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1 General

When radiation field be interacted with an atom, the atom may get quantum
jumps between its states either by absorbing or emitting.

Our final objective in this presentation is to discuss how the field interacts
with the atomic states and emitts radiation.

First we shall discuss the Fermi Golden Rule which can be derived
using the Time Depedent Perturbation Theory.

Then, we will discuss the Spontaneous and stimulated Emission by
excited an atom.

This presentation is based on the lecture notes on Light-Atom Interaction
provided by Prof. Ladislav during his lectures.

2 Perturbation Theory

Perturbation is a small disturbace in a quantum mechanical system which
induces a change in the total Hamiltonian operator for Time Dependent
Schrödinger Equation (TDSE). A perturbation can be time-dependent as
well as time-independent. The total time-dependent Hamiltonian in the per-
turbing system can be written as

H(t) = H0 + H ′(t) (1)

Here, H1(t) is a time dependent perturbation.
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Without perturbation, i.e, H ′(t) is not present, the energy eigenvalue of
the eigenstate | φk 〉 is given by

H0 | φk 〉 = Ek | φk 〉 (2)

The energy eigen solutions can be,

αk(t) = e−iEkt/h̄ (3)

and the probability Pa of the system to find in state a is

pa(t) = |αa(t)|2 (4)

This probability must be either 1 or 0 in an unperturbed case. This can
be written in delta function notation,

|αk(t)| = δka (5)

such that for k 6=, then δka vanishes. Any unknown wavefunction | ψ(t) 〉
can be written as

| ψ(t) 〉 =
∑

αi(t) | φi 〉 (6)

The term αi(t) are expansion coefficients of the wavefunction given by
(6).

This wave function (6) when inserted in the following time dependent
Schrödinger Equation, produce a set of coupled differential equations.

i
∂

∂t
| ψ(t) 〉 = Ĥ(t) | ψ(t) 〉 (7)

This is shown below by inserting αk(t) = ck(t)e
−iEkt/h̄ for states a and k.

i
d

dt
ck(t) = Hka(t) exp(i

(Ek − Ea)t

h̄
) (8)

Approximation in perturbation theory is similar to an iteractive process.
If the transitional probability from between two states is

Pba(t) = |c(1)
b (t)|2 (9)

calcualtions show that if,

c
(1)
b (t) =

1

ih̄

∫ t

t0
H ′eiωt′dt′ (10)
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then, (9) will be

Pba(t) =
1

h̄2 |H
′
ba|2F (t, ω) (11)

For larger t, the function F (ω, t) approaches to

F (t, ω) =
sin2 ωt

2

(ω
2
)2

−→ 2πtδ(ω) (12)

this function (12) shows the shape of the Dirac delta-function. The den-
sity of final states can be found by integrating dω

∫
δ(ω)dω =

∫
δ(E)dE

δ(ω) = δ(E) · dE
dω

= h̄δ(E − Eb)

(13)

We get a final result, that is Fermi Golden rule.

3 Fermi Golden Rule

Fermi Golden rule is a way to calculate the transition rate from one quan-
tum state of an atom to another state due to perturbation. This gives the
transistion probability or decay probability.

The final result is given by this formula:

Pba(t) =
1

h̄

∫ Eb+η

Eb−η
2πt|H ′

ba|2δ(E − Eb)ρ(E)dE

=
2π

h̄
t| < b|H ′|a > |2ρ(Eb)

(14)

This shows that the transition probability is a linear function of time.
The time derivative of (14) gives the probability rate:

dPba

dt
= Wba =

2π

h̄
| < b|H ′|a > |2ρ(Eb) (15)

This femous result is known as Fermi Golden Rule. The term, 2π
h̄
| <

b|H ′|a > |2 is interaction matrix and the term the term rho(Eb) is the density
of final state.
The transition probability, according to (15) is proportional to final state
density, provided that the coupling matrix remain constant.
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4 Emission of Radiation by Excited Atom

The time dependent perturbation changes the transition probabilty for the
emission of a single photon as shown by Fermi Golden Rule. Let |i〉 be
the initial state and |f〉 be the final state of an atom, then the transition
probability is

Wi→f (~k, λ) =
2π

h̄
|〈f |Hp|i〉|2 ρ(Ef ) (16)

where h̄~k is the momentum of radiation and λ denotes the polarization. Hp

is the perturbing Hamiltonian, which in this situation is

Hp = − e

mc
~p · ~A (17)

The vector potential ~A is given by

~A(~r, t) =
∑
~kλ

√
2πh̄c2

V ωk

ê~kλ

(
a~kλe

i(~k·~r−ωt) + a†~kλ
e−i(~k·~r−ωt)

)
(18)

The eq.(18) gives all possible values of the propagation vector ~k and two
possible polarizations λ = 1, 2. The factor√

2πh̄c2

V ωk

is a normalization factor. and operators a~kλ and a†~kλ
are called annihilator

and creater respectively.

When inserted (18) into the (4), we the perturbing hamiltonian:

Hp = − e

mc

∑
~kλ

√
2πh̄c2

V ωk

~p · ê~kλ

(
a~kλe

i(~k·~r−ωt) + a†~kλ
e−i(~k·~r−ωt)

)
(19)

The unperturbed wavefunctions before and after the emission of one photon
is

|i〉 = |a〉
∣∣∣· · ·n~kλ · · ·

〉
(20)

|f〉 = |b〉
∣∣∣· · ·n~kλ + 1 · · ·

〉
(21)

The energy difference is

Ef − Ei =
(
Eb + n~kλh̄ωk + h̄ωk

)
−
(
Ea + n~kλh̄ωk

)
= Eb − Ea + h̄ωk (22)
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Comparing the last part of the eq.(16) with the eq.(22), we find out that
δ(Ef − Ei emphasis on the energy conservation in the transition processes.
Inserting the final and initial states and the Hamiltonian into the matrix
element, we obtain

〈f |Hp| i〉 = − e

mc

√
2πh̄c2

V ωk

〈
b
∣∣∣~p · ê~kλe

−i~k·~r
∣∣∣ a〉√n~kλ + 1 (23)

By considering the eq.(23) we can transform the Golden Rule formula (16)
into the form

Wi→f (~k, λ) =
2π

h̄

(
e

mc

)2
(

2πh̄c2

V ωk

)
(n~kλ+1)

∣∣∣〈b ∣∣∣~p · ê~kλe
−i~k·~r

∣∣∣ a〉∣∣∣2 ρ(Ef ) (24)

From the equation (24), we see that; one term proportional to the number
of photons in the field n~kλand the other term independent of the field. The
first term is for stimulated emission while the other term is responsible
for spontaneous emission. The lifetime of the excited state, against this
emission is given by (

1

τ

)
a→b

=
∑
~kλ

Wi→f (~k, λ) (25)

5 Einstein Coefficients

Consider an enclosure containing atoms and field in an equilibrium state at
T deg. K, and let a and b denote two non-degenerate atomic states, with
energy Ea and Eb such that Eb is greater than Ea . We denote by ρ the
energy density of the radiation at the angular frequency ω = (Eb − Ea)/h̄.

The number of atoms making the transition from a→ b per unit time by
absorbing radiation, ∆Nb ,is proportional to the total number Na of atoms
in the state a and to the energy density ρ.

∆Nb = B↑Naρ (26)

Figure 1:
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B↑ is called the Einstein Coefficient for the absorption. ρ is defined as
the energy density in the unit ρ = I/c = energy

volume

And the number of atoms making the transition b→ a per unit time be
∆Na , is the sum of the number of spontaneous transition per unit time,
which is independent of ρ .Thus

Figure 2:

∆Na = A↓Nb +B↓Nbρ (27)

A↓ is the Einstein Coefficient for spontaneous emission. So, atoms can do
stimulated emission by the field present. At equilibrium,

(∆Nb↑) + (∆Nb↓) = 0 =⇒ (∆Nb↑) = (∆Nb↓) (28)

leads to
Na

Nb

=
A+B↓ ρ

B↑ ρ
(29)

and at thermal equilibrium it’s given

Na

Nb

= e−(Ea−Eb)/kT = e∆E/kT = eh̄ω/kT (30)

Comparing (29) and (30) in a equilibrium situation, the energy density ρ(ω)
can be found as

ρ =
A↓

eh̄ω/kTB↑ −B↓
(31)

Again comparing with Plack’s distribution law,

ρ(ω) =
h̄ω3

π2c3
1

eh̄ω/kT − 1
(32)

We conclude a condition that

B↓ = B↑

and
A↓

B↓
=
h̄ω3

π2c3
·∆ω (33)


