Charge in Electric and Magnetic
Fields
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For conservative systems, i.e. with usual forces from potential energy

L(ry, 7, t) =T () — V(ry)

but the Lorentz force depends on velocity. Lagrange function L(r;,7;,t) must
be modified.

Lorentz force .
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With & and A the scalar and vector potentials
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the Lorentz force becomes
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with ®(r,¢) and A(r,t) describing the fields
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With only the scalar potential ®(r,¢) the Lagrange function would be
unnﬂzﬂgfw—thﬂ - %mv%ﬂ@QJ)
and the Lagrange equation would lead to the electrostatic
mr = —qVo

It can be shown that the Newton equation with the electromagnetic Lorentz
force
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can be derived from a surprisingly simple Lagrange function (see below)
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L(r,1,t) = 5 va—q<I>(r,t)+gv-A
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when inserted into the three Lagrange equations (r; — x, 19 — y , r3 — 2)
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This is because the term v x [V x A] can be expressed without vector products.
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Transforming the term v x [V x A]

This contains time derivatives as well as the x, y, z derivatives
vx[VxA] — 1x[VxA]
consider first the total time derivative A,
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Take now its x-component and re-arrange
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Take now z-component of v x [V x A]
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and now re-arrange - adding and subtracting (and compare with above)
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Comparing those expressions we can replace the second term
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and now it can be written for all components as
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vX[VxA]=V(v-A)-—
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