This note was written in "realtime" by Ingjald Pilskog. Edited by L. K. $Third\ lecture\ 29.08.06$

Atomic world construction a_0 - radius, length $\Delta x \approx a_0 \ \Delta k \approx 1/a_0$ $(\hbar \Delta k = \Delta p \text{ wavenumber})$ $\Delta E \approx \frac{(\Delta p)^2}{2m} = \frac{\hbar^2}{2ma_0^2} \approx \frac{\hbar^2}{ma_0^2} \text{ (kinetic energy T_0.) Potential energy V_0 |} - \frac{e^2}{a_0}$ Atomic unit of length $a_0 = 0,529$ Å= $\frac{\hbar^2}{e^2 m}$ Lenght unit Atomic unit of energy Energy unit $\frac{e^2}{a_0} = \frac{\hbar}{ma_0^2} = 27, 2 \text{ eV}$ $\langle T_0 \rangle = \langle V_0 \rangle$ should be of the same order. Atomic unit of velocity $p_0 = \hbar k_0 = \frac{\hbar}{a_0}$ Atomic unit of time $t_0 = \frac{a_0}{v_0} = (\frac{a_0}{e^2})\hbar = \frac{\hbar}{E_0}$ Alternative postulate $t_0 = \frac{\hbar}{E_0}$ (Statement a.u. $\longleftrightarrow e = m\hbar = 1$ is useless) $\frac{0.66 \cdot 10^{-15}}{27.2}$ s=0,24 · 10⁻¹⁵ $\dot{\hbar}=0,66\cdot 10^{-15}~{\rm eVs}~t_0=$ $(2 \pi \text{ for angular freq.})$ ν frequency ω - angular frequency k_0T is the "physical temperature". Room temperature is thus $\frac{1}{40}$ eV or 25 meV Atomic unit of energy \longrightarrow VERY HOT

More about bound states in H

States characterized by n, l (*m* - magnetic)

In H energies given by $\frac{1}{n^2}(-\frac{1}{2})a.u.$

"Ladi says its nonsens to talk about m as a quantum number", wrote Ingjald. He did not write: "unless we have magnetic field on".

Angular momentum

$$L = \omega \mathcal{I}$$
 $T_{rot} = \frac{1}{2} \frac{L^2}{\tau}$ $T_{rot} = \frac{1}{2} \mathcal{I} \omega^2$

 \mathcal{I} is the moment of inertia

E = T + V is negativ T is kinetic energy

$$\begin{split} &I_n \text{ QM it looks different} \\ &3\text{-dim Schr.Eq.} \to \text{Seperation of variables} \\ &x, y, z, \to r, \nu, \varphi \\ &\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2} \longrightarrow T_r + \frac{L^2(\theta, \varphi)}{r^2} \\ &T_r \longrightarrow \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \end{split}$$

 L^2 is ugly (but can be made very elegant) This is generally used in many fields.

$$\frac{L^2(\theta,\varphi)}{r^2} \longrightarrow \frac{1}{r^2} \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 \psi}{\partial \phi^2}$$

Solutions of the above are $Y_l^m(\theta, \phi)$, known as the spherical harmonics. (The constants were not taken care of)

From the web ("stolen latex code")

http://vergil.chemistry.gatech.edu/notes/quantrev/node25.html

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] - \frac{e^2}{4\pi\epsilon_0 r} \psi(r,\theta,\phi) = E\psi(r,\theta,\phi)$$
(1)

Exercise: Look on the separation of variables and how it's done.

(l=0) s-states, (l=1) p-states,

(l=2) d-states,

(l=3) f-states, ... there are more, but it is not relevant in typical atoms