
Generated using version 3.1.2 of the official AMS LATEX template

Transient climate response in a two-box energy-balance model.1

Part I: analytical solution and parameter calibration using CMIP52

AOGCM experiments.3

Olivier Geoffroy ∗ and David Saint-Martin

Centre National de Recherches Météorologiques (CNRM-GAME), Toulouse, France

4

Dirk Jan Leo Oliviè
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ABSTRACT7

This is the first part of a series of two articles analyzing the global thermal properties of8

atmosphere-ocean coupled General Circulation Models (AOGCMs) within the framework9

of a two-box Energy Balance Model (EBM). In this part, the general analytical solution10

of the system is given and two idealized climate change scenarios, one with a step forcing11

and one with a linear forcing, are discussed. These solutions give a didactic description12

of the contributions from the balanced response, and from the fast and slow transient re-13

sponses during a climate transition. Based on these analytical solutions, we introduce a14

simple and physically-based procedure to calibrate the two-box model parameters using an15

AOGCM step-forcing experiment. Using this procedure, the global thermal properties of16

twelve AOGCMs participating in CMIP5 are determined. It is shown that, for a given17

AOGCM, the EBM tuned with only the abrupt 4xCO2 experiment is able to reproduce with18

a very good accuracy the temperature evolution in both a step-forcing and a linear-forcing19

experiments. The role of the upper-ocean and the deep-ocean heat uptakes in the fast and20

slow responses is also discussed. One of the main weakness of the simple EBM discussed21

in this part is its ability to represent the evolution of the top-of-the-atmosphere radiative22

imbalance in the transient regime. This issue is addressed in Part II by taking into account23

the efficacy factor of deep-ocean heat uptake.24
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1. Introduction25

Determining the response of the climate system to an imposed external perturbation26

is a major challenge in climate science. The global and annual mean surface temperature27

response is a useful metric to determine the magnitude of a climate change induced by an28

externaly imposed radiative perturbation. Indeed, many studies suggest that most of the29

climate variables are related to the global mean surface temperature response. Coupled30

atmosphere-ocean general circulation models (AOGCMs) are the most comprehensive tool31

to study climate changes and perform climate projections. They can be used to assess the32

changes in global temperature but they are computationally expensive. Alternatively, simple33

climate models (SCMs), which estimate approximately the global mean surface temperature34

change for a given, externally-imposed perturbation in the Earth’s radiation balance (Mein-35

shausen et al. 2008; Good et al. 2011), can be used to emulate the AOGCM responses in36

order to cover a wide range of scenarios with a negligible computational cost.37

Energy-balance models (EBMs) are physically-based SCMs. They are useful to sum-38

marize AOGCM global thermal properties, intercompare and analyze AOGCM responses39

(Raper et al. 2002; Soden and Held 2006; Gregory and Forster 2008; Dufresne and Bony40

2008). In the case of a small perturbation, some EBMs assume that the thermal energy41

balance of the climate system is expressed as a linear function of temperature perturbation42

only (Budyko 1969; Sellers 1969). The net radiative imbalance due to an external forcing43

and a temperature change can be expressed as N = F − λT . The radiative feedback pa-44

rameter λ with respect to the global mean surface air temperature T depends on the type45

of forcing (Hansen et al. 2005). The imposed radiative forcing F includes the effects of both46

fast (few months) stratospheric and tropospheric adjustments (Gregory and Webb 2008). In47

this formulation of the radiative imbalance N , the assumption of linear dependency in T48

suffers from some limitations (Gregory et al. 2004; Williams et al. 2008; Winton et al. 2010;49

Held et al. 2010) that are adressed in Part II of this study.50

In equilibrium, N = 0 and the steady-state temperature is equal to Teq = F/λ. The51
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equilibrium climate sensitivity (ECS), which is defined as the equilibrium mean surface52

air temperature perturbation resulting from a doubling carbon dioxide radiative forcing,53

is commonly used as a metric of anthropogenic climate change. However, this metric is54

not sufficient to study the transient regime because of the climate-system thermal inertia.55

Indeed, the rate of change in the heat content of the climate system is equal to the Earth’s56

radiative imbalance and this change occurs on large timescales due to the large thermal57

inertia of the deep ocean (Dickinson 1981; Hasselmann et al. 1993; Murphy 1995; Gregory58

2000; Held et al. 2010). Based on empirical relationships, Gregory and Mitchell (1997) and59

Raper et al. (2002) propose a formulation for the deep-ocean heat uptake proportional to60

the surface temperature perturbation: H = κT . However, this formulation is not able to61

represent the equilibrium temperature response in the case of a step-forcing or a stabilization62

scenario because the deep-ocean temperature response is by definition neglected.63

The solution to circumvent this shortcoming is to introduce a second layer which rep-64

resents the deep ocean. Splitting of the climate system into two thermal reservoirs with65

different heat capacities allows one to take into account the ocean thermal saturation along66

a transient regime until equilibrium and then to represent the two distinct timescales to67

the global mean climate system response (Hasselmann et al. 1993; Held et al. 2010). This68

sytem is similar to the three-box EBM presented in Dickinson (1981), the atmosphere and69

the upper-ocean layers being considered as one single layer characterized by the surface air70

temperature.71

In this study, we analytically derive the solution of this two-box energy-balance model72

and propose a calibration method for determining the equivalent thermal parameters of73

a given AOGCM. We then assess the validity of this simple framework to represent the74

behavior of the complex coupled models in response to an idealized forcing scenario by75

analyzing the results of twelve AOGCMs participating in the fifth phase of the Coupled76

Model Intercomparison Project (CMIP5). The role of each box heat uptake in the fast and77

slow components of the transient response is also discussed.78
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The structure of the paper is as follows: after introducing the theorical framework and79

describing the analytical solutions for different forcing scenarios in Section 2, the methodol-80

ogy used to adjust the two-box EBM response to AOGCMs results is presented and applied81

to CMIP5 AOGCMs in Section 3.82

2. Theoretical framework83

a. Two-box energy-balance model84

We consider the linear two-box energy-balance model described in Held et al. (2010). Held85

et al. (2010) also proposed an alternative model with an additional parameter, an efficacy86

factor for deep-ocean heat uptake that will be discussed in Part II. The climate system is87

split in two layers (Gregory and Mitchell 1997; Gregory 2000). The first one corresponds to88

the atmosphere, the land surface and the upper ocean, and the second one represents the89

deep ocean. The state of each layer is described by a temperature perturbation T and T0.90

T is usually taken as the global mean surface air temperature perturbation from the control91

climate. T0 is a characteristic temperature perturbation of the deep ocean. T and T0 verify92

the following system of equations:93

C
dT

dt
= F − λT − γ(T − T0), (1)

C0
dT0

dt
= γ(T − T0). (2)

This system has two prognostic variables and five free parameters: λ, γ, C, C0 and a94

radiative forcing amplitude parameter. Whatever the radiative forcing agent, the radiative95

forcing formulation requires at least one model-dependant reference radiative parameter Fref96

due to stratospheric and tropospheric adjustments. In the case of a CO2 perturbation, the97

radiative forcing can be expressed as a function of the CO2 concentration and a radiative98
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parameter following (IPCC 1990):99

F(t) =
F2xCO2

ln(2)
ln

(

[CO2]t
[CO2]0

)

. (3)

where [CO2]t is the time-dependant carbon dioxide concentration, [CO2]0 is the preindustrial100

CO2 concentration and F2xCO2
is the net radiative forcing associated with a doubling of the101

atmospheric CO2 concentration.102

C dT
dt

and C0
dT0

dt
are the tendencies of heat contents respectively of the upper and the lower103

layer. C and C0 are effective surfacic heat capacities respectively of the upper (by neglecting104

atmosphere and land surface heat capacities) and the deep ocean. The parameter γ is a heat105

exchange coefficient. The heat flux exchange between the two layers is thus assumed to be106

proportional to the difference between the two temperature perturbations. In the limit of an107

infinite deep-ocean heat capacity (C0 → ∞), T0 is zero and the expression of the heat flux108

exchange is the one proposed by Gregory and Mitchell (1997) with κ = γ. In this one-box109

model (the deep-ocean layer is an external infinite reservoir), the temperature perturbation110

verifies the following equation (Raper et al. 2002; Dufresne and Bony 2008):111

C
dT

dt
= F − λT − κT. (4)

The differences between the two models are analyzed in the next section.112

The temperature TH associated with the climate system heat-uptake is defined as the113

disequilibrium temperature difference between T and the instantaneous equilibrium tem-114

perature Teq(t) = F(t)/λ (Winton et al. 2010). The latter is the equilibrium temperature115

associated with the instantaneous forcing applied at time t. The heat-uptake temperature116

represents the instantaneous rate of heat storage in the climate system:117

TH(t) = T (t) − Teq(t) = −1

λ

[

C
dT

dt
+ C0

dT0

dt

]

. (5)

Contrary to Winton et al. (2010), a negative heat-uptake temperature corresponds here to118

a positive heat storage in the climate system.119

5



b. Analogy with electricity120

The two-box energy-balance model and its simpler version (one-box model) can be ad-121

vantageously described in terms of equivalent electrical circuits (Fig. 1). While temperature122

differences are analogous to electrical potential differences, heat fluxes are analogous to in-123

tensities.124

In the case of the one-box model (see Fig. 1a), the first layer is a capacitor with capacity125

C. It is linked to the external system by a resistance 1/λ and to the second layer by a126

resistance 1/κ. The input voltage is equal to the instantaneous equilibrium temperature127

Teq(t) = F(t)/λ and the output voltage is the surface mean temperature T . The intensity in128

the main branch of the circuit is the radiative imbalance N = F−λT . For a step-forcing, the129

capacitor voltage increases until saturation. The intensity through the capacitor becomes130

zero and the equilibrium temperature response is given by a voltage divider and is equal to131

F/(λ + κ).132

In the case of the two-box model (see Fig. 1b), there is a resistance 1/γ and an additional133

capacitor with a higher capacity value C0 in the secondary branch through which the intensity134

analogous to the deep-ocean heat uptake flows. The deep-ocean temperature perturbation135

T0 is the voltage across this capacitor. In equilibrium, both intensities are zero and T =136

T0 = Teq.137

Both circuits are low-pass filters. The Bode diagram of the second one is given in Ap-138

pendix C. It is interesting to note that in the framework of electrical circuits, the forcing139

is directly seen as an input perturbation in temperature Teq instead of a perturbation in140

radiative flux, from which the output temperature T can be derived by applying a transfer141

function H. Indeed, these functions are apparent in the analytical solutions that are given142

in the following section.143
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c. Analytical solutions144

In Appendix A, the general solutions of both the mean surface temperature and the145

deep-ocean temperature responses are derived for any forcing function t → F(t). With an146

integration by parts of the equations (A8) and (A9), the temperature perturbations T and T0147

can be written as the sum of the balanced temperature Teq(t) and two modes characterized148

by two distinct timescales, τf (fast) and τs (slow):149

T (t) = Teq(t) −
∑

i={s,f}

ai

λ

(

F(0)e−t/τi +

∫ t

0

F ′(ξ)e−(t−ξ)/τidξ

)

, (6)

T0(t) = Teq(t) −
∑

i={s,f}

φiai

λ

(

F(0)e−t/τi +

∫ t

0

F ′(ξ)e−(t−ξ)/τidξ

)

, (7)

where τi, ai and φi are parameters depending on C, C0, γ and λ. Their expressions are given150

in Table 1. Note, in particular, that af + as = 1 and φfaf +φsas = 1, and that φf < 0 while151

af , as, and φs are all positive.152

The sum term in Eq. (6) is the heat-uptake temperature TH . The latter is the sum of153

two modes that can be decomposed in two terms depending on the forcing function. The154

first contribution is an instantaneous deviation associated to a discontinuity of the forcing155

at t = 0. The second one is due to the time-evolution of the forcing.156

In the following paragraphs, we briefly discuss the analytical solution for two idealized157

forcings: step and linear. In Appendices B and C, we present solutions for stabilization,158

abrupt return to zero and periodic forcings.159

1) Step forcing160

For a step forcing:161

F(t) =

{

0 if t < 0

F if t ≥ 0,
(8)

7



the analytical solution of the two-box energy-balance model is given by:162

T (t) =
F
λ

[

af(1 − e−t/τf ) + as(1 − e−t/τs)
]

, (9)

T0(t) =
F
λ

[

φfaf(1 − e−t/τf ) + φsas(1 − e−t/τs)
]

. (10)

By decomposing the response as the sum of the equilibrium temperature response and163

the two modes characterized by the two distinct timescales, τf (fast) and τs (slow) following164

Eqs. (6) and (7), the temperature perturbations T and T0 are :165

T (t) = Teq − afTeqe
−t/τf − asTeqe

−t/τs , (11)

T0(t) = Teq − φfafTeqe
−t/τf − φsasTeqe

−t/τs . (12)

Thus, ai is the partial contribution of the mode i to the TH initial amplitude in the case166

of a step forcing. Initially, both the slow and the fast terms are negative with respective167

amplitudes −afTeq and −asTeq. During the transition, they increase exponentially towards168

zero with their respective relaxation times τf and τs as illustrated in Fig. 2a, b.169

In Eqs. (11) and (12), we can also see that the last two terms are the projections of170

the perturbations TH(t) = T (t) − Teq and T0H(t) = T0(t) − Teq from the new equilibrium171

T (t) = T0(t) = Teq onto the eigenmodes of the linear system of equations. Since φs > 0,172

the projection of TH and T0H onto the slow eigenmode have the same sign, and the slow173

eigenmode corresponds to a joint adjustment of the upper and lower layers. On the other174

hand, since φf < 0, the projection of T0H onto the fast eigenmode is of opposite sign to the175

projection of TH (in the fast mode, TH < 0 and T0H > 0). The perturbation heat flux from176

the lower layer to the upper layer is −H = −γ(TH − T0H) and its projection onto the fast177

eigenmode is of opposite sign to TH . The fast eigenmode thus corresponds to an adjustment178

of the upper layer by both the radiation imbalance and the deep-ocean heat uptake. The two179

physical processes at play interact positively to adjust the smallest energy reservoir. This180

explains why the characteristic timescale τf is shorter than the characteristic timescale of181

a one-box model of the upper layer without deep-ocean heat uptake, that is the limit of τs182
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when C0 tends toward zero: τf < C/λ. Still, τf is longer than the characteristic timescale of183

the one-box model of the upper layer with deep-ocean heat uptake presented in Gregory and184

Mitchell (1997) and Raper et al. (2002), that is the limit of τf when C0 tends toward infinity:185

τf > C/(γ + λ). In that model, the deep-ocean heat uptake damps TH more efficiently than186

in the two-box model because of its infinite heat capacity.187

2) Linear forcing188

To derive the analytical solution of the system for a linear forcing:189

F(t) =

{

0 if t < 0

F t if t ≥ 0,
(13)

we have to compute the integral I(t) =
∫ t

0
ξeξ/τidξ. As we found I(t) = τite

t/τi +τ 2
i (1−et/τi),190

the general solution can be written as191

T (t) =
F

λ
t − F

λ
τfaf(1 − e−t/τf ) − F

λ
τsas(1 − e−t/τs), (14)

T0(t) =
F

λ
t − F

λ
φfτfaf(1 − e−t/τf ) − F

λ
φsτsas(1 − e−t/τs), (15)

As in the step-forcing case, the surface temperature perturbation is the sum of a balanced192

response Teq(t) = F(t)/λ and an imbalance term which can be decomposed into a fast193

and a slow mode response as illustrated in Fig. 2c, d. Contrary to the abrupt case, the194

system is initially in equilibrium and deviates from its instantaneous balanced temperature195

Teq(t) afterwards. The fast and slow responses decrease with time and asymptotically tend196

towards negative limits. Their amplitudes are proportional to their respective relaxation197

times resulting in a negligible amplitude of the fast response.198

Assuming a logarithmic relationship between the radiative forcing and the carbon dioxide199

concentration [Eq. (3)], the 1% y−1 CO2 experiment corresponds to a linear forcing with:200

F =
F2xCO2

t2xCO2

with t2xCO2
≈ 70 y. (16)
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3. Multi-model analysis201

In this section, a method for tuning the two-box model parameters described above to202

individual AOGCMs using only the idealized step-forcing experiments is proposed. The203

tuning method is then applied to twelve available AOGCMs participating in the fifth phase204

of the Coupled Model Intercomparison Project (Taylor et al. 2011) and is validated by205

comparison with AOGCM responses to the linear-forcing, 1% y−1 CO2 experiments.206

a. Method for parameter calibration207

The method uses only an AOGCM non equilibrated response of a step-forcing experi-208

ment. We assume that the top of the climate system corresponds to the model top-of-the-209

atmosphere (TOA). Both radiative net flux change at TOA and surface temperature change210

T are used to adjust the two radiative parameters Fref (the adjusted radiative forcing am-211

plitude) and λ. Only T is used to adjust the thermal inertia parameters C, C0 and γ. The212

method can thus be decomposed in two steps.213

1) 1st step214

The first step consists in estimating the radiative parameters by using the method de-215

scribed in Gregory et al. (2004). Using this method, the computation of Fref and λ takes216

into account both stratospheric and tropospheric adjustments. However it assumes a linear217

dependancy between the Earth’s radiation imbalance and the surface temperature pertur-218

bation such that N = F − λT . The limitations of this assumption are discussed in Part219

II.220
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2) 2nd step221

The second step consists first in the calibration of the four mode parameters τf , τs, af222

and as by fitting the global mean surface air temperature response. For t ≫ τf , Eq. (11)223

can be approximated as follows:224

T ≈ Teq(1 − ase
−t/τs) ⇒ log(1 − T

Teq

) ≈ log as −
1

τs

t. (17)

Assuming that τf ≪ 30 y, the linear regression of log(Teq − T ) against t over the period225

30 − 150 y gives estimations of τs and as.226

Then af = 1 − as is known. τf can then be expressed from Eq. (11) in function of these227

three parameters and the surface temperature response:228

τf = t/
[

log af − log
(

1 − T/Teq − ase
−t/τs

)]

. (18)

Its value is estimated by averaging over the first ten years of the step-forcing experiment.229

Finally, the remaining physical parameters of the model (the heat capacities C and C0230

and the heat exchange coefficient γ) are computed from the other parameters using the231

following analytical relationships (see Table 1):232

C = λ/(af/τf + as/τs), (19)

C0 = λ(τfaf + τsas) − C, (20)

γ = C0/(τfas + τsaf). (21)

This methodology is applied to instantaneous carbon dioxide quadrupling (abrupt 4xCO2)233

experiments (with a typical time integration of 150 years) performed by an ensemble of twelve234

AOGCMs participating in the CMIP5.235
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b. Results236

1) Radiative parameters237

For the 12 AOGCMs considered here (Table 2), the multimodel average of the net radia-238

tive forcing (6.8 W m−2) is very close to previous CMIP3 analysis results (Williams et al.239

2008), and the relative intermodel standard deviation is about 14%. The estimates for the240

model’s feedback parameters are consistent with previous results with older AOGCMs (So-241

den and Held 2006). The multimodel mean (1.11 W m−2 K−1) and standard deviation (0.31242

W m−2 K−1) of the total feedback parameters (Table 2) are close to previous values obtained243

for CMIP3 models and for different types of scenarios.244

The estimation of the 4xCO2 equilibrium temperature response for each model is pre-245

sented in Table 2. The equilibrium temperature response ranges from 4.1 K to 9.1 K. The246

spread among the responses is as large as those of CMIP3 simulations.247

2) Climate system inertia parameters248

In Table 3, we summarize the corresponding thermal parameters for each of the 12 models.249

We first note that the deep-ocean heat-capacity values are about an order of magnitude larger250

than the upper-layer heat-capacity values. The multimodel means of C (7.7 W y m−2 K−1)251

and C0 (106 W y m−2 K−1) are close to Dickinson (1981) estimations of 10 W y m−2 K−1 and252

100 W y m−2 K−1 for the ocean mixed layer and for the deep-ocean capacities respectively.253

The deep-ocean heat-capacity mean value is however larger than the Murphy (1995) estimate254

of the ocean capacity of about 52 W y m−2 K−1 (1.65 109 J m−2 K−1). Considering ocean255

covers f0 = 70% of the climate system surface, and using a constant water heat-capacity of256

cp = 4180 J kg−1 K−1 and a constant density of salt water ρ = 1030 kg m−3, the AOGCMs257

ensemble mean C0 value corresponds to an equivalent deep-ocean layer depth D0 equal to:258

D0 =
86400 ∗ 365.25 ∗ C0

ρcpf0
= 1110 m. (22)
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Similarly, an upper ocean with an effective surfacic heat capacity equal to the AOGCMs259

ensemble mean value is equivalent to a 81 m thick mixed layer.260

The INM model gives a very large value of C0 (317 W y m−2 K−1) in comparison with261

other models. One can wonder if this estimation can be biased by the drift in surface262

temperature evolution since the INM model is one of the two models with the largest drift in263

surface temperature evolution in the course of the preindustrial control simulation. Indeed,264

the INM drift is of the order of -0.03 K per century (over a period of 500 y) against a265

model ensemble mean of absolute value of 0.02 K per century and a standard deviation of266

0.012 K per century. However, after removing the temperature trend, the C0 estimate for267

INM still remains largely outside the range of the model ensemble with a value of 271 W268

y m−2 K−1. All other parameters of this model and all other model parameters are not269

significantly impacted by the temperature drift correction. Further investigation would be270

needed to explain the INM behaviour. By excluding this model, the ensemble mean C0 value271

is 87 W y m−2 K−1 with a much smaller standard deviation of 26 W y m−2 K−1.272

The heat exchange coefficient γ ranges from 0.5 to 0.9 W m−2 K−1 with an ensemble273

mean of 0.7 W m−2 K−1. These values are somewhat larger than the one-box EBM heat274

exchange coefficient κ values estimated by Raper et al. (2002) and Gregory and Forster275

(2008) and of the same order of magnitude than Plattner et al. (2008) estimates. One could276

expect that the introduction of the deep-ocean temperature perturbation T0 in the two-box277

EBM reduces the contribution of the temperature difference term to the deep-ocean heat278

uptake H = γ(T − T0) formulation: for a given H , T − T0 < T so that γ > κ.279

Fast and slow time responses are also given in Table 3. The fast time constant is of the280

order of 4 years and the slow response of the order of 250 years. These values are consistent281

with previous estimations of climate-system timescales (see Olivié et al. (2011) for example).282

The intermodel standard deviation for the slow relaxation time is about 150 years. It is283

reduced to 60 years by omitting the large value of τs (due to the large C0) of the INM model.284

The estimates of these climate-system parameters could be biased as a consequence of285
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the biases in the radiative parameters estimated using the method of Gregory et al. (2004).286

The sensitivity of these estimates to a more refined formulation of the two-box model is287

explored in Part II.288

3) Global mean surface air temperature response289

The comparison between the analytical model calibrated from abrupt 4xCO2 experiment290

and AOGCM responses to the abrupt 4xCO2 and the 1% y−1 CO2 increase up to 4xCO2 is291

shown in Figs. 3 and 4. For the CNRM and GFDL models, a 2xCO2 stabilization scenario is292

also available. Note that the analytical EBM results for the 1% y−1 CO2 and the stabilization293

cases are computed using the parameters tuned using the abrupt 4xCO2 experiment, and294

are therefore independent from the corresponding AOGCM experiments. All values are295

temperature change with respect to the mean control values over the whole 150 year period.296

The simple analytical model is able to reproduce the evolution of surface air temperature297

in response to both a step-forcing and a gradual forcing scenario. The fit seems to be298

very accurate to mimic the behavior of the surface temperature in a case of an abrupt299

forcing, not only at the beginning and at the end of the period (used in the tuning), but300

also in the intermediate period of transition between the two modes. However, for some301

models, a slight overestimation is observed for the 1% y−1 CO2 scenario (CSIRO, MIROC,302

MPIM) and for the 2xCO2 stabilization (GFDL). It may be due to the imperfect logarithmic303

dependency between the radiative forcing and the carbon dioxide concentration (e.g. because304

of tropospheric adjustment) or to limitations inherent to the linear two-box model such as305

the use of a single feedback parameter for all radiative forcing amplitude, the assumption306

of linearity between the radiative imbalance and the surface temperature change during a307

climate transition or an oversimplified representation of ocean heat uptake.308

It is possible that using a median scenario to fit the EBM’s parameters would give more309

accurate results. The abrupt 4xCO2 case is an extreme case and an intermediate CO2 increase310

scenario such as a doubling of carbon dioxide concentration may give more adequate results.311

14



Overall, it appears that the climate response depicted by the AOGCMs can be captured by312

a properly-tuned two-box climate model.313

c. Upper and deep-ocean heat-uptake contributions to the fast and slow responses314

In this section, the concepts of upper and deep-ocean heat-uptake temperatures are315

introduced. The heat-uptake temperature TH [Eq. 5] can be decomposed into the sum of316

an upper-ocean heat-uptake temperature TU and a deep-ocean heat-uptake temperature TD317

with:318

TU = −1

λ
C

dT

dt
, (23)

TD = −1

λ
C0

dT0

dt
. (24)

The contribution of these two components to the fast and the slow responses are quantita-319

tively examined with two forcing functions.320

1) Step-forcing321

In the case of a step-forcing, by using Eq. (5), the heat-uptake temperature TH is:322

TH(t) = −1

λ
C

dT

dt
− 1

λ
C0

dT0

dt
= −F

λ2

[

C + φfC0

τf
afe

−t/τf +
C + φsC0

τs
ase

−t/τs

]

. (25)

The heat-uptake temperature tends exponentially to zero with slow and fast relaxation times:323

TH(t) = −F
λ

[

(fU + fD)afe
−t/τf + (sU + sD)ase

−t/τs
]

, (26)

with fU + fD = 1 and sU + sD = 1. Each mode (slow and fast) is respectively written as the324

sum of the contribution of each component heat uptake (the subscript U refers to the first325

layer and the subscript D to the second layer). Indeed, fU (fD) and sU (sD) are the partial326

contributions of the upper (deep) component respectively to the fast and the slow responses:327

TU(t) = −F
λ

[

fUafe
−t/τf + sUase

−t/τs
]

, (27)

TD(t) = −F
λ

[

fDafe
−t/τf + sDase

−t/τs
]

, (28)
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with:328

fU =
C

λτf

; fD =
φfC0

λτf

; sU =
C

λτs

; sD =
φsC0

λτs

. (29)

2) Linear forcing329

In the case of a linear forcing, the heat-uptake temperature is:330

TH(t) = − F

λ2



C + C0 −
∑

i={s,f}

(C + φiC0)aie
−t/τi



 , (30)

which can be rewritten as:331

TH(t) = −F

λ

C + C0

λ

[

hU + hD − (fU + fD)lfe
−t/τf − (sU + sD)lse

−t/τs
]

. (31)

where lf and ls are a fractional contribution of the fast and the slow terms: lf + ls = 1. Their332

expression is given in Table 1. fU , fD, sU and sD are the same as previously, hU = C/(C+C0)333

and hD = C0/(C + C0) correspond to the fractional contribution of upper and lower layers334

to the asymptotic heat-uptake temperature which is proportional to the sum of the two heat335

capacities:336

TH(t) → T̂H = −F

λ

C + C0

λ
(hU + hD) = −F

λ

C + C0

λ
. (32)

3) Quantitative estimates of fractional contributions337

Figure 5a shows the fractional contributions of the fast and slow modes to the maximum338

amplitude of the heat-uptake temperature for the step-forcing, af and as. For all models339

except one (CSIRO), the percentage of TH due to fast response is larger than that due to340

the slow response for a step forcing but with a similar order of magnitude. The multimodel341

mean value of af is 59%.342

The contributions of the the upper and lower layer heat uptake to the fast (fU and fD)343

and the slow (sU and sD) terms are depicted in Fig. 5b, c. For the fast mode, the role of the344

two components of the system is opposite but with a similar amplitude. For all models, the345
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amplitude of the atmosphere/land/upper-ocean contribution TU is larger than that of the346

deep ocean. For the slow mode, the contribution of TU is negligible (i.e. sU ≪ sD). Then347

the temperature slow response is driven exclusively by the deep-ocean heat uptake.348

The fast and slow modes of the deep-ocean heat-uptake temperature TD are of opposite349

sign with equal initial amplitude. During a step-forcing transient regime, TD decreases from350

zero towards negative values (the heat uptake H increases from zero) until the fast mode351

becomes negligible. Then TD increases slowly and tends asymptotically towards zero. This352

non-monotonic time evolution results from the fact that the surface and the deep-ocean353

temperature perturbations T and T0 associated to the fast response have opposite signs354

(φf < 0): in the fast response, the heat flux between the lower and upper layer is upward –355

the deep ocean warms the surface, as pointed out in Section 2.c.1.356

In the case of a linear forcing, the contribution lf of the fast term is negligible (Fig. 5d)357

with a multimodel mean value of 0.03%, due to the fact that the fractional amplitude lf and ls358

are proportional to their respective relaxation times. The heat-uptake temperature is driven359

by the deep-ocean heat-uptake temperature slow term (sU ≪ sD) and by the asymptotic360

term T̂H . The upper-ocean heat-uptake temperature fast term reaches its asymptotic value361

which represents on average 8 % of the asymptotic heat-uptake temperature T̂H . Figure 5e362

shows the multimodel contributions to T̂H of both upper ocean and deep ocean. However,363

on the centennial scale, the asymptotic deep-ocean heat-uptake temperature is not reached,364

the deep-ocean heat-uptake temperature slow term being not negligible. As a result, its365

contribution relatively to the upper-ocean heat-uptake temperature is smaller during the366

transient regime (Fig. 5f). TU is on average 19% of the heat-uptake temperature at the time367

of 2xCO2 (t=70 y) and 13% at the time of 4xCO2 (t=140 y). Removing the upper-ocean368

heat-uptake contribution, the transient climate response (i.e. T at the time of 2xCO2) would369

be on average 0.12% larger, which corresponds to a temperature difference on average of 0.2370

K (and a range of 0.1 to 0.4 K).371
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4. Conclusion372

In this study, we describe the analytical solutions of a two-box energy-balance model373

for different idealized forcings and propose a method to tune the parameters of this simple374

climate model to reproduce the behavior of individual coupled atmosphere-ocean general375

circulation models. In this simple idealized framework, the global mean surface response376

change consists of the sum of an instantaneous equilibrium temperature and a disequilibrium377

temperature, the heat-uptake temperature, which is a sum of two modes. One mode responds378

very quickly to changes in forcing, whereas the other mode has a larger relaxation time.379

By analyzing the results of twelve AOGCMs experiments from CMIP5, we show that the380

calibration method based on a step-forcing scenario only allows one to derive this decompo-381

sition in two modes for any AOGCM. We first show that this decomposition can reproduce382

well the behavior of AOGCMs response to a step 4xCO2 forcing scenario over the 150 year383

period covered by the CMIP5 simulations. We also find that the simple model calibrated384

from a step-forcing experiment is able to represent gradual CO2-increase idealized scenarios385

because the analytic response exhibits a satisfactory fit for the 1% y−1 CO2 increase scenario386

and stabilization when available. We found a clear separation of timescales, since the fast387

relaxation time multimodel mean is about 4 years while the slow timescale is about 250388

years.389

An analysis of the contribution of the two layers’ heat uptake to the fast and the slow390

modes shows that the upper ocean heat uptake contributes only to the fast mode that is391

shown to be negligible in the case of a linear forcing. It contributes to about 20% of the392

deviation from equilibrium in the case of a gradual increase of the radiative perturbation.393

In the case of a step-forcing, both layers’ heat uptake contribute to the response amplitude394

and the upper-ocean heat uptake plays a key role in the representation of the first stages395

of the temperature and radiative flux responses. Thus, this contribution is important to396

estimate the amplitude of the forcing from a step-forcing experiment. Moreover, an accurate397

representation of the temperature response near equilibrium is necessary to estimate the398
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equilibrium climate sensitivity. The two-box EBM is the simplest tool that incorporates399

both of these features, and is therefore the simplest adequate model to simulate transient400

climate change under all kind of idealized scenarios.401

However, a main limit of the simple model used in this study is the intrinsic assumption402

of a linear dependancy between the radiation imbalance at TOA and the mean surface403

temperature perturbation. In Part II, the two-box EBM with an efficacy factor of deep-404

ocean heat uptake proposed in Held et al. (2010) is used to overcome this problem and405

applied to CMIP5 AOGCMs.406
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APPENDIX411

412

A. General solution of the differential system413

By rewriting in matrix form the set of coupled differential equations of the system [Eqs.414

(1) and (2)], one finds:415

dX

dt
= AX + B, (A1)

with416

X(t) =

(

T

T0

)

; A =







−(λ + γ)/C γ/C

γ/C0 −γ/C0






; B(t) =

(F/C

0

)

. (A2)

The solution X∗ of the homogeneous system (B = 0) is given by:417

X∗(t) = etAX(0). (A3)

Yet, A can be factorized as A = ΦDΦ−1 where D is the diagonal matrix whose diagonal418

elements are the eigenvalues of A. One can show that:419

D =







−1/τf 0

0 −1/τs






and Φ =







1 1

φf φs






. (A4)

The expression of τi and φi are given in Table 1. Since etA = ΦetDΦ−1,420

etA = Φ







e−t/τf 0

0 e−t/τs






Φ−1, (A5)

and the general solution of the homogeneous system is given by:421

T ∗(t) =
1

φs − φf
(T1e

−t/τf + T2e
−t/τs), (A6)

T ∗
0 (t) =

1

φs − φf
(φfT1e

−t/τf + φsT2e
−t/τs), (A7)

with T1 = φsT (0) − T0(0) and T2 = −φfT (0) + T0(0).422
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To obtain the general solution of the non-homogeneous system (B(t) 6= 0), one can use423

the method known as variation of parameter by determining a particular solution of the424

form X(t) = etAU(t). By noting U ′(t) = (etA)−1B(t), it is possible to derive the vector U .425

Finally, for any given forcing function t → F(t), the general solution of the system (A1)426

is given by:427

T (t) = T ∗(t) +
1

C(φs − φf)

(

φs

∫ t

0

F(ξ)e−(t−ξ)/τf dξ − φf

∫ t

0

F(ξ)e−(t−ξ)/τsdξ

)

, (A8)

T0(t) = T ∗
0 (t) +

φsφf

C(φs − φf)

(
∫ t

0

F(ξ)e−(t−ξ)/τf dξ −
∫ t

0

F(ξ)e−(t−ξ)/τsdξ

)

. (A9)

Later on, we will consider T (0) = 0 and T0(0) = 0. So, we have T ∗(t) = T ∗
0 (t) = 0.428

429

B. Stabilization and abrupt return to preindustrial430

forcing431

a. Linearly increasing forcing and stabilization432

The GFDL provided simulations with a 1% y−1 CO2 increase up to a doubling of the433

atmospheric CO2 concentration followed by a stabilization of this concentration at 2xCO2.434

Such a simulation was also performed with the CNRM climate model. These experiments435

are shown in Figs. 3 and 4. The corresponding analytical solution of the two-box model are436

described hereafter.437

In the case of a stabilization starting from time tst of a 1% y−1 CO2 experiment:438

F(t) =























0 if t < 0

Ft if 0 ≤ t < tst

Ftst if t ≥ tst,

(A10)
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the analytical solution for 0 ≤ t < tst is the linear-forcing solution [Eqs (14) and (15)]. For439

t ≥ tst, the solution is:440

T (t) =
F

λ
tst −

F

λ

∑

i={s,f}

τiai(1 − e
−

tst
τi )e

−
t−tst

τi , (A11)

T0(t) =
F

λ
tst −

F

λ

∑

i={s,f}

φiτiai(1 − e
−

tst
τi )e

−
t−tst

τi . (A12)

b. Abrupt return to preindustrial (zero) forcing441

Held et al. (2010) highlighted the interest of this case, showing that the slow response of442

the climate would maintain a significant climate perturbation, even if geoengineering were443

to provide a way to remove large amounts of CO2 from the climate system. We hereafter444

describe the analytical solution corresponding to such abrupt return to preindustrial (zero)445

radiative forcing from a linear-forcing experiment.446

In the case of an instantaneous return to preindustrial forcing at t = tar from a linear-447

forcing transient regime:448

F(t) =























0 if t < 0

Ft if 0 ≤ t < tar

0 if t ≥ tar,

(A13)

the analytical solution for t ≥ tar is:449

T (t) =
F

λ

∑

i={s,f}

τiai

(

e
− tar

τi − 1 +
tar

τi

)

e
− t−tar

τi , (A14)

T0(t) =
F

λ

∑

i={s,f}

φiτiai

(

e
− tar

τi − 1 +
tar

τi

)

e
− t−tar

τi . (A15)

When neglecting the fast term, the remaining term, which slowly tends to zero, is the450

recalcitrant component of global warming (Held et al. 2010).451

452
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C. Periodic forcing453

The two-box EBM can be used to understand not only long-term climate trends due454

CO2, but also to study climate perturbations due to other radiative perturbations (such as455

perturbations of the solar forcing), and even climate variability resulting from the variability456

of the radiative forcing. As an example, we hereafter give the analytical solution of the457

two-box EBM response to a periodic forcing, that could be used to understand the climate458

variability associated to the natural solar variability.459

In a stationary regime, the solution of a periodic forcing F(t) = Feiωt is:460

T (t) =
C0iω + γ

(Ciω + λ + γ)(C0iω + γ) − γ2
F(t), (A16)

T0(t) =
γ

(Ciω + λ + γ)(C0iω + γ) − γ2
F(t). (A17)

The transfer function H of the system is thus:461

H(iω) =
T (t)

Teq(t)
=

[

af

1 + iωτf
+

as

1 + iωτs

]

. (A18)

We can also write the transfer function upon a canonical form:462

H(iω) =
1 + i ω

ω1

(iω)2

ω2

0

+ 2ξ iω
ω0

+ 1
, (A19)

by noting ω1 = 1/(afτs + asτf ), ω0 = 1/
√

τfτs and ξ = (τf + τs)/(2
√

τfτs).463

By using the notation ω = ω/ω0, the gain G of the system is given by464

G(ω) = |H(iω)| =

√

1 + (ω/ω1)2

√

(1 − ω2)2 + (2ξω)2
. (A20)

And the phase Φ is:465

Φ(ω) = arctan

(

ω

ω1

)

+ arctan

(

2ξω

ω2 − 1

)

. (A21)

The Bode diagram which plots 20 log G(ω) and Φ(ω) against log ω is represented in Fig. 6.466

Asymptotically, we have:467

G(ω → 0) = 0, (A22)

G(ω → ∞) = −20 log ω + 20 log(ωc), (A23)
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with a cut-off frequency468

ωc = ω2
0/ω1 =

λ

C
. (A24)

For the 11 year solar cycle, with λ = 1.3 W m−2 K−1, C = 8 W y m−2 K−1, C0 = 100 W y m−2
469

K−1 and γ = 0.7 W m−2 K−1, the amplitude of the response is attenuated by approximatively470

10 dB and is shifted by about 4 years.471

24



472

REFERENCES473

Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth.474

Tellus, 5, 611–619.475

Dickinson, R., 1981: Convergence rate and stability of ocean-atmosphere coupling schemes476

with a zero-dimensional climate model. J. Atmos. Sci., 38, 2112–2120.477

Dufresne, J.-L. and S. Bony, 2008: An assessment of the primary sources of spread of global478

warming estimates from coupled atmosphere-ocean models. J. Atmos. Sci., 21, 5135–5144.479

Good, P., J. M. Gregory, and J. A. Lowe, 2011: A step-response simple climate model to480

reconstruct and interpret AOGCM projections. Geophys. Res. Lett., 38, L01 703.481

Gregory, J. and M. Webb, 2008: Tropospheric adjustment induces a cloud component in482

CO2 forcing. J. Climate, 21, 58–71.483

Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent484

climate change. Clim. Dyn., 16, 505–515.485

Gregory, J. M. and P. M. Forster, 2008: Transient climate response estimated from radiative486

forcing and observed temperature change. J. Geophys. Res., 113, D23 105.487

Gregory, J. M. and J. F. B. Mitchell, 1997: The climate response to CO2 of the Hadley Centre488

coupled AOGCM with and without flux adjustment. Geophys. Res. Lett., 24, 1943–1946.489

Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and490

climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.491

Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104,492

doi:10.1029/2005JD005776.493

25



Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem494

in transient simulations with coupled atmosphere-ocean models. Clim. Dyn., 9, 53–61.495

Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing496

the fast and slow components of global warming by returning abruptly to preindustrial497

forcing. J. Climate, 23, 2418–2427.498

Intergovernmental Panel on Climate Change (IPCC), 1990: Climate Change 1990: The499

Intergovernmental Panel on Climate Change Assessment, edited by J. T. Houghton et al.,500

Cambridge Univ. Press, New York.501

Meinshausen, M., S. C. B. Raper, and T. M. L. Wigley, 2008: Emulating IPCC AR4502

atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and503

land/ocean temperatures: Magicc 6.0. Atmos. Chem. Phys., 8, 6153–5272.504

Murphy, J. M., 1995: Transient response of the Hadley Centre coupled ocean-atmosphere505

model to increasing carbon dioxide. Part III: Analysis of global-mean response using506

simple models. J. Climate, 8, 496–514.507
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Table 1. Summary of definitions of two-box model general and mode parameters and
relationships between mode and physical parameters.

Definition of general parameters

b = λ+γ
C

+ γ
C0

b∗ = λ+γ
C

− γ
C0

δ = b2 − 4 λγ
CC0

Mode parameters

fast slow

af =
φsτf

C(φs−φf )
λ as = − φf τs

C(φs−φf )
λ

φf = C
2γ

(b∗ −
√

δ) φs = C
2γ

(b∗ +
√

δ)

τf = CC0

2λγ
(b −

√
δ) τs = CC0

2λγ
(b +

√
δ)

lf = afτf
λ

C+C0

ls = asτs
λ

C+C0

Relationships between parameters

af + as = 1

af/τf + as/τs = λ/C

τfaf + τsas = (C + C0)/λ

τfas + τsaf = C0/γ

φfaf/τf + φsas/τs = 0

τfτs = CC0/(λγ)

C + φfC0 = λτf

C + φsC0 = λτs

φfaf + φsas = 1

φfφs = −C/C0
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Table 2. The 4xCO2 radiative forcing F4xCO2
, radiative feedback parameter λ for a CO2

perturbation, and 4xCO2 equilibrium temperature T4xCO2
estimates of the twelve CMIP5

models studied in this paper, and their multimodel mean and standard deviation. The
version of the model used in this study is also indicated.

F4xCO2
λ T4xCO2

Model (W m−2) (W m−2 K−1) (K)
BCC (BCC-CSM1-1) 6.7 1.21 5.6
CCCMA (CanESM2) 7.6 1.03 7.4
CNRM (CNRM-CM5.1) 7.3 1.11 6.5
CSIRO (CSIRO-Mk3-6-0) 5.1 0.61 8.3
GFDL (GFDL-ESM2M) 6.6 1.34 4.9
INM (INMCM4) 6.2 1.51 4.1
IPSL (IPSL-CM5A-LR) 6.4 0.79 8.1
MIROC (MIROC5) 8.5 1.58 5.4
MOHC (HadGEM2-ES) 5.9 0.65 9.1
MPIM (MPI-ESM-LR) 8.2 1.14 7.3
MRI (MRI-CGCM3) 6.6 1.26 5.2
NCC (NorESM1-M) 6.2 1.11 5.6
Multimodel mean 6.8 1.11 6.5
Standard deviation 1.0 0.31 1.6
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Table 3. The atmosphere/land/upper-ocean surfacic heat capacity C, deep-ocean surfacic
heat capacity C0, heat exchange coefficient γ and fast and slow relaxation times estimates
of the twelve CMIP5 models used in this paper, and their multimodel mean and standard
deviation given for the 12 models ensemble and by excluding the INM model.

C C0 γ τf τs

Model (W y m−2 K−1) (W y m−2 K−1) (W m−2 K−1) (y) (y)

BCC (BCC-CSM1-1) 7.6 53 0.67 4.0 126
CCCMA (CanESM2) 7.3 71 0.59 4.5 193
CNRM (CNRM-CM5.1) 8.4 99 0.50 5.2 289
CSIRO (CSIRO-Mk3-6-0) 6.0 69 0.88 3.9 200
GFDL (GFDL-ESM2M) 8.1 105 0.90 3.6 197
INM (INMCM4) 8.6 317 0.65 4.0 698
IPSL (IPSL-CM5A-LR) 7.7 95 0.59 5.5 286
MIROC (MIROC5) 8.3 145 0.76 3.5 285
MOHC (HadGEM2-ES) 6.5 82 0.55 5.3 280
MPIM (MPI-ESM-LR) 7.3 71 0.72 3.9 164
MRI (MRI-CGCM3) 8.5 64 0.66 4.3 150
NCC (NorESM1-M) 8.0 105 0.88 4.0 218
Multimodel mean 7.7 106 0.70 4.3 257
- without INM 7.6 87 0.70 4.3 217

Standard deviation 0.8 71 0.13 0.7 150
- without INM 0.8 26 0.14 0.7 60
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4 Same as Fig. 3 for the 6 AOGCMs with the highest equilibrium climate558

sensitivity. Note that the scale of the y-axis has been modified. 37559
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5 Multi-model values of (a) the mode parameters (af , as), the upper-ocean560

and deep-ocean heat-uptake temperatures’ contribution to: (b) the fast mode561

(fU , fD) and (c) the slow mode (sU , sD), (d) the mode parameters (lf , ls) in562

response to a linearly increasing forcing, (e) the upper-ocean and deep-ocean563

heat-uptake temperatures’ contribution to the linear-forcing asymptotic term564

(hU , hD), (f) the ratios TU/TH and TD/TH at the time of 2xCO2 for the565

1% y−1 CO2 experiment. 38566

6 Bode diagram of the the climate system in the framework of the two-box567

energy-balance model: gain G in decibels (left) and phase lag Φ in radians568

(right). For the gain plot, the values of the asymptotes (gray lines) are given569

in the text. The vertical dotted lines indicate a periodic forcing of 11 years.570

Values of gain and phase lag are for λ = 1.3 W m−2 K−1, C = 8 W y m−2
571

K−1, C0 = 100 W y m−2 K−1, γ = 0.7 W m−2 K−1. 39572
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a) One-box model b) Two-box model

Fig. 1. Analogous electrical circuit of the one-box energy-balance model (a) and of the
two-box energy-balance model (b).
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a) Step forcing
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c) Linear forcing
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Fig. 2. Mean surface temperature response (thick black) and its decomposition in three
components, the equilibrium (black dot), the fast (thin grey) and the slow (thin black)
modes, as a function of time for a step-forcing (first row) and a linear forcing (second row).
The dashed grey and black lines denote respectively the fast and slow modes amplitude. The
right column panels are a zoom over the black box indicated on the respective left panel.
Note that the fast mode and the fast mode amplitude lines are mostly merged with the y=0
line. Values are for F = 3.9 W m−2, λ = 1.3 W m−2 K−1, C = 8 W y m−2 K−1, C0 = 100 W
y m−2 K−1, γ = 0.7 W m−2 K−1.
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Fig. 3. Time series of global mean and annual mean surface air temperature change (gray
lines) in response to the abrupt 4xCO2, the 1% y−1 CO2 (until 4xCO2) and 2xCO2 stabiliza-
tion (when available) CMIP5 experiments for the 6 AOGCMs with the lowest equilibrium
climate sensitivity and of the corresponding EBM analytical temperature evolutions (black
lines) calibrated from the abrupt 4xCO2 experiment only. For each model, the black dotted
line indicates the estimated equilibrium temperature response T4xCO2

for 4xCO2 step-forcing.
All values are temperature changes with respect to the mean control value over the whole
150 years period.
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Fig. 4. Same as Fig. 3 for the 6 AOGCMs with the highest equilibrium climate sensitivity.
Note that the scale of the y-axis has been modified.
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Fig. 5. Multi-model values of (a) the mode parameters (af , as), the upper-ocean and deep-
ocean heat-uptake temperatures’ contribution to: (b) the fast mode (fU , fD) and (c) the
slow mode (sU , sD), (d) the mode parameters (lf , ls) in response to a linearly increasing
forcing, (e) the upper-ocean and deep-ocean heat-uptake temperatures’ contribution to the
linear-forcing asymptotic term (hU , hD), (f) the ratios TU/TH and TD/TH at the time of
2xCO2 for the 1% y−1 CO2 experiment.
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Fig. 6. Bode diagram of the the climate system in the framework of the two-box energy-
balance model: gain G in decibels (left) and phase lag Φ in radians (right). For the gain
plot, the values of the asymptotes (gray lines) are given in the text. The vertical dotted
lines indicate a periodic forcing of 11 years. Values of gain and phase lag are for λ = 1.3 W
m−2 K−1, C = 8 W y m−2 K−1, C0 = 100 W y m−2 K−1, γ = 0.7 W m−2 K−1.
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