\documentclass[pdftex,12pt]{article} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{graphicx,xr} \topmargin -.75in \oddsidemargin -.05in \textheight 9.6in \textwidth 6.5in \parskip 0pt \parindent 0pt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} {\footnotesize This note was written in "realtime" by Ingjald Pilskog. Edited by L. K.} {\bf \Large Third lecture 29.08.06} {\it Atomic world construction} $a_0$ - radius, length $\Delta x \approx a_0$ $\Delta k \approx 1/a_0$ ($\hbar \Delta k = \Delta p$ wavenumber $\Delta E \approx \frac{(\Delta p )^2}{2m} = \frac{\hbar ^2}{2ma_0^2} \approx \frac{\hbar ^2}{ma_0^2}$ (kinetic energy T$_0$. ) Potential energy V$_0$ $|-\frac{e^2}{a_0}$ {\bf Atomic unit of length } $a_0 = 0,529$ \AA = $\frac{\hbar^2}{e^2m}$ Lenght unit {\it Atomic unit of energy } Energy unit $\frac{e^2}{a_0} = \frac{\hbar}{ma_0^2} = 27,2$ eV $$ = $$ should be of the same order. {\it Atomic unit of velocity } $p_0 = \hbar k_0 = \frac{\hbar}{a_0}$ \ \ \ \ \ \ \ \ \ $v_0 = \frac{p_0}{m} = \frac{\hbar}{m}\frac{1}{a_0} = $ \ \ \ \ \ \ \ \ \ $\frac{me^2}{\hbar ^2}\frac{\hbar}{m} = \frac{e^2}{\hbar}$ \ \ \ \ \ \ \ \ \ $\frac{v_0}{c} = \frac{e^2}{\hbar c} = \alpha = \frac{1}{137}$ {\it Atomic unit of time } $t_0 =\frac{a_0}{v_0} = (\frac{a_0}{e^2}) \hbar = \frac{\hbar}{E_0}$ Alternative postulate $t_0 = \frac{\hbar}{E_0}$ (Statement a.u. $\longleftrightarrow e = m \hbar = 1$ is useless) $\hbar = 0,66 \cdot 10^{-15}$ eVs $t_0 = $ \ \ \ \ \ \ \ \ \ $\frac{0,66 \cdot 10^{-15}}{27,2}$s=$0,24 \cdot 10^{-15}$ (2 $\pi$ for angular freq.) $\nu$ frequency \ \ \ \ \ \ \ \ \ \ $\omega$ - angular frequency $k_0 T$ is the "physical temperature". Room temperature is thus $\frac{1}{40}$eV or 25 meV Atomic unit of energy $\longrightarrow$ VERY HOT \vskip 0.2cm {\bf More about bound states in H } \vskip 0.2cm Ground state $-\frac{1}{2}$ a.u. \includegraphics[height=4.5cm]{klasse1.pdf} \vskip 0.2cm States characterized by $n, l$ ($m$ - magnetic) \vskip 0.2cm In H energies given by $\frac{1}{n^2}(-\frac{1}{2})$a.u. \vskip 0.2cm "Ladi says its nonsens to talk about m as a quantum number", wrote Ingjald. He did not write: "unless we have magnetic field on". \vskip 0.2cm Angular momentum \vskip 0.2cm $L = \omega {\cal I} $ \ \ \ \ \ \ \ \ \ $T_{rot} = \frac{1}{2} \frac{L^2}{{\cal I}}$ \ \ \ \ \ \ \ \ \ $T_{rot} = \frac{1}{2} {\cal I} \omega^2 $ \ \ \ \ \ \ \ \ \ $ {\cal I} $ is the {\it moment of inertia } \vskip 0.2cm $E=T+V$ is negativ .... $T$ is kinetic energy \includegraphics[height=5.0cm]{klasse2.pdf} \includegraphics[height=2.5cm]{klasse3.pdf} $I_n$ QM it looks different 3-dim Schr.Eq. $\rightarrow$ Seperation of variables $x, y, z, \rightarrow r, \nu , \varphi $ \vskip 0.2cm $ \frac{\delta ^2}{\delta x^2}+\frac{\delta ^2}{\delta y^2}+\frac{\delta ^2}{\delta z^2} \longrightarrow T_r +\frac{L^2(\theta , \varphi )}{r^2}$ \vskip 0.2cm $T_r \longrightarrow \frac{1}{r^2}\frac{\partial}{\partial r}{r^2}\frac{\partial}{\partial r}$ \vskip 0.2cm $L^2$ is ugly (but can be made very elegant) This is generally used in many fields. \vskip 0.2cm $$ \frac{L^2(\theta , \varphi )}{r^2} \longrightarrow \frac{1}{r^2} \frac{1}{ sin \theta} \frac{\partial}{\partial \theta} \left( sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} $$ Solutions of the above are $Y_l^m(\theta, \phi)$, known as the spherical harmonics. (The constants were not taken care of) \vskip 0.2cm From the web ("stolen latex code") {\tt http://vergil.chemistry.gatech.edu/notes/quantrev/node25.html } \begin{equation} - \frac{\hbar^2}{2 \mu} \left[ \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial \psi}{\partial r} \right) \frac{1}{r^2 sin \theta} \frac{\partial}{\partial \theta} \left( sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] - \frac{e^2}{4 \pi \epsilon_0 r} \psi(r, \theta, \phi) = E \psi(r, \theta, \phi) \end{equation} \vskip 0.2cm Exercise: Look on the separation of variables and how it's done. \vskip 0.2cm (l=0) s-states, (l=1) p-states, (l=2) d-states, (l=3) f-states, ... there are more, but it is not relevant in typical atoms \end{document}