Phys 261

The class

August 29, 2006

Abstract

Here are the notes from the class. They are written i realtime.

0.1 Third lecture 29.08.06

0.1.1 Atomic world construction

 a_0 - radius, length $\Delta x \approx a_0 \Delta k \approx 1/a_0$ ($\hbar \Delta k = \Delta p$ wavenumber $\Delta E \approx \frac{(\Delta p)^2}{2m} =$ $\frac{\hbar^2}{2ma_0^2} \approx \frac{\hbar^2}{ma}$ $\frac{\hbar^2}{ma_0^2}$ (kinetic energy T₀.) Potential energy V₀ $|-\frac{e^2}{a_0}$ $\frac{e^2}{a_0}$ $a_0 = 0,529$ Å= \hbar^2 $\frac{\hbar^2}{e^2m}$ Lenght unit Energy unit $\frac{e^2}{a_0}$ $\frac{e^2}{a_0} = \frac{\hbar}{m c}$ $\frac{\hbar}{ma_0^2} = 27, 2 \text{ eV}$

 $\langle T_0 \rangle = \langle V_0 \rangle$ should be in the same order.

Atomic unit of time Atomic unit of velocity $p_0 = \hbar k_0 = \frac{\hbar}{a_0}$ $\frac{\hbar}{a_0}v_0 = \frac{p_0}{m} = \frac{\hbar}{m}$ $\frac{\hbar}{m} \frac{1}{a_0} =$ $\frac{me^2}{\hbar^2} \frac{\hbar}{m} = \frac{e^2}{\hbar} \frac{v_0}{c} = \frac{e^2}{\hbar c} = \alpha = \frac{1}{137} t_0 = \frac{a_0}{v_0} = (\frac{a_0}{e^2}) \hbar = \frac{\hbar}{E}$ $\frac{\hbar}{E_0}$ Alternative postulate $t_0 = \frac{\hbar}{E}$

 $\bar{E}-O$
(Statement a.u. $\longleftrightarrow e=m\hbar=1$)

 $\hbar = 0,66 \cdot 10^{-15}$ eVs $t_0 = \frac{0.66 \cdot 10^{-15}}{27,2}$ s=0, 24 · 10⁻¹⁵ (2 π for angular freq.) ν frequency — ω - angular frequency

 k_0T is the "physical temperature". Room temperature is thus $\frac{1}{40}$ eV or 25 meV

Atomic unit of energy \longrightarrow VERY HOT

More about bound states in H

Ground state $-\frac{1}{2}$ a.u. States characterized by n, l (m - magnetic) In H energies given by $\frac{1}{n^2}(-\frac{1}{2})$ a.u **Sett inn bilde av matrise og brnnpotensiale har bilder**

Ladi says its nonsens to talk about m as a quantum number.

Angular momentum $L = \omega \varphi T_{rot} = \frac{1}{2} \frac{L^2}{g} E = t + V$ is negatively ** bane bilde **

 I_n QM it looks different 3-dim Schr.Eq. \rightarrow Seperation of variables x, y, z, \rightarrow r, ν, φ $\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2} \longrightarrow T_r + \frac{L^2(\nu, \varphi)}{r^2}$

 $T_r \longrightarrow \frac{1}{r} \frac{\delta}{\delta r} \frac{1}{r} \frac{\delta}{\delta r} L^2$ is ugly (can be made very elegant) This is generally used in many fields.

Exercise: Look on the separation and how it's done.

 (0) s-states, (1) p-states, (2) d-states, (3) f-states, ... there are more, but it is irrelevant here