
Geosci. Model Dev. Discuss., 5, 1–65, 2012 www.geosci-model-dev-discuss.net/5/1/2012/ doi:10.5194/gmdd-5-1-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections

T. Iversen^{1,2,*}, M. Bentsen^{3,4}, I. Bethke^{3,4}, J. B. Debernard¹, A. Kirkevåg¹, Ø. Seland¹, H. Drange^{4,5}, J. E. Kristjánsson², I. Medhaug^{5,4}, M. Sand², and I. A. Seierstad¹

Received: 26 July 2012 - Accepted: 6 August 2012 - Published:

Correspondence to: T. Iversen (trond.iversen@met.no)

Published by Copernicus Publications on behalf of the European Geosciences Union.

All Staff Olavsgaard 29-30 Aug 2012

EarthClim

Climate sensitivity estimates

Equilibrium Climate Sensitivity (ECS):

change in global mean near-surface air temperature, ΔT ,

when a new climate equilibrium (ΔR=0 at TOA) is reached after an abrupt increase in atmospheric CO2 concentrations introduced to a climate in equilibrium.

Approx ECS by slab ocean:

 $\Delta \mathsf{T}_{\mathsf{eq}}$

Difference in global mean near-surface air temperature between two runs of a slab-ocean global climate model with different atmospheric CO2 concentrations

Approx ECS by slab ocean:

 ΔT_{eq}

Difference in global mean near-surface air temperature between two equilibrium runs of a slab-ocean global climate model with different atmospheric CO2 concentrations

For CCSM4 (Bitz et al, J Climate 2012) and 2xCO2:

1 degree resolution: 3.20 K

2 degree resolution: 3.13 K

CAM3-Oslo with slab ocean (Kirkevåg et al, 2008) and 2xCO2 2 degree resolution: 3.14 K

Approx ECS by regression and extrapolation:

```
\Delta T_{reg} Gregory et al. (2004) :
```

linear regression between annual $\Delta R(t)$ and $\Delta T(t)$ during adjustment after the abrupt CO2-increase.

assumes negligible contributions from time-varying feedbacks.

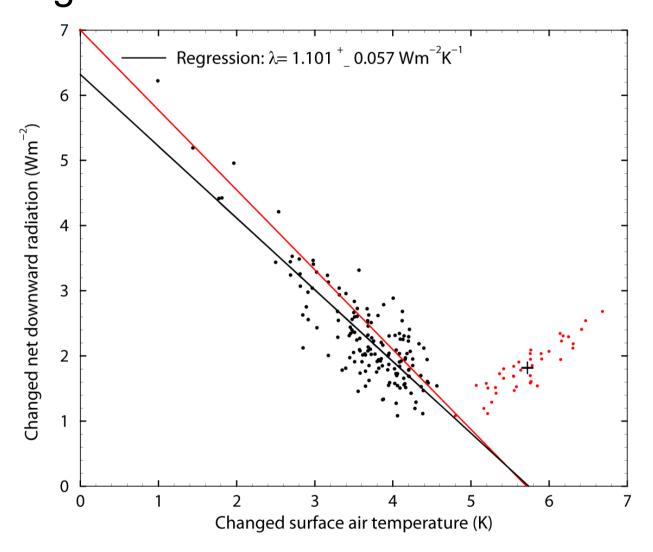
- The slope of the regression is the feedback parameter $\lambda = d\Delta R/d\Delta T$;
- the intercept at ΔT=0 approximates the instantaneous forcing R_f,
- the intercept at $\Delta R=0$ is ΔT_{reg}

Approx ECS by the effective climate sensitivity:

$$\Delta T_{eff}$$
 Murphy (1995):

$$\Delta T_{eff}(t) = \frac{\Delta T(t)R_f}{R_f - \Delta R(t)}$$

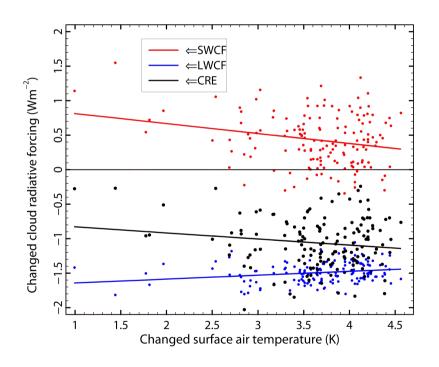
Transient Climate Response (TRC):

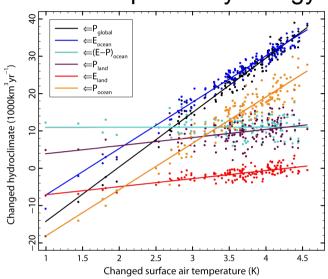

change in global mean near-surface air temperature, ΔT_{TRC} ,

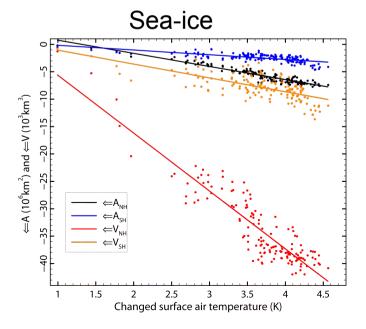
evaluated over years 60-80 after a gradual 1% per year increase in atmospheric CO2 concentrations starting from a climate in equilibrium.

CMIP5 experiments

- "Abrupt 4xCO2" from pre-industrial (1850)
 CO2, run for 150 years.
 - Devide by two for the standard values for doubling.
- "Gradual 4xCO2" with 1% CO2 increase per year until quadrupling.
 - Statistics taken out for years 60-80, representing doubling of CO2.


$\Delta T_{reg} = 5.74 \text{ K and } \Delta T_{eff} = 5.71 \text{ K}$

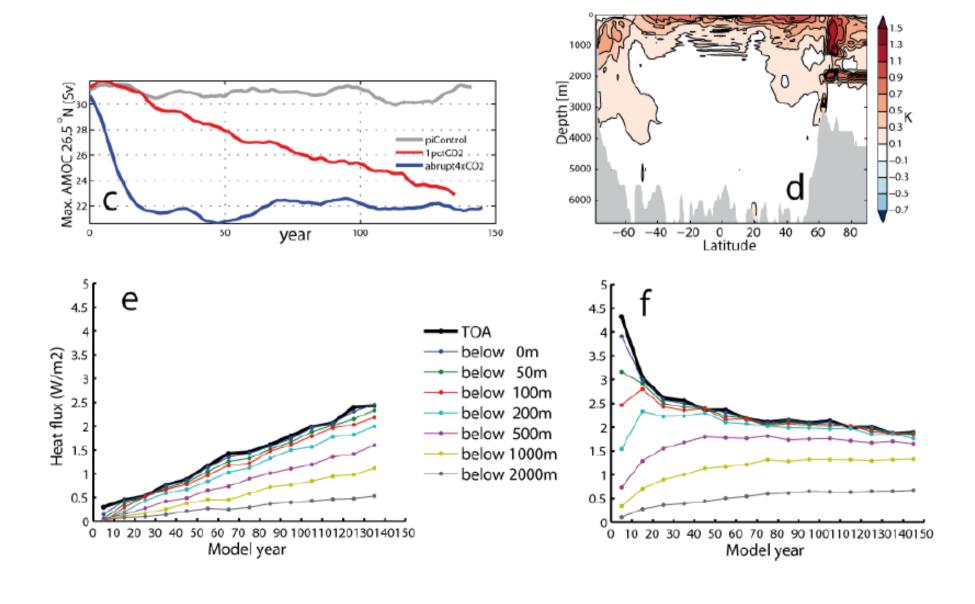

 $\Delta T_{TRC} = 1.39 \text{ K (CCSM4: 1.72 K)}$


Gross Feedbacks

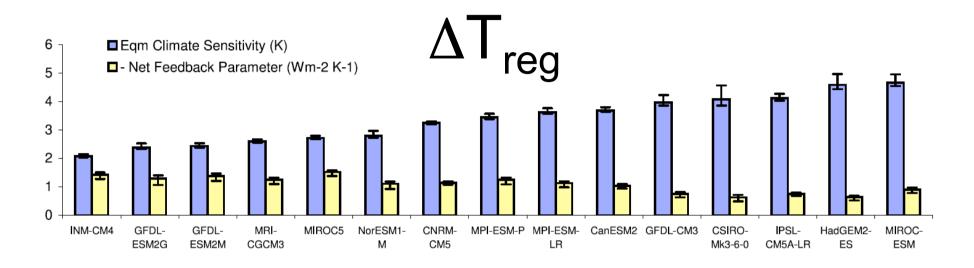
Cloud Radiative Effects

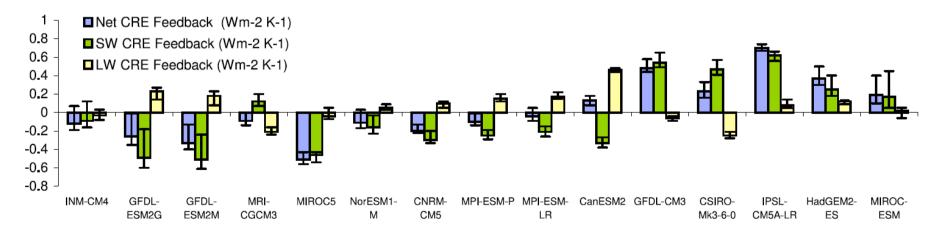
Atmospheric Hydrology

Sensitivity and gross feedbacks


	∆Teq K	∆T _{eff} K	∆T _{reg} K	R _{f_reg} Wm ⁻²	Areg Wm ⁻² K ⁻¹	ΔT _{TCR} K	∆T _{TCR,¶} K
NorESM1-M 2 deg	not calc.	2.86	2.87	3.16	1.101	1.39	2.32
CCSM4, 1 deg.	3.20	2.78	2.80	2.95	1.053	1.72	2.64

	λ _{LWAllsky}	λ _{SWAllsky}	λ _{LWclearsky}	λ _{SWclearsky}	λ _{LWCF}	λ _{SWCF}	λ _{CRE}
	Wm ⁻² K ⁻¹						
NorESM1-M 2 deg	-1.80	+0.70	-1.86	+0.84	+0.06	-0.15	-0.09


	λp-GLOB	λε-ocean	λp-ocean	λ(E-P)-OCEAN	λε-LAND	λp-LAND
	10 ³ km ³ K ⁻¹					
NorESM1-M 2 deg	14.58	12.42	12.40	+0.02 (-0.29 - +0.32)	2.16	2.18


	λ _{AREA-NH}	λ _{VOL-NH}	λ _{AREA-SH}	λ _{VOL-NH}
	10 ⁶ km ² K ⁻¹ yr ⁻¹	10 ³ km ³ K ⁻¹ yr ⁻¹	10 ⁶ km ² K ⁻¹ yr ⁻¹	10 ³ km ³ K ⁻¹ yr ⁻¹
NorESM1-M 2 deg	-2.39	-10.55	- 0.86	-2.52

Deep ocean heat sink: slow feedback

Comparisons (Andrews et al, 2012)

Concluding Remarks

- NorESM1-M: ECS-estimates are amongst smaller of the CMIP5-models (Andrews et al, 2012)
- Clouds in NorESM tend to dampen the response (negative gross feedback)
- Whilst ECS-estimates are close to CCSM4 (~2.9K),
 the TRC (~1.4K) is considerably smaller than CCSM4 (~1.7K)
- This can be related to the strong AMOC in NorESM.
 Since AMOC slowly reduces the estimated TRC is probably an under-estimate of the long-term sensitivity
- Global precipitation: ~ 2.7 %/K