

I = |uI |2 (0.2.41)

where uI is given in (0.2.40).

• For an infinitely large aperture:

α±a → ±∞ ; α±b → ±∞ (0.2.42)

and hence

uI =
1

2i
eikz2(1 + i)(1 + i) =

1

2i
eikz2(1 + 2i− 1) = eikz2 (0.2.43)

as expected.

0.2.6 Half-plane

u  = ei

z

y

ikz

Figure 5: Diffraction of a plane wave that is normally incident upon the half-plane
z = 0, y ≥ 0.

• Consider a plane wave that is normally incident upon a half-plane, as illustrated
in Fig. 5.

• Then the diffracted field and intensity follow from (0.2.40) and (0.2.41) by
setting

1. a = ∞, so that α±a = ±∞
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2. b→∞ in α−b , so that α−b = −∞

3. b→ 0 in α+
b , so that α+

b → −
√

kz2
2
y2
z2

= −Ay2 ; A =
√

π
λz2

.

• Thus we get

uI =
eikz2

2i
{1 + i}

{
C(−Ay2) +

1

2
+ i

[
S(−Ay2) +

1

2

]}
(0.2.44)

I = |uI |2 =
1

2

{[
C(−Ay2) +

1

2

]2
+
[
S(−Ay2) +

1

2

]2}
(0.2.45)

where

A =

√
k

2z2

=

√
π

λz2

. (0.2.46)

• When y2 → +∞, C = S = −1
2
, and hence uI = 0, I = 0.

• When y2 → −∞, C = S = +1
2
, and hence uI = exp(ikz2), I = 1.

• When y2 = 0, C = S = 0, and hence uI = 1
2
exp(ikz2), I = 1

4
.

• For large absolute values of the argument u we have

C(u) ∼ 1

2
sgn(u) + sin(u2)/

√
2πu (0.2.47)

S(u) ∼ 1

2
sgn(u)− cos(u2)/

√
2πu. (0.2.48)

• Thus, for |u| = A|y2| >> 1, the diffracted field becomes

uI =
eikz2

2

{
1− sgn(y2) +

ei(A
2y22+π/4)

√
πAy2

}
(0.2.49)

and the corresponding intensity becomes

I =
1

4

{
(1− sgn(y2))

2 +
1

πA2y2
2

+ 2(1− sgn(y2))
cos(A2y2

2 + π
4
)√

πAy2

}
. (0.2.50)

Recalling that A =
√
π/λz2, may rewrite the result in (0.2.50) as follows

I =



λz2
4π2y22

for y2 > 3
√
λz2/π

1
4

for y2 = 0

1 + λz2
4π2y22

−
√
λz2
πy2

cos
{

π
λz2
y2

2 + π
4

}
for y2 < −3

√
λz2/π.

(0.2.51)
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• The result in (0.2.51) shows that

– In the geometrical shadow behind the half-plane (y2 > 3
√
λz2/π) the in-

tensity decays monotonically to zero.

– At the geometrical shadow boundary (y2 = 0) the intensity is one quarter
of the intensity of the incident wave.

– In the geometrically lit region (y2 < −3
√
λz2/π) the intensity oscillates

around the intensity value of 1 of the incident wave (when disregarding
the term λz2/4π

2y2
2, which is small compared to 1).

– The period of the oscillation in the geometrically lit region (y2 < −3
√
λz2/π)

decreases as |y2| increases due to the term (π/λz2)y
2
2 in the argument of

the cosine.

– The amplitude of the oscillation in the geometrically lit region (y2 <

−3
√
λz2/π) decreases as |y2| increases due to the factor

√
λz2/πy2 in front

of the cosine term.

0.3 Exact solution for diffraction by a half-plane

0.3.1 Exact solution

θ 0θcos(   −      )iks

Observation point  (    ,    )

Incident plane wave u  = e

θs

i

z

y

s

θ

θ 0

Figure 6: Diffraction of a plane wave by the half-plane z = 0, y ≥ 0. The propagation
direction of the incident plane wave forms an angle θ0 with the positive y axis.

• Let a plane wave be incident upon a half-plane, and let the wave vector of
the incident wave be normal to the edge of the half-plane, but not necessarily
normal to the half-plane itself (see Fig. 6).

• The exact solution for the diffracted field is given by

{
us

uh

}
= F (ξi)ui ∓ F (ξr)ur (0.3.1)
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where {
ξi

ξr

}
= ∓

√
2ks sin

1

2
(θ ∓ θ0). (0.3.2)

• Here ui and ur are respectively the incident and the reflected plane wave:

{
ui

ur

}
=

{
eik

i·r

eik
r·r

}
= eiks cos(θ∓θ0). (0.3.3)

• θ and θ0 are the angles between the positive y axis and the directions of incidence
and observation, respectively (Fig. 6).

• The function F (x) in (0.3.1) is a generalised, complex Fresnel integral defined
as

F (x) =
e−iπ/4√

π

∫ ∞

x
eit

2

dt. (0.3.4)

• The solutions us and uh apply to “soft” and “hard” boundary conditions:

us = 0 for z = 0 and y ≥ 0 (0.3.5)

∂uh

∂z
= 0 for z = 0 and y ≥ 0. (0.3.6)

• In both cases the half-plane is a perfect reflector in the sense that the absolute
value of the reflection coefficient is equal to 1, i.e. |Rs| = |Rh| = 1.

• For “soft” boundary condition we have a phase shift of π upon reflection: Rs =
−Rh = −1.

• We can express F (x) in terms of the real Fresnel integrals:

F (x) =
1

2
{1− C(x)− S(x) + i[C(x)− S(x)]}. (0.3.7)

• Since C(0) = S(0) = 0 and C(±∞) = S(±∞) = ±1
2
, it follows that

F (−∞) = 1 ; F (0) =
1

2
; F (∞) = 0. (0.3.8)

• Further, we have

|F (x)|2 =
1

2

{[
C(x)− 1

2

]2
+
[
S(x)− 1

2

]2}
. (0.3.9)
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• The arguments ξi and ξr of the generalised Fresnel integrals in (0.3.1) are called
detour parameters.

• For the special case of normal incidence upon the half-plane, θ0 = π/2, we have

(
ξi
)2

= ks(1− sin θ) = k(s− z) (0.3.10)

(ξr)2 = ks(1 + sin θ) = k[s− (−z)]. (0.3.11)

• From Fig. 7 and (0.3.10) and (0.3.11) we see that the square of the detour
parameter, i.e. (ξi)2 (or (ξr)2), is equal to the difference between the phase
measured along the diffracted ray and the phase measured along the direct
incident (or reflected) ray.

• Note that:

– ξi > 0 when the observation point lies in the shadow zone of the incident
wave, i.e. when θ < π

2
.

– ξr > 0 when the observation point lies in the shadow zone of the reflected
wave, i.e. when θ < 3π

2
.

• The intensity of the diffracted field is given by{
Is

Ih

}
=

{
|us|2
|uh|2

}
= |F (ξi)ui ∓ F (ξr)ur|2

= |F (ξi)|2 + |F (ξr)|2 ∓ 2Re
[
F (ξi)uiF ∗(ξr)(ur)∗

]
. (0.3.12)

z

y

θ s

u i = e ikz
u r = e -ikz

Figure 7: Diffraction of a plane wave that is normally incident upon the half-plane
z = 0, y ≥ 0. The incident wave propagates in the z direction.

0.3.2 Comparison with the Kirchhoff solution

• Consider now the case in which z > 0 and |ξr| >> 1. Then |F (ξr)| << |F (ξi)|,
so that we obtain from (0.3.12)
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{
Is

Ih

}
≈ |F (ξi)|2. (0.3.13)

• Further, let the observation point be close to the shadow boundary of the inci-
dent wave, so that

s =
√
y2

2 + z2
2 ' z2

√
1 +

(
y2

z2

)2

' z2 +
1

2

y2
2

z2

(0.3.14)

(ξi)2 = k(s− z2) '
k

2z2

y2
2 = A2y2

2 ; A =

√
k

2z2

; ξi = Ay2. (0.3.15)

• Using (0.3.9), C(x) = −C(−x), and S(x) = −S(−x), we get

{
Is

Ih

}
' 1

2

{[
C(−Ay2) +

1

2

]2
+
[
S(−Ay2) +

1

2

]2}
. (0.3.16)

• Comparison of the exact intensity in (0.3.16) with the corresponding intensity
obtained in the Kirchhoff approximation [see (0.2.45)], shows that the two re-
sults are equal.

• Thus, when the observation point lies near the shadow boundary of the incident
wave (θ ' π

2
) and ξr =

√
2ks sin 1

2
(θ + θ0) >> 1 or

√
2ks >> 1, the two exact

solutions and the approximate Kirchhoff solution give the same intensity.

0.4 Focusing and imaging

• Consider the imaging system illustrated in Fig. 8, where an on-axis object point
emits a diverging spherical wave, which is transformed by a lens into a converg-
ing spherical wave with focus or image point at (0, 0, z1).

Observation point x 2 y 2 z 2 )( ,  , 

z = 0

( x 1 , y 1 , z 1 ) = ( 0 , 0 , z 1)

R 2

R 1

A

Object point

Lens

Focus or image point

Figure 8: Imaging system. An object point on the axis emits a diverging spherical
wave that is transformed by a lens into a converging spherical wave with image point
at (0, 0, z1).
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0.4.1 Diffracted field in the focal area

• The converging spherical wave passes through an aperture in the plane z = 0.

• The diffracted field in the focal area of the lens is obtained by using Rayleigh-
Sommerfeld’s first diffraction integral and the Kirchhoff approximation. With
kR2 >> 1, we have

uI '
1

iλ

∫∫
A

ui
z2

R2

eikR2

R2

dxdy (0.4.1)

where

R2 =
√

(x− x2)2 + (y − y2)2 + z2
2 . (0.4.2)

• The field ui that is incident upon the aperture in Fig. 8, is a converging spherical
wave:

ui =
e−ikR1

R1

(0.4.3)

where R1 is the distance from the focal point or image point (x1, y1, z1) to the
integration point (x, y, 0):

R1 =
√

(x− x1)2 + (y − y1)2 + z2
1 . (0.4.4)

• Restricting our attention to paraxial geometries, using the Fresnel approxima-
tion, and letting the image point (focus) lie on the z axis, so that x1 = y1 = 0,
we have

uI '
C

iλz1z2

∫∫
A

exp
{
−ikxx2 + yy2

z2

}
exp

{
i
k

2

(
1

z2

− 1

z1

)
(x2 + y2)

}
dxdy

(0.4.5)
where

C = exp

{
ik

[
z2 − z1 +

x2
2 + y2

2

2z2

]}
. (0.4.6)

0.4.2 Circular aperture

• We introduce polar co-ordinates to obtain from (0.4.5)

uI '
C

iλ

a2

z1z2

2π
∫ 1

0
J0(v

′t) exp
{
−i1

2
u′t2

}
tdt (0.4.7)
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where

v′ = v
z1

z2

; v = k
a

z1

r (0.4.8)

u′ = u
z1

z2

; u = k
(
a

z1

)2

z̃ ; z̃ = z2 − z1. (0.4.9)

0.4.3 Classical theory

• The classical theory of focusing is based on the assumption that the distance
from the aperture to the focus is infinitely large.

• Hence z1/z2 ' 1, u′ ' u, and v′ ' v, so that (0.4.7) gives

I = |uI |2 = I0

∣∣∣∣2 ∫ 1

0
J0(vt)e

−i 1
2
ut2tdt

∣∣∣∣2 (0.4.10)

where I0 =
(
πa2

λz21

)2
is the intensity in the focal point u = v = 0.

• According to the classical theory, the diffraction pattern is symmetric about the
focal plane:

I(u, v) = I(−u, v) ; u = k
(
a

z1

)2

z̃. (0.4.11)

• Along the axis v = 0, (0.4.10) gives

I(u, 0) = I0

(
sin(u/4)

u/4

)2

= I0 sinc2(u/4). (0.4.12)

0.4.4 Focal shift

The assumptions upon which the classical theory is based are not satisfied at
low Fresnel numbers N , defined by

N =
a2

λz1

.

• When N ∼ 1, one can see large deviations between observations and results of
the classical theory.

• Then we must return to (0.4.7), which gives

I(u′, v′) = |uI |2 = I0

(
z1

z2

)2 ∣∣∣∣2 ∫ 1

0
J0(v

′t)e−i
1
2
u′t2tdt

∣∣∣∣2 . (0.4.13)
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• From (0.4.9) we have

u′ = 2πN
z2 − z1

z2

= 2πN
(
1− z1

z2

)
;

z1

z2

= 1− u′

2πN
. (0.4.14)

so that (0.4.13) becomes

I(u′, v′) = I0

(
1− u′

2πN

)2 ∣∣∣∣2 ∫ 1

0
J0(v

′t)e−i
1
2
u′t2tdt

∣∣∣∣2 , (0.4.15)

• Still we have a kind of symmetry:(
1 +

u′

2πN

)2

I(u′, v′) = I(−u′, v′)
(

1− u′

2πN

)2

. (0.4.16)

• But there is no symmetry about the focal plane z̃ = 0, since there is a nonlinear
relation between u′ and z̃.

• When z2
z1
' 1, we have approximate symmetry about the focal plane.

• Include focal shift figures!!

0.4.5 Aberrations

According to the classical theory, the intensity in the focal area of a perfect
imaging syatem is given by (0.4.10), which can be written

I = I0
1

π2

∣∣∣∣∫ 2π

0

∫ 1

0
e−i[vt cos(φ−β)+ 1

2
ut2]tdtdφ

∣∣∣∣2 . (0.4.17)

• If the imaging system is not perfect, we introduce an aberration function φ0(t, β),
which describes the deviations of the converging wave front will have deviations
from spherical shape.

• Then the intensity in (0.4.17) becomes

I = I0
1

π2

∣∣∣∣∫ 2π

0

∫ 1

0
ei[kφ0(t,φ)−vt cos(φ−β)− 1

2
ut2]tdtdφ

∣∣∣∣2 . (0.4.18)

• If the object point lies on the optical axis, we only have spherical aberrations
of various orders. For first-order spherical aberration the aberration function is
given by

φ0 = δ1λt
4 (0.4.19)

where δ1 is the deviation of the wave front from spherical shape at the edge of
the aperture, measured in wavelengths.
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• As the object point moves away from the axis, coma is the first off-axis aberra-
tion to appear. First-order coma is given by

φ0 = δ2λt
3 cosφ, (0.4.20)

• As the object point moves sufficiently far from the axis, astigmatism starts to
play a role. For pure first-order astigmatism the aberration function is

φ0 = δ3λt
2 cos2 φ. (0.4.21)

0.5 Radiation problems

0.5.1 Field radiated by a localised source

• Our task is to determine the field radiated by a given time-harmonic source
s(r), so that the Helmholz equation becomes

(∇2 + k2)u(r) = s(r). (0.5.22)

• We define a three-dimensional Fourier transform pair:

a(r) =
(

1

2π

)3 ∫∫∞∫
−∞

A(k)eik·rd3k, (0.5.23)

A(k) =
∫∫∞∫
−∞

a(r)e−ik·rd3r. (0.5.24)

• Expressing both u(r) and s(r) as Fourier integrals, we find upon substitution
in (0.5.22)

∫∫∞∫
−∞

[(
−k2

3 + k2
)
U(k)− S(k)

]
eik·rd3k = 0 (0.5.25)

where k2
3 = k2

x + k2
y + k2

z .

• The uniqueness of Fourier integrals gives

U(k) = − S(k)

k2
3 − k2

. (0.5.26)
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s(  )r

z = −Z z = 0 z = +Z

z

Figure 9: Radiation by a localised source that vanishes for |z| > Z.

• Thus, the Fourier representation of u(r) becomes [cf. (0.5.23)]

u(r) = −
(

1

2π

)3 ∫∫∞∫
−∞

S(k)

k2
3 − k2

eik·rd3k. (0.5.27)

• We let the source be confined to the slab |z| < Z (Fig. 9).

• We perform the kz integration in (0.5.27) by using the calculus of residues and
close the contour of integration in the upper half of the complex kz plane for
z > Z and in the lower part of the kz plane for z < −Z.

• Since the source is confined to the slab |z| < Z, the integral along that part
of the integration path which lies on a semi-circle with infinite radius in the
upper half-plane when z > Z or in the lower half-plane when z < −Z, will not
contribute to the integral over the closed integration path.

• Thus, the kz integral in (0.5.27) is equal to 2πi times the sum of the residus of
the poles in the upper half-plane when z > Z and equal to −2πi times the sum
of the residues of the poles in the lower half-plane when z < −Z.

• Since S(k) is an entire function of kz, the only singularities in (0.5.26) are the
poles contained in the factor 1

k2
3−k2 .

• Carrying out the kz integration in the manner just explained, we find

u±(r) = − i
2

(
1

2π

)2 ∫∞∫
−∞

S(k±)

kz
eik

±·rdkxdky (0.5.28)

where

k± = kxêx + kyêy ± kzêz (0.5.29)

kz =
√
k2 − k2

x − k2
y ; Im(kz) ≥ 0. (0.5.30)
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• Here u+ represents u in the half-space z > Z, and u− represents u in the half-
space z < −Z.

0.5.2 Field due to a point source - Green’s function

• Consider the field radiated by a point source located at the origin. Then the
source is

s(r) = δ(r) = δ(x)δ(y)δ(z)

and hence

S(k) =
∫∫∞∫
−∞

s(r)e−ik·rd3r =
∫∫∞∫
−∞

δ(x)δ(y)δ(z)e−ik·rdxdydz = 1. (0.5.31)

• Equation (0.5.28) now gives

u±(r) = − 1

4π

 i

2π

∫∞∫
−∞

ei(kxx+kyy+kz |z|)

kz
dkxdky

 . (0.5.32)

• The expression inside the parenthesis is Weyl’s plane-wave expansion of a spher-
ical wave. Thus

u(r) = u+(r) = u−(r) = − 1

4π

eikr

r
; r =

√
x2 + y2 + z2. (0.5.33)

• This particular solution is called the Green’s function. For wave propagation in
three dimensions we thus have

(∇2 + k2)G(r) = δ(x)δ(y)δ(z) (0.5.34)

where

G = − 1

4π

eikr

r
. (0.5.35)

• In terms of the Gren’s function, the field radiated by a source s(r) can be
expressed as

u(r) =
∫∫∞∫
−∞

s(r′)G(r− r′)d3r′ (0.5.36)

where

G(r− r′) = − eik|r−r′|

4π|r− r′|
. (0.5.37)
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• The physical interpretation of (0.5.36) is that the field consists of a sum (inte-
gral) of point-source solutions G(r− r′) that are weighted by the source s(r).

0.5.3 Two-dimensional wave propagation

• If the source does not vary with y, so that

s(r) = s(x, z) = s(r2) ; r2 = xêx + zêz (0.5.38)

we obtain in the same manner as in the 3D case

u±(r2) = −
(

1

2π

)2

2πi
∫ ∞

−∞

S(k±2 )

2kz2
eik

±
2 ·r2dkx (0.5.39)

where

k±2 = kxêx ± kz2êz ; kz2 =
√
k2 − k2

x ; Im(kz2) ≥ 0. (0.5.40)

• Here the upper sign applies for z > Z and the lower sign applies for z < −Z.

0.5.4 Field radiated by a line source - Green’s function

• For a line source located at the origin, the source is given by

s(r2) = δ(x)δ(z) (0.5.41)

so that

S(k2) = 1. (0.5.42)

• Thus, (0.5.39) gives

u+(r2) = u−(r2) = u(r2) = − i

4π

∫ ∞

−∞

ei(kxx+kz2|z|)

kz2
dkx. (0.5.43)

• Using the plane-wave expansion for the zeroth-order Hankel function of the first
kind:

H
(1)
0 (k|r2|) =

1

π

∫ ∞

−∞

ei(kxx+kz2|z|)

kz2
dkx (0.5.44)

we have

u(r2) = − i
4
H

(1)
0 (k|r2|). (0.5.45)
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• Similarly as in the three-dimensional case, we call this solution the Green’s
function. Thus, for two-dimensional wave propagation we have

(∇2
2 + k2)G(r2) = δ(x)δ(y), (0.5.46)

where

G(r2) = − i
4
H

(1)
0 (k|r2|) ; |r2| =

√
x2 + z2. (0.5.47)

• In terms of the 2D Green’s function, the field radiated by a line source becomes:

u(r2) =
∫∞∫
−∞

s(r′2)G(r2 − r′2)d
2r′2 (0.5.48)

where

G(r2 − r′2) = − i
4
H

(1)
0 (k|r2 − r′2|). (0.5.49)

0.6 Electromagnetic radiation problems

0.6.1 Field radiated by localised source

• Maxwell’s equations in Gaussian units are given by:

∇ ·D(r, t) = 4πρ(r, t) (0.6.1)

∇× E(r, t) = −1

c
Ḃ(r, t) (0.6.2)

∇ ·B(r, t) = 0 (0.6.3)

∇×B(r, t) =
µ

c
Ḋ(r, t) +

4πµ

c
J(r, t). (0.6.4)

• The total current density consists of two terms:

J(r, t) = J0(r, t) + σE(r, t), (0.6.5)

• In addition we have the continuity equation

ρ̇(r, t) = −∇ · J(r, t) = −∇ · [J0(r, t) + σE(r, t)]. (0.6.6)
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• If the source is time-harmonic, so that

J0(r, t) = Re
{
Ĵ0(r, ω)e−iωt

}
(0.6.7)

the radiated field will be time-harmonic as well.

• Then each scalar component in (0.6.1)-(0.6.7) can be expressed as follows

a(r, t) = Re
{
â(r, ω)e−iωt

}
. (0.6.8)

• Maxwell’s equations (0.6.1)-(0.6.4) become:

∇ · D̂(r, ω) = 4πρ̂(r, ω) (0.6.9)

∇× Ê(r, ω) =
iω

c
B̂(r, ω) (0.6.10)

∇ · B̂(r, ω) = 0 (0.6.11)

∇× B̂(r, ω) = −iµω
c

D̂(r, ω) +
4πµ

c
[Ĵ0(r, ω) + σÊ(r, ω)]. (0.6.12)

• As in the scalar case, we introduce Fourier representations:

Â(r, ω) =
(

1

2π

)3 ∫∫∞∫
−∞

Ã(k, ω)eik·rd3k (0.6.13)

where

Ã(k, ω) =
∫∫∞∫
−∞

Â(r, ω)e−ik·rd3r. (0.6.14)

• Substituting (0.6.13) in (0.6.9)-(0.6.12), we obtain algebraic equations for Ẽ(k, ω)
and B̃(k, ω).

• We solve these algebraic equations, substitute the results in (0.6.13), and carry
out the kz integration in the same way as in the scalar case to obtain:

Ê±(r, ω) =
∫∞∫
−∞

E(k±, ω)eik
±·rdkxdky (0.6.15)

E(k±) = − ωµ

2πk2c2kz
[k2J̃0(k

±)−k±(k± · J̃0(k
±))] =

ωµ

2πk2c2kz
k±× [k±× J̃0(k

±)]

(0.6.16)
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B̂±(r, ω) =
∫∞∫
−∞

B(k±, ω)eik
±·rdkxdky (0.6.17)

B(k±, ω) =
c

ω
k± × E(k±, ω) =

−µ(k± × J̃0(k
±))

2πckz
. (0.6.18)

0.6.2 Field radiated by a dipole

• Let the source be a dipole located at the origin and polarised along the unit
vector n̂. Then we have

J0(r, t) = <
{
Ĵ0(r, ω)e−iωt

}
; Ĵ0(r, ω) = n̂Iδ(r) (0.6.19)

so that

J̃0(k) = n̂I
∫∫∞∫
−∞

δ(r)e−ik·rd3r = n̂I (0.6.20)

where I is the dipole strength.

• Thus, from (0.6.15) - (0.6.18):

E± =
ωµI

2πc2k2

∫∞∫
−∞

k± × (k± × n̂)

kz
eik

±·rdkxdky (0.6.21)

B± =
−µI
2πc

∫∞∫
−∞

k± × n̂

kz
eik

±·rdkxdky. (0.6.22)

• Using Weyl’s plane-wave expansion of a spherical wave, we can rewrite these
expressions as:

E =
iωµI

c2k2
∇×∇×

[
n̂
eikr

r

]
(0.6.23)

B =
µI

c
∇×

(
n̂
eikr

r

)
. (0.6.24)

• Carrying out the differentiations, the expressions for E and B become

B = −ikµI
c

eikr

r

(
1 +

i

kr

)
n̂× êr (0.6.25)

E = −iωµI
c2

eikr

r

{(
1 +

3i

kr
− 3

(kr)2

)
êr(êr · n̂)−

(
1 +

i

kr
− 1

(kr)2

)
n̂

}
.

(0.6.26)
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Figure 10: Co-ordinate systems related to the study of the field radiated by a dipole
that is placed at the origin and polarised along the z axis.

• With a co-ordinate system such that n̂ points along the z axis, and with spher-
ical co-ordinates r, θ, and φ, as shown in Fig. 10, we have

E = Erêr + Eθêθ ; B = Bφêφ, (0.6.27)

• When kr >> 1, we may neglect Er and the higher-order terms in Eθ and Bφ to
obtain

Eθ ∼ −iωµI
c2

eikr

r
sin θ (0.6.28)

Bφ ∼ −ikµI
c

eikr

r
sin θ. (0.6.29)

• In vacuum, where µ = ε = 1, σ = 0, and k = ω
c
, the result in the far zone

becomes

Eθ ∼ Bφ ∼ −iωI
c2

(
eikr

r

)
sin θ. (0.6.30)

• Thus, in the far zone E and B are of equal size, and they are normal to one
another and to êr, which now points in the direction of the Poynting vector.

• This implies that the far field radiated by a dipole behaves locally as a plane
wave.

• Note, however, that the amplitude of the field is proportional to sin θ, which
means that the radiated energy is proportional to sin2 θ. Therefore, the dipole
does not radiate energy along its own axis.
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0.7 Retarded solution of the wave equation

• Consider the inhomogeneous, scalar wave equation in a uniform, non-dispersive
medium:

(
∇2 − 1

c2
∂2

∂t2

)
û(r, t) = ŝ(r, t). (0.7.1)

• By Fourier decomposition of the field, we have

û(r, t) =
1

2π

∫ ∞

−∞
u(r, ω)e−iωtdω = 2Re

1

2π

∫ ∞

0
u(r, ω)e−iωtdω (0.7.2)

which implies that u(r, ω) satisfies the inhomogeneous Helmholz equation:

(∇2 + k2)u(r, ω) = s(r, ω) ; k =
ω

c
. (0.7.3)

• The solution of (0.7.3) can be written

u(r, ω) =
∫∫∞∫
−∞

s(r, ω)G(r− r′, ω)d3r′ ; G(r− r′, ω) =
eik|r−r′|

−4π|r− r′|
. (0.7.4)

• On substituting (0.7.4) in (0.7.2), we obtain:

u(r, t) = − 1

4π

∫∫∞∫
−∞

s(r′, t− 1
c
|r− r′|)

r− r′
d3r′. (0.7.5)

• This expression is called the retarded solution of the wave equation.

• The physical intepretation of this solution is that the field at the observation
point r at time t consists of a sum of contributions from various source elements
r′ that are radiated at the preceding time t− 1

c
|r− r′|.

• Each contribution has to leave the source element at this earlier time in order
to reach the observation point at the given time t.

0.8 Asymptotic diffraction theory

• According to Huygen’s principle, the field that is diffracted through an aperture
consists of contributions from an infinite number of secondary waves, one from
each point in the aperture. Mathematically this sum is expressed as a diffraction
integral.
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Figure 11: Geometry for interpretation of the retarded solution of the wave equation.

• By evaluating the diffraction integral by means of asymptotic techniques, one
can show that only a few of the secondary waves contribute significantly to the
diffracted field.

0.8.1 Two-dimensional and three-dimensional diffraction
problems

z = 0

z

u(x, y, 0) is known

Figure 12: Illustration of a two-dimensional boundary-value problem where the field
in the plane z = 0 is known and the field in the half-space z > 0 is to be determined.

• Consider three-dimensional (3D) and two-dimensional (2D) wave propagation
in a homogeneous medium, and let the field be generated by sources in the
half-space z ≤ 0, and let it be known in the plane z = 0 (see Fig. 12).

• In the Kirchhoff approximation the solution to 3D and 2D diffraction problems
can be expressed as

3D: uI(x2, y2, z2) =
∫∫
A

g(x, y)eikf(x,y)dxdy (0.8.1)

f(x, y) = R1 +R2 ; g(x, y) =
1

iλ

z2

R2

1

R1R2

(0.8.2)
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Rj =
√

(x− xj)2 + (y − yj)2 + z2
j . (0.8.3)

2D: uI(x2, z2) =
∫ b

a
g(x)eikf(x)dx, (0.8.4)

f(x) = R1 +R2 ; g(x) =
1√
iλ

z2

R2

1√
R1R2

, (0.8.5)

Rj =
√

(x− xj)2 + z2
j . (0.8.6)

0.8.2 The method of stationary phase for single integrals

• For simplicity we concentrate on two-dimensional diffraction problems, so that
the diffracted field can be expressed as:

J =
∫ x2

x1

g(x)eikf(x)dx. (0.8.7)

• When k|x2 − x1| is sufficiently large, then exp[ikf(x)] will oscillate so rapidly
compared to g(x) that cancellation occurs except in the immediate neighbour-
hood of stationary points x = xs, where f ′(xs) = 0, or in the immediate neigh-
bourhood of either end point x = x1 or x = x2.

• For simplicity we assume that we have isolated stationary points and end points.

Isolated, interior stationary point Suppose we have an isolated, interior
stationary point xs, so that x1 << xs << x2.

• In order to determine the asymptotic contribution to the integral J in (0.8.7)
we expand f(x) and g(x) about x = xs, so that

g(x) = g0 + g1t+ g2t
2 + . . .

f(x) = f0 + f2t
2 + f3t

3 + . . .

 t = x− xs, (0.8.8)

where

gn =
1

n!

∂ng

∂xn

∣∣∣∣∣
x=xs

; fn =
1

n!

∂nf

∂xn

∣∣∣∣∣
x=xs

. (0.8.9)
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• Further, we write

eikf(x) = eikf0eikf2t
2

eik∆f ; ∆f = f3t
3 + f4t

4 . . . (0.8.10)

and we expand eik∆f :

eik∆f = 1 + ik∆f +
1

2
(ik∆f)2 + . . . . (0.8.11)

• To the lowest asymptotic order we get the following contribution JS to the
integral J in (0.8.7) from the interior stationary point xs:

JS =

√
π

k|f2|
g0e

i[kf0+π
4
sgn(f2)]. (0.8.12)

• Higher-order terms in the asymptotic contribution from an isolated, interior
stationary point are given by (cf. equations (8.8a)-(8.8g) in Stamnes, 1986)

JS ∼
√

π

k|f2|
ei(kf0+π

4
− 1

2
argf2)[Q0 +Q2 +Q4] (0.8.13)

where
Q0 = g0 (0.8.14)

Q2 =
i

kf2

(
1

2
g2 −

3

4

g1f3 + g0f4

f2

+
15

16

g0f
2
3

f 2
2

)
(0.8.15)

Q4 =
1

(kf2)2

−3

4
g4 +

15

8

A

f2

− 105

32

B

f 2
2

+
315

64

C

f 3
2

− 3465

512
g0

(
f3

f2

)4
 . (0.8.16)

• Here the coefficients A, B, and C are given by

A = g3f3 + g2f4 + g1f5 + g0f6 (0.8.17)

B = g2f
2
3 + 2g1f3f4 + g0(f

2
4 + 2f3f5) (0.8.18)

C = g1f
3
3 + 3g0f

2
3 f4. (0.8.19)
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Stationary end point Let the stationary point coincide with the lower end
point, so that xs = x1.

• Then we get the following asymptotic contribution

JSE ∼ Jeven + Jodd ∼
1

2

(
π

k|f2|

)1/2

ei(kf0+ψ)(Q0 +Q1 +Q2 +Q3 +Q4) (0.8.20)

where

ψ =
π

4
− 1

2
argf2. (0.8.21)

• Here Q1 and Q3 are given in equations (8.11b) and (8.11c) in Stamnes (1986).

• Note that to the lowest asymptotic order the contribution from an end point is
half as large as that from an interior stationary point.

Non-stationary end point To determine the asymptotic contribution from
a non-stationary end point we may follow a similar procedure as in the previous
two cases.

• But in this case it is just as simple to use integration by parts.

• To the lowest asymptotic order the contribution from a non-stationary end point
x = xj (j = 1, 2) becomes

JE = (−1)j
g(xj)

ikf ′(xj)
eikf(xj), (0.8.22)

where j = 2 applies to an upper end point, and where j = 1 applies to a lower
end point.




