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ABSTRACT7

In this second part of a series of two articles analyzing the global thermal properties of8

atmosphere-ocean coupled General Circulation Models (AOGCMs) within the framework of9

a two-box Energy Balance Model (EBM), the role of the efficacy of deep-ocean heat uptake is10

investigated. Taking into account such an efficacy factor is shown to amount to representing11

the effect of deep-ocean heat uptake on the local strength of the radiative feedback in the12

transient regime. It involves an additional term in the formulation of the radiative imbalance13

at Top-of-the-Atmosphere (TOA) that explains the nonlinearity between radiative imbalance14

and mean surface temperature observed in some AOGCMs. An analytical solution of this15

system is given and this simple linear EBM is calibrated for the set of 12 CMIP5 AOGCMs16

studied in Part I. It is shown that both net radiative fluxes at TOA and global surface17

temperature transient response are well represented by the simple EBM over the available18

period of simulations. Differences between this two-box EBM and the previous version19

without efficacy factor are analyzed and relationships between parameters are discussed.20

The simple model calibration applied to AOGCMs constitutes a new method for estimating21

their respective equilibrium climate sensitivity and adjusted radiative forcing amplitude from22

short-term step-forcing simulations and more generally a method to compute their global23

thermal properties.24
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1. Introduction25

In Part I (Geoffroy et al. 2012, hereafter G12), it is shown using the CMIP5 database that26

a two-box energy-balance model calibrated only from an AOGCM step-forcing experiment27

is able to reproduce gradual CO2-increase idealized scenarios. Such a calibration gives the28

first-order global thermal properties characterizing an AOGCM. The calibration method29

requires to determine both the reference radiative forcing amplitude and the equilibrium30

climate sensitivity (ECS), defined as the equilibrium mean surface temperature response for31

a 2xCO2 radiative perturbation.32

Determining the amplitude of the radiative forcing associated with a given externally-33

imposed perturbation, and the ECS remain an issue and a topic of debate in the literature34

[e.g. Knutti and Hegerl (2008)]. While the evaluation of the radiative forcing is complicated35

by the existence of fast stratospheric and tropospheric adjustments (Gregory and Webb36

2008), the determination of the ECS requires very long simulations (thousands of years) and37

is computationally expensive. Alternative methods have been proposed for estimating the38

equilibrium climate sensitivity. For example, it can be evaluated by coupling the atmospheric39

general circulation model (AGCM) to a mixed-layer ocean (ML). However, on the one hand,40

such an estimation remains computationally expensive. On the other hand, an AOGCM and41

its AGCM-ML counterparts estimates of the ECS may differ because the ocean circulation42

redistributes the energy and impacts the Earth’s energy balance through its interaction with43

atmospheric processes.44

Another type of methods consists in extrapolating the transient regime AOGCMs re-45

sponse to equilibrium. These methods lie on the linear assumption between the TOA ra-46

diative imbalance N and the mean surface temperature response: N = F − λT . Murphy47

(1995) introduced the effective climate sensitivity such that it can be deduced from the non-48

balanced mean surface temperature response and the amplitude of the radiative imbalance:49

ECS/T (t) = F2xCO2
/(F2xCO2

− N(t)). But this estimation requires the knowledge of the50

radiative forcing F2xCO2
that must be deduced by an independent method. Gregory et al.51

2



(2004) refined the estimate of the effective ECS by fitting the net radiative flux at TOA as a52

function of T along the whole period of an abrupt 2xCO2 or a stabilization scenario. This in-53

troduces the concept of effective forcing. Such a fit gives the effective forcing (intercept), the54

effective radiative feedback parameter (slope) and the effective equilibrium climate sensitiv-55

ity (x-axis intersection). The estimated forcing takes into account all the fast (few months)56

feedbacks that cannot be considered as feedbacks associated with the surface temperature57

response, such as stratospheric and tropospheric adjustments (Gregory and Webb 2008).58

The main shortcoming of this type of methods is that the ECS is found to vary in time59

for some models and methods (Gregory et al. 2004; Senior and Mitchell 2000; Boer and Yu60

2003b). This questions the validity of the linear assumption between N and T that is in the61

heart of energy-balance models (EBMs). Williams et al. (2008) showed that a bias in the62

estimation of the radiative forcing is partly responsible for these variations but not totally;63

the assumption of linearity itself has limitations. Indeed, one needs to distinguish between64

the temperature response induced by radiative flux for a given equilibrium temperature65

amplitude (i.e. a given radiative forcing) and for a given temperature amplitude in transient66

regime. Whereas the linear dependency assumption is reasonably robust in the first case, it67

is found not to be valid in the second case, at least for some climate models (Gregory et al.68

2004; Williams et al. 2008; Winton et al. 2010).69

Using CMIP3 idealized scenario simulations, Winton et al. (2010) showed that an addi-70

tional process needs to be taken into account during the transient regime in order to represent71

the evolution of the radiative imbalance of the climate system. The ocean heat uptake re-72

duces the rate of warming and this effect occurs preferentially in some regions, specially73

those corresponding to the sinking branches of the thermohaline circulation, in the North74

Atlantic ocean and circumpolar ocean of the southern hemisphere (Manabe et al. 1991).75

This modifies the transient regime temperature pattern in comparison with the equilibrium76

pattern. Because the feedback strength varies geographically, the pattern of surface temper-77

ature changes induced by the ocean heat uptake may impact the radiative imbalance in the78
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transient regime. This reasoning led Winton et al. (2010) to introduce an efficacy factor for79

the ocean heat uptake. Held et al. (2010) introduced such an efficacy factor in the two-box80

linear EBM.81

In this study, this simple model is used to determine the ECS, the adjusted radiative82

forcing and the thermal inertia properties of a given AOGCM by taking into account the83

effect of deep-ocean heat uptake on the radiative imbalance during the transient regime.84

This allows to compute all the parameters consistently in a single framework. In Section 2,85

the model with this feature is presented, underlying assumptions of the model are discussed86

and the calibration method is described. In Section 3, this method is applied to CMIP587

abrupt 4xCO2 experiments. Results are discussed and compared to results obtained with88

the previous version of the EBM, without efficacy factor. The existence of relationships89

between the parameters is then investigated. Finally, a decomposition of the TOA net90

radiative flux in longwave and shortwave components is performed within the framework of91

this simple model.92

2. Two-box model with an efficacy factor for deep-ocean93

heat uptake94

a. System of equations and analytical solution95

In this Part II, we consider the following two-box EBM with an efficacy factor for deep-96

ocean heat uptake ε proposed by Held et al. (2010):97

C
dT

dt
= F − λT − εγ(T − T0), (1)

C0
dT0

dt
= γ(T − T0), (2)

where C, C0 and γ are respectively the first-layer (atmosphere/land/upper-ocean) surfacic98

heat capacity, the second-layer (deep-ocean) surfacic heat capacity and the heat exchange99
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coefficient between the two layers. The term γ(T −T0) is the heat flux H exchanged between100

the two layers and is equal to the deep-ocean heat uptake: H = γ(T −T0). Since the change101

in the heat content of the first layer CdT/dt is driven by the sum of the heat flux exchanged102

with the deep ocean −H and the heat flux exchanged with the external system N , the net103

radiative flux at TOA evolves as:104

N = F − λT − (ε − 1)H. (3)

In the following, EBM-1 will refer to the standard energy-balance model analyzed in G12105

and EBM-ε to the model described above. The presence of an additional radiative flux term,106

(ε− 1)H , in the evolution of N constitutes the main difference with the EBM-1. In the case107

of a gradual increase of the external perturbation, CdT/dt is small (see G12); in the limit108

of negligible CdT/dt, N = H and Eq. (3) leads to the formulation of Winton et al. (2010)109

[see their Eq. (3)]:110

Teq − T =
ε

λ
N, (4)

with the equilibrium temperature response defined as Teq = F/λ.111

By introducing C ′

0 = εC0 and γ′ = εγ, the system can be written as follows:112

C
dT

dt
= F − λT − γ′(T − T0), (5)

C ′

0

dT0

dt
= γ′(T − T0), (6)

which is the same mathematical system as that of the EBM-1 except for the primes. As113

pointed by Held et al. (2010), the effect of the deep-ocean efficacy factor is equivalent to114

modifying ocean properties such that its surfacic heat capacity and the heat exchange coef-115

ficient between the two layers are scaled by a factor ε. Note that the EBM-ε is physically116

different from the EBM-1 because it includes an additional process. As a result, all the phys-117

ical parameters estimated on the basis of this model can be different from their counterparts118

estimated within the framework of the EBM-1. The derivation of the analytical solution119

of the EBM-ε is straightforward. All the formulations of the eigenmode parameters given120
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in G12 are still valid by replacing C0 (respectively, γ) by C ′

0 (resp., γ′). These parameters121

are noted with the primes in the following. For a step forcing and a linear forcing with an122

increase rate F , the mean surface temperature response is, respectively:123

T (t) =
F

λ
−

F

λ
a′

fe
−t/τ ′

f +
F

λ
a′

se
−t/τ ′

s , (7)

T (t) =
F

λ
t −

F

λ
τ ′

fa
′

f (1 − e−t/τ ′

f ) −
F

λ
τ ′

sa
′

s(1 − e−t/τ ′

s), (8)

where τ ′

f , a′

f , τ ′

s and a′

s are the fast and slow eigenmode parameters defined in G12 and124

expressed as functions of λ, C, C ′

0 and γ′.125

b. EBM-ε underlying hypothesis126

1) Global budget127

In this section, the hypothesis underlying the introduction of an efficacy factor ε are128

presented. Within the framework of a two-layer simple climate model, the change in the heat129

content of the climate system is the sum of the atmosphere/land/upper-ocean instantaneous130

heat uptake CdT/dt and the deep-ocean instantaneous heat uptake C0dT0/dt. This change131

is equal to the net radiative imbalance N at the top of the atmosphere:132

C
dT

dt
+ C0

dT0

dt
= N. (9)

Thus N can be decomposed into two radiative contributions NU and ND equal to the in-133

stantaneous rate of heat storage respectively in the upper and the deep oceans. Similarly,134

the temperature associated with the heat-uptake TH = T − Teq (Winton et al. 2010; Ge-135

offroy et al. 2012) can be decomposed into the sum of an upper-ocean contribution and a136

deep-ocean contribution: TH = TU + TD. It is then assumed that the contributions to the137

TOA radiative imbalance induced by upper- and deep-ocean heat uptakes NU and ND are138

linear functions, respectively, of TU with a feedback parameter λ and of TD with a feedback139
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parameter λD:140

C
dT

dt
= NU = −λTU , (10)

C0
dT0

dt
= H = ND = −λDTD. (11)

The deep-ocean heat-uptake temperature is associated with a different feedback parameter141

λD because the spatial pattern of the deep-ocean heat-uptake temperature differs from the142

equilibrium surface temperature response pattern. Following Hansen et al. (2005), Held et al.143

(2010) and Winton et al. (2010), an efficacy factor for deep-ocean heat uptake is introduced:144

ε = λ/λD. (12)

Summing Eqs. (10) and (11) leads to:145

C
dT

dt
+ H = −λTU −

λ

ε
TD. (13)

By using T − Teq = TU + TD and H = −λDTD, Eq. (13) is equivalent to Eq. (1).146

2) Local budget147

To understand why the feedback strength may vary with the temperature pattern, it148

can be useful to examine the evolution of the local energy balance in transient regime. As149

pointed by Boer and Yu (2003a), the change in heat content of a climate system column is150

equal to the local radiative imbalance and the local convergence of the horizontal energy:151

dhi

dt
+

dhi
0

dt
= F i − λiT i + Ai

t + Ai
0t, (14)

where dhi/dt and dhi
0/dt are the local change in the heat content respectively of the first152

and the second layer; T i, F i and λi are respectively the local temperature response, the153

local forcing and the local feedback parameter; Ai
t and Ai

0t are the local convergence of the154

horizontal energy flux respectively of the first and the second layer. The superscript ”i”155

denotes local values. The average over the Earth’s surface of dhi/dt (respectively, dhi
0/dt)156
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is the change in the heat content of the first layer CdT/dt (respectively, of the second layer157

C0dT0/dt = H). The global mean of the local forcing is F . The global average of each local158

energy convergence Ai
t and Ai

0t is 0. Note that the local heat flux from the upper ocean to159

the deep ocean H i verifies:160

dhi
0

dt
= H i + Ai

0t. (15)

Equation (14) can be viewed as the heat budget in response to the sum of three ”forcings”:161

the external forcing F i and two sink terms, the upper-ocean heat uptake dhi/dt and the deep-162

ocean heat uptake dhi
0/dt, being considered as ”internal forcings”. By assuming additivity163

of the temperature response patterns (Forster et al. 2000; Boer and Yu 2003a), the local164

surface temperature response can be expressed as the sum of the balance response to these165

”forcings”: T i = T i
eq +T i

U +T i
D, and the local budget (14) can be decomposed in the following166

system of equations:167

F i − λiT i
eq + Ai

eq + Ai
0eq = 0, (16)

−
dhi

dt
− λiT i

U + Ai
U + Ai

0U = 0, (17)

−
dhi

0

dt
− λiT i

D + Ai
D + Ai

0D = 0, (18)

where T i
U and T i

D are the local upper-ocean and deep-ocean heat-uptake temperatures, i.e.,168

the temperature responses to the upper-ocean and deep-ocean heat-uptake ”forcings”. Ai
eq,169

Ai
U and Ai

D, are the associated convergences of horizontal energy fluxes in the first layer, with170

Ai
t = Ai

eq +Ai
U +Ai

D. Similarly, Ai
0eq, Ai

0U and Ai
0D are the convergences of horizontal energy171

fluxes in the second layer. Note that the global average of each energy-flux convergence Ai
x172

and Ai
0x is zero. Assuming that Ai

0U is 0 leads to Ai
0D = Ai

0t −Ai
0eq. Also, the decomposition173

of T and At in sums, Eq. (14) and Eqs. (16)-(18) leave one degree of freedom in the definition174

of T i
U , T i

D, Ai
U and Ai

D.175

Introducing the normalized equilibrium temperature amplitude function ri
eq = T i

eq/Teq,176

the local heat budget at equilibrium is:177

F i − λiri
eqTeq + Ai

eq + Ai
0eq = 0. (19)
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One can note that the equilibrium temperature pattern, i.e. ri
eq, depends on the local178

forcing, the local feedback and the amplitude of the local energy convergence. Thus, the179

total feedback parameter λ is the average of the local feedback parameter weighted by the180

equilibrium temperature pattern:181

λ =
1

S

∫∫

ri
eqλ

idS. (20)

This parameter will be referred as the equilibrium feedback parameter in the following.182

By assuming the separability of time and space variables for T i
U and T i

D, they can be183

decomposed in the product of a time-varying global average Tx by a spatial pattern ri
x.184

On one hand, the upper-ocean heat content change has a relaxation time that is lower185

than the typical scale of interannual variability. We expect the pattern of T i
U to be similar186

to the equilibrium pattern. By defining Ai
U such that −dhi/dt + Ai

U is the projection of187

−dhi/dt+Ai
t −Ai

eq onto the pattern λiri
eq, we can impose that the pattern of T i

U is the same188

as that of the equilibrium temperature: ri
U = ri

eq. Note that this equality is imposed by the189

initial conditions in the case of a step forcing: TU (0) = −Teq(0) and T i
U(0) = −T i

eq(0). On190

the other hand, the pattern of TD depends on the local deep-ocean heat uptake and on the191

residual energy convergences. Because the pattern of the deep-ocean heat uptake is different192

from the pattern of the radiative forcing, T i
D is assumed to be associated with a pattern193

ri
D 6= ri

eq. Averaging Eq. (18) over the Earth’s surface leads to Eq. (11) with the following194

formulation of λD:195

λD =
1

S

∫∫

ri
DλidS. (21)

The weight coefficient ri
D is different from the one in the equilibrium feedback parameter196

expression. If the strength of the local feedback λi is low in regions where the ocean heat-197

uptake induces a small temperature increasing rate (resulting in high values of ri
D), then λD198

is lower than λ. Consequently, for a given amplitude of TU and TD, ND is smaller, i.e., the199

climate system accumulates less heat.200

To conclude Section 2b, the introduction of an efficacy factor for the deep-ocean heat201
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uptake is the result of a decomposition of the temperature pattern as the sum of the temper-202

ature response patterns to the radiative forcing, the upper-ocean and the deep-ocean heat203

uptakes assuming a linear relationship between these ”forcings” and their associated temper-204

ature responses. Because the spatial pattern of the temperature response to the deep-ocean205

heat uptake differs from the equilibrium pattern, the spatial heterogeneity of the radiative206

feedbacks strength involves that the magnitude of the global radiative feedback varies in207

time during a climate transition.208

c. Effect of efficacy factor of deep-ocean heat uptake209

In case of a step forcing, the analytical solutions for the upper-ocean and deep-ocean210

heat-uptake temperatures are:211

TU(t) = −
F

λ

[

f ′

Ua′

fe
−t/τ ′

f + s′Ua′

se
−t/τ ′

s

]

, (22)

TD(t) = −
F

λ

[

f ′

Da′

fe
−t/τ ′

f + s′Da′

se
−t/τ ′

s

]

. (23)

The expression, the order of magnitude and the sign of the fractional contributions a′

f , a′

s,212

f ′

U , f ′

D, s′U and s′D are given in G12 (by replacing C0 and γ by, respectively, C ′

0 and γ′ in the213

expressions).214

The theoretical temporal evolutions of T , TU and TD in the case of a step-forcing are215

represented in the upper panels of Fig. 1 for three values of efficacy factor: ε < 1, ε = 1216

and ε > 1 and other parameters unchanged. The upper-ocean heat-uptake temperature TU217

increases with the characteristic timescale τ ′

f , and after few years, it tends to zero since the218

contribution s′U of the slow mode to TU is negligible: the upper-ocean reservoir is saturated.219

Concerning the deep-ocean heat-uptake temperature, the contributions of the slow and fast220

modes (s′D and f ′

D) are comparable but of opposite signs. The fast mode is predominant221

in the first few years and induces a decrease in TD, i.e., the heat flux exchanged between222

the two layers H increases because T increases faster than T0. After this first phase (with223

a characteristic duration of τ ′

f), the slow mode becomes dominant and TD increases slowly224
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back to zero: the deep ocean accumulates less and less heat.225

The middle panels of Fig. 1 represent the theoretical relationship between the radiative226

imbalance N and the mean surface temperature perturbation T during the transient regime,227

for the same values of ε. The intercept and the x-axis intersection are independent from the228

value of ε. Per definition, the intercept at T = 0 is the amplitude of the forcing F (Gregory229

et al. 2004). Similarly, the x-axis intersection is the equilibrium temperature response (the230

equilibrium climate sensitivity in the case of a 2xCO2 perturbation per definition). Only the231

path to join these two points is altered when ε is modified.232

With ε = 1, the net radiative flux varies linearly with the temperature. For ε 6= 1, the233

plots suggest that there are two distinct stages in the (N, T ) response to an abrupt forcing.234

To understand this behaviour, it is convenient to decompose the net flux into the sum of its235

two components contribution NU and ND. In Fig. 1 (middle row), the evolutions of (NU , T )236

and (ND, T ) are plotted respectively with gray solid lines and dash-dotted lines.237

During the first period, corresponding to the fast mode response timescale, the two com-238

ponents (upper and deep oceans) contribute with a similar amplitude but with opposite239

trends to the temperature response and N varies roughly linearly with T . Indeed, neglecting240

the slow response term during this period, the time evolutions of NU and ND are proportion-241

nal to that of TH (and T ); the scale factors are, respectively, −λf ′

U and −λDf ′

D, with f ′

U > 0242

and f ′

D < 0. Accordingly, the radiative imbalance N as the sum of these two contributions243

evolves roughly linearly with T .244

During the second period, the contribution of the upper ocean is negligible (s′U ≪ 1) and245

the net radiative flux is simply the contribution of the deep-ocean heat-uptake temperature:246

−λDTD. Then, since TD ≈ T − Teq, the radiative flux varies also roughly linearly with T .247

The sharp change in the trend of the (N, T ) line corresponds to a time similar to the fast248

relaxation time. This analysis suggests that linear fits of the two asymptots of the (N, T )249

curve performed separately as in Gregory et al. (2004) give a good approximation of the250

radiative forcing F (as the intercept of the first fit), the equilibrium temperature Teq (as the251
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x-axis intersection of the second fit), and λD = λ/ε (as the slope of the second fit).252

The net radiative flux at the top of the atmosphere can also be decomposed as the sum253

of prognostic variables and physical parameters of the EBM-ε as shown in Eq. (3). The254

radiative imbalance N is the sum of a linear term F − λT and a fraction 1 − ε of the255

instantaneous rate of heat storage in the deep ocean H . Their evolution in the (N, T ) space256

is illustrated in Fig. 1 (third row). The linear term takes into account the fact that the257

surface temperature is not in equilibrium, which induces a radiative imbalance. The second258

term is a deviation from this linear radiative flux due to the non linear evolution of the259

temperature pattern. The magnitude of H reflects the magnitude of this deviation.260

Initially, H = 0, T = 0 and the radiative imbalance is equal to the forcing. In equilibrium,261

as H is zero, the assumption of linear dependence between the radiative imbalance and the262

surface temperature remains valid. But during the transient regime, the net radiative flux is263

affected by the deep-ocean heat uptake. The parameter usually referred to as the effective264

feedback parameter λeff = (F−N)/T varies in time (if ε 6= 1) and needs to be distinguished265

from the equilibrium feedback parameter λ. Instead of λeff , a transient radiative feedback266

function λt should be considered, with:267

λt = λ + (ε − 1)γ
T − T0

T
. (24)

The efficacy factor can be determined from gradual perturbation AOGCMs simulations268

(by neglecting Cdt/dt) but requires prior knowledge of the equilibrium climate sensitivity269

and feedback parameter (Winton et al. 2010). On the other hand, all the EBM-ε radiative270

and thermal inertia parameters can be consistently computed from a step-forcing AOGCM271

experiment (and a control simulation) only, by taking into account the time evolution of the272

transient radiative feedback function. In the next section, the method used to adjust the273

EBM-ε physical parameters to a given AOGCM is briefly described.274
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d. Method for EBM-ε parameter calibration275

In comparison with the EBM-1, the EBM-ε has an additional radiative parameter ε276

that needs to be tuned consistently with the reference radiative forcing amplitude (e.g.277

F2xCO2
for a 2xCO2 perturbation) and the equilibrium feedback parameter λ from the N -T278

evolution. The physical parameters of the EBM-ε are computed iteratively using a step-279

forcing experiment. The parameters are initially set to the EBM-1 values (ε = 1, and280

parameters computed in G12). For each iteration i, the deep-ocean heat uptake H(i−1)
281

is first evaluated using the analytical solutions and the thermal parameters computed at282

iteration (i − 1). Then, using Eq. (3), a multi-linear regression of N (AOGCM values)283

against the AOGCM surface temperature response T and H(i−1) provides the values of F (i),284

λ(i) and ε(i):285

N = F (i) − λ(i)T − (ε(i) − 1)H(i−1). (25)

Finally the thermal inertia parameters C(i), C ′

0
(i) and γ′(i) are tuned by performing two286

fits of the surface temperature response following the methodology used for the EBM-1287

calibration (see details in Section 3 of G12). Few iterations are found to be sufficient to288

obtain convergence. This method for estimating the equilibrium climate sensitivity, radiative289

parameters and thermal inertia parameters from a short-term step-forcing simulation will290

be referred in the following as the EBM-ε method. In the next section, the EBM-ε method291

is applied to 12 CMIP5 AOGCMs using the abrupt 4xCO2 experiment, and results are292

compared to the EBM-1 estimates (which, for the radiative properties, correspond to the293

estimates from Gregory et al. (2004)’s method).294
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3. Validation for CMIP5 AOGCMs295

a. Radiative parameters and TOA net flux, comparison with the EBM-1296

For the same twelve AOGCMs of the CMIP5 database analyzed in G12, the EBM-ε297

method is applied and radiative parameter values are reported in Table 1. The values of298

deep-ocean heat-uptake efficacy factor are mostly greater than 1 (see also Fig. 4a). Only299

two models (INM and CNRM) have values of ε smaller than unity. The heat-uptake efficacy300

factor ranges from 0.83 to 1.82 with a multimodel mean value of 1.29 and an intermodel301

standard deviation of 0.27. These results are in very good agreement with the estimates of302

Winton et al. (2010) for some CMIP2 and CMIP3 models analysis despite methodological303

differences. Winton et al. (2010) derived the ε from 1% y−1 CO2 increase experiments using304

equilibrium climate sensitivity mainly derived from AGCMs coupled with a mixed-layer305

ocean model and using forcing estimates taken from Solomon et al. (2007). The latter were306

computed from different sources and they took into account either only the stratospheric307

adjustment or both stratospheric and tropospheric adjustments [through the method of308

Gregory et al. (2004)], depending on cases. In this study, the efficacy factor ε, the radiative309

forcing and the equilibrium climate sensitivity are derived jointly in the single framework of310

the EBM-ε.311

Figures 2 and 3 compare for each model the N -T plot for AOGCM results, EBM-ε fit, and312

Gregory et al. (2004)’s linear regression. For models with an efficacy factor near 1 (CNRM,313

IPSL, MIROC), the assumption of linearity between N and T is valid and the results from314

EBM-ε are close to that of the linear model. For models with large ε (CSIRO, MOHC,315

NCC, MPIM), the results from EBM-ε largely improve the fit of radiative imbalance versus316

temperature response compared to a linear fit. In particular, the EBM-ε is able to reproduce317

the two-stage behaviour of these models in the parameter space (N , T ).318

Figures 4b-d compare the values of F4xCO2
, λ and Teq4xCO2

obtained within the framework319

of the EBM-ε and those derived with the method described in Gregory et al. (2004). The320
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three AOGCMs with ε larger than 1.5 are indicated in full black markers. For these models,321

the radiative forcing amplitude and the equilibrium climate sensitivity are larger than in the322

standard linear model estimate. Indeed for CSIRO and MOHC, the equilibrium temperature323

response for a 4xCO2 perturbation is up to 2 K warmer than the value derived from the324

linear assumption. The multimodel mean is 0.5 K warmer. The radiative forcing is 1 to325

2 W m−2 larger for large ε models and the multimodel mean is 0.6 W m−2 larger. Most326

models have a forcing lower than 7.5 W m−2 except CCCMA, MPIM and MIROC. The327

two latter have a forcing of the order of 9 W m−2, which suggests a strong effect of the328

tropospheric adjustment. The change in the ECS is mainly due to a change in the forcing,329

the radiative feedback parameters being less impacted. Moreover, contrary to the forcing330

and the equilibrium temperature, the sign of the λ difference between the EBM-1 and the331

EBM-ε estimates is independent of the sign of ε-1. For example, for MOHC and CSIRO,332

λ is respectively larger and lower with the EBM-ε method whereas both have an ε value333

greater than 1. The multimodel radiative forcing and radiative feedback parameter standard334

deviations are roughly unchanged whereas the equilibrium temperature one increases from335

1.6 to 2.1 K. The improved match of the temperature response and radiative imbalance336

evolution between the AOGCMs and the simple EBM suggests that the values estimated337

from the EBM-ε method are more accurate. However, a complete assessment of the EBM-ε338

would require to extend AOGCM experiments until equilibrium, i.e., over a period of 1000339

to 1500 years.340

b. Thermal inertia parameters and temperature, comparison with the EBM-1341

The thermal inertia physical parameters and the relaxation times are given in Table 2 and342

represented as a function of their EBM-1 counterparts in Figs. 4e-i. The fast relaxation time343

scale τf is not impacted by the inclusion of the efficacy of deep-ocean heat uptake whereas344

the slow relaxation timescale τs is. The change in τs is mainly due to change in the heat345

exchange coefficient γ rather than in the deep-ocean surfacic heat capacity C0. Models with346
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ε > 1 have a lower γ than in the EBM-1 framework. The inclusion of the effect represented347

by the deviation term (1 − ε)H upon the temperature response amounts to modifying the348

deep-ocean heat uptake such that the heat exchange coefficient is εγ. The lack of efficacy349

factor in the EBM-1 is compensated by a large γ when ε > 1.350

The EBM-1 also underestimates the upper-ocean surfacic heat capacity C. The estimate351

of C depends on the forcing estimation since it is evaluated through an estimation of the352

temperature tendency at t=0 that is equal to F/C. Consequently, an underestimation of353

F leads to an underestimation of C. These results suggest that the lack of radiative effect354

associated with deep-ocean heat uptake introduces a bias in the EBM-1 estimates of the355

thermal inertia parameters. The standard deviation of γ, C0 and C is reduced with the356

EBM-ε, respectively from 0.13 to 0.11 W m−2 K−1, 71 to 58 W y m−2 K−1 (but slightly357

increased from 26 to 29 W y m−2 K−1 if the INM is excluded) and 0.8 to 0.6 W y m−2
358

K−1. This shows that introducing a new degree of freedom reduces slightly the inter-model359

spread.360

Figure 5 shows the temperature response of the three AOGCMs with the largest ε esti-361

mates (CSIRO, NCC, and MOHC) for the abrupt 4xCO2 and the 1% y−1 CO2 experiments,362

as well as the EBM-1 and the EBM-ε analytical solutions using the parameters estimated363

by the corresponding method on the basis of the abrupt 4xCO2 experiment. The tempera-364

ture responses are identical for both EBMs in both the abrupt 4xCO2 and the 1% y−1 CO2365

simulations over the first 150 years, and they match the AOGCM responses. But, for the366

step-forcing scenario, the EBM-ε response diverges from the EBM-1 response after about367

300 years. Only the second phase of the temperature evolution, the one driven by the slow368

component of the system, is modified by the introduction of an efficacy factor. This is con-369

sistent with the fact that only the slow relaxation timescale varies between the EBM-1 and370

the EBM-ε methods. The EBM-1 calibrated with the abrupt simulation is accurate enough371

to represent the temperature evolution over the centennial scale. However, compared to372

the EBM-ε estimates, the EBM-1 parameters are biased as a result of a bias in radiative373
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parameters estimated following the method of Gregory et al. (2004).374

c. Parameters dependency375

In this section, the question of potential relationships between the EBM-ε parameters is376

investigated. Table 3 shows the multimodel correlations between parameters of the EBM-ε,377

and also between these parameters and the equilibrium temperature response. For the set of378

12 models, a correlation coefficient higher than 0.58 is significant at the 95% confidence level.379

As expected, the anticorrelation between Teq and λ is high, with a correlation coefficient of380

-0.86. No correlation is found between F and λ suggesting that the effect of fast tropospheric381

adjustment is independent of the surface temperature feedback. Consistently, the equilibrium382

temperature is independent of the adjusted forcing magnitude.383

Raper et al. (2002) suggested a negative correlation between their heat exchange coeffi-384

cient κ of the one-box model (that is similar to the parameter γ) and the radiative feedback385

parameter λ but Gregory and Forster (2008) and Plattner et al. (2008)’s analysis of CMIP3386

models did not find such a correlation. Including an interactive deep ocean changes the387

formulation of deep-ocean heat uptake and impacts the relationship between the heat ex-388

change coefficient (κ or γ) and the radiative feedback parameter λ. Indeed, the EBM-ε389

estimates of λ and γ are positively correlated, with a correlation coefficient of 0.42 that is390

too small to be significant. The correlation between the corresponding EBM-1 estimates is391

even weaker (0.13). These results support Gregory and Forster (2008) and Plattner et al.392

(2008)’s conclusions.393

All but two of the correlation coefficients between parameter estimates are found to be394

unsignificant. Note that if the INM, which is somewhat of an outlier (see G12) is excluded,395

the correlations between parameters are even weaker, and further from the significant level.396

The equilibrium temperature and ε are significantly correlated, with a correlation coefficient397

of 0.64. The reasons for this are unclear. It is possible that models with a higher climate398

sensitivity are also models with a higher regional radiative feedback in the region where the399
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warming is slower (which corresponds to a larger ε). Local radiative feedbacks and horizontal400

heat transports would need to be investigated in order to answer this question.401

The heat exchange coefficient γ and the surfacic heat capacity C are significantly corre-402

lated with a correlation coefficient of 0.62. Models with a higher upper-ocean heat capacity403

are also models that allow a larger heat flux between the upper ocean and the deep ocean404

for a smaller temperature difference between the two layers. More heat is accumulated in405

the upper ocean and also more heat is transported to the deep ocean for a given surface406

temperature. This might be an artefact of the oversimplified modeling of heat uptake in the407

two-box model, or it might result from energy constraints on the heat uptakes: for given heat408

uptakes, a large C yields a small temperature response T , which has to be compensated by409

a large γ in order to maintain upper-to-deep oceanic heat flux (that equals the deep-ocean410

heat uptake).411

d. Decomposition in longwave and shortwave contributions412

In this section, the net TOA radiative flux is decomposed in longwave (LW) and shortwave413

(SW) components, respectively NLW and NSW . We introduce LW and SW radiative feedback414

parameters associated to the deep-ocean heat-uptake temperature, respectively λLW
D and λSW

D415

and we assume the decomposition in an upper-ocean and a deep-ocean radiative contribution416

is valid for each component separately. These assumptions yield the following equations:417

NLW = FLW − λLW T − (λLW − λLW
D )

ε

λ
H, (26)

NSW = FSW − λSWT − (λSW − λSW
D )

ε

λ
H, (27)

where FLW , FSW , λLW and λSW are, respectively, the LW and the SW components of the418

radiative forcing and of the radiative feedback parameter. Unlike in the case of the total419

feedback, we do not define a SW or LW efficacy factor εSW or εLW . Indeed, although the420

total feedback is necessary different from zero, it is possible that λSW (λSW
D ) is zero whereas421

λSW
D (λSW ) is not. In such a case, a shortwave efficacy factor εSW would have no sense.422
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Each LW and SW component is calculated by multi-linear regression of the corresponding423

net radiation flux as a function of temperature (both from the AOGCM abrupt 4xCO2424

experiment) and ε
λ
H (from the EBM-ε estimation). Values of the tuned LW and SW radiative425

parameters are reported in Table 4 and resulting fits for each model separately shown in426

Figs. 6 and 7. These figures reflect the large intermodel spread in both forcing and radiative427

feedback parameters LW and SW components.428

AOGCMs that have a large SW forcing contribution can have a large LW contribution429

(MPIM) or a small LW contribution (IPSL). The 4xCO2 LW forcing ranges from 3.4 to 7.4430

W m−2 with an ensemble mean of 6.1 W m−2 and a standard deviation of 1.1 W m−2. The431

4xCO2 SW forcing is mostly positive with a mean value of 1.3 W m−2 except for two models432

(CSIRO, INM). Its standard deviation is slightly larger than the one of the LW contribution.433

By comparison with estimates taking into account the stratospheric adjustment only, the434

forcing is found to be lower in the LW and larger in the SW. Indeed, Forster and Taylor (2006)435

found a forcing estimate of 3.45 W m−2 in the LW for a 2xCO2 experiment (corresponding436

to 6.90 W m−2 for a 4xCO2 experiment). The instantaneous SW forcing is of the order437

of -0.06 W m−2 (Myhre et al. 1998). These estimates confirm Gregory and Webb (2008)438

and suggest a non negligible effect of the fast change in the cloud component (among the439

other feedbacks) on the radiative forcing adjustment. However, the LW and SW forcings440

are larger than Gregory and Webb (2008)’s estimates (respectively 2.84 and 0.50 W m−2
441

for an ensemble of 2xCO2 experiments) which is consistent with ε > 1 for most models.442

Thus, for the majority of AOGCMs, the EBM-ε estimation decreases the LW contribution443

of the tropospheric adjustment and increases the SW contribution in comparison with an444

estimation based on a linear fit.445

The LW contribution to the feedback parameter λLW is positive (i.e. negative feedback)446

for all models because the radiative imbalance is restored by increased LW emission associ-447

ated with the temperature increase. The SW contribution to the feedback parameter λSW
448

is negative (i.e. positive feedback) for all models except GFDL which has a negligible λSW .449
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For most AOGCMs, λSW is above (in absolute value) the 0.2-0.4 W m−2 K−1 typical range450

of the albedo feedback, suggesting a positive feedback of clouds in the SW.451

The deep-ocean heat-uptake feedback parameter λLW
D is generally of the same order of452

magnitude as λLW but λSW
D is smaller than λSW . This suggests that the value of ε > 1453

obtained for the majority of the models is mainly due to the shortwave radiation, with low454

clouds as a good candidate to explain most of the difference between EBM-ε and EBM-455

1. Further analysis is necessary to understand which components of the climate system456

are responsible for the differences and quantify each contribution. But the results of such a457

simple SW-LW decomposition suggest that the EBM-ε framework can be used to decompose458

the radiative fluxes such as a cloud/clear-sky decomposition or more complex decompositions459

such as partial radiative fluxes.460

4. Conclusion461

In this study, the two-box energy-balance model with an efficacy factor of deep-ocean heat462

uptake is used as a tool to estimate the first-order global thermal properties of AOGCMs.463

These thermal properties include both radiative properties and thermal inertia properties. It464

is shown that the temperature response can be decomposed as the balanced response to three465

”forcings”: the TOA radiative forcing, the upper-ocean heat uptake and the deep-ocean heat466

uptake. Assuming additivity of each temperature response patterns to these ”forcings” and467

assuming the separability of time and spatial variability of these temperature responses, the468

radiative feedback parameter associated with the deep-ocean heat uptake is shown to be469

different from the equilibrium feedback parameter, seeing that the local feedback parameter470

varies geographically. This results in the presence of an additional term in the radiative471

imbalance formulation depending on the deep-ocean heat uptake.472

Within this EBM-ε framework, the concepts of effective forcing and effective climate473

sensitivity are unchanged but the concept of effective feedback parameter is modified. The474
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effective forcing remains the physical parameter defined by Gregory et al. (2004), i.e., the475

value of the net radiative imbalance when the temperature tends to zero. It is sensitive476

to fast feedbacks due to changes in both stratospheric and tropospheric variables, such as477

clouds, temperature lapse rate, and water vapour amount, associated with the external478

radiative perturbation, but unassociated with the surface temperature response. However,479

the effective climate feedback parameter such as usually defined, i.e., the feedback parameter480

of the transient regime, needs to be distinguished from the equilibrium feedback parameter.481

The effective equilibrium feedback parameter is assumed to be constant for a given type of482

forcing agent, a given spatial distribution of the forcing amplitude but it is valid only for483

an equilibrium state. The transient feedback function involves an additional term that can484

depend on deep-ocean heat uptake and it can thus vary in time.485

An iterative method of calibration is proposed and applied to twelve CMIP5 AOGCMs.486

The results show that the model reproduces with accuracy the evolution of the radiative487

imbalance as a function of the temperature response during a transient regime. The fits488

of the temperature evolution over the time of simulation (about 150 years) are the same as489

those obtained with the EBM-1. However, the physical parameters of the model are different.490

The improved match of the temperature response and radiative imbalance evolution between491

the AOGCMs and the EBM suggests that the values estimated from the EBM-ε method are492

more accurate. Moreover, the method is applied to the LW and the SW component of the493

radiative flux. Each evolution separately is well represented suggesting that the method can494

be applied to partial decomposition of the radiative imbalance.495

The benefit of two-box EBMs such as the EBM-1 and EBM-ε is that they are the simplest496

EBMs that represent both the beginning of the simulation (determined by the forcing) and497

the end of the experiment (determined by the equilibrium climate sensitivity for a constant498

forcing). One-box EBMs are unable to represent both phases of the time evolution. The499

advantage of the EBM-ε on the EBM-1 is that the net TOA imbalance is better represented as500

a function of the global surface temperature response. The EBM-ε can be used to compute501
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the radiative parameters and the effective climate sensitivity consistently from one single502

methodology and one single short AOGCM experiment, by taking into account the time503

variation of the effective feedback function. From this point of view, the calibration of the504

EBM-ε method constitutes a new, improved method to determine the climate sensitivity505

and the adjusted forcing of an AOGCM.506

Such two-box EBM offers a complete first-order explanation of the behaviour of climate507

models under an externally imposed perturbation. The spread on the radiative and thermal-508

inertia global parameters within a generation of models (such as the CMIP5 generation) can509

be used as a indication of the uncertainty of the multi-model climate projections performed510

for the Intergovernmental Panel on Climate Change. The evolution of this spread from one511

CMIP exercise to the next indicates whether AOGCMs converge in terms of global properties.512

It can also be used for AOGCM’s analysis, by relating some of the EBM parameters to513

physical processes or physical variables that can be directly calculated in the AOGCM. In514

parallel, the calibration of such model, that could be extended to other type of radiative515

perturbations, offers a physically-based simple climate model able to emulate the AOGCM516

response to different idealized scenarios.517
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Transient climate response in a two-box energy-balance model. Part I: analytical solution534

and parameter calibration using CMIP5 AOGCM experiments. Submitted to J. Climate.535

Gregory, J. M. and M. Webb, 2008: Tropospheric adjustment induces a cloud component in536

CO2 forcing. J. Climate, 21, 58–71.537

Gregory, J. M. and P. M. Forster, 2008: Transient climate response estimated from radiative538

forcing and observed temperature change. J. Geophys. Res., 113, D23 105.539

Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and540

climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.541

Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104,542

doi:10.1029/2005JD005776.543

23



Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing544

the fast and slow components of global warming by returning abruptly to preindustrial545

forcing. J. Climate, 23, 2418–2427.546

Knutti, R. and G. C. Hegerl, 2008: The equilibrium sensitivity of the Earth’s temperature547

to radiation changes. Nature Geosc., 1, 735–743.548

Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a549

coupled-ocean atmosphere model to gradual changes of atmospheric CO2. Part I: Annual550

mean response. J. Climate, 4, 785–818.551

Murphy, J. M., 1995: Transient response of the Hadley Centre coupled Ocean-atmosphere552

model to increasing carbon dioxide. Part III: Analysis of global-mean response using553

simple models. J. Climate, 8, 496–514.554

Myhre, G., E. Highwood, K. Shine, and F. Stordal, 1998: New estimates of radiative forcing555

due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 2715–2718.556

Plattner, G.-K., and Coauthors, 2008: Long-term climate commitments projected with557

climate-carbon cycle models. J. Climate, 21, 27212751.558

Raper, S. C. B., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and559

ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124–130.560

Senior, C. A. and J. F. B. Mitchell, 2000: The time dependence of climate sensitivity.561

Geophys. Res. Lett., 27, 2685–2688.562

Solomon, S., D. Qin, M. Manning, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, and563

Z. Chen, 2007: Climate Change 2007: The physical science basis. Cambridge Univ. Press,564

New York.565

Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate566

sensitivity in GCMs. J. Climate, 21, 5076–5090.567

24



Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy568

to transient climate change. J. Climate, 23, 2333–2344.569

25



List of Tables570

1 The 4xCO2 radiative forcing F4xCO2
, total feedback parameter λ, efficacy fac-571

tor for deep-ocean heat uptake ε, and 4xCO2 equilibrium temperature T4xCO2
572

estimates in the framework of the EBM-ε of the twelve CMIP5 models used573

in this paper, and their multimodel mean and standard deviation. 27574

2 The atmosphere/land/upper ocean surfacic heat capacity C, deep-ocean sur-575

facic heat capacity C0, heat exchange coefficient γ and fast and slow relaxation576

times estimates in the framework of the EBM-ε of the twelve CMIP5 models577

used in this paper, and their multimodel mean and standard deviation. 28578

3 Intermodel correlations between the equilibrium temperature at 4xCO2 T4xCO2
579

and the physical parameters F , λ, ε, γ, C0, C of the EBM-ε for the 12 CMIP5580

AOGCMs. 29581

4 The LW and SW components of the radiative forcing, FLW and FSW , of the582

total feedback parameter, λLW and λSW , and of the deep-ocean heat-uptake583

feedback parameter, λLW
D and λSW

D , estimates in the framework of the EBM-ε584

of the twelve CMIP5 models used in this paper, and their multimodel mean585

and standard deviation STDV. 30586

26



Table 1. The 4xCO2 radiative forcing F4xCO2
, total feedback parameter λ, efficacy fac-

tor for deep-ocean heat uptake ε, and 4xCO2 equilibrium temperature T4xCO2
estimates in

the framework of the EBM-ε of the twelve CMIP5 models used in this paper, and their
multimodel mean and standard deviation.

F4xCO2
λ ε T4xCO2

Model (W m−2) (W m−2 K−1) (K)
BCC (BCC-CSM1-1) 7.4 1.28 1.27 5.8
CCCMA (CanESM2) 8.2 1.06 1.28 7.8
CNRM (CNRM-CM5.1) 7.1 1.12 0.92 6.4
CSIRO (CSIRO-Mk3-6-0) 7.0 0.68 1.82 10.2
GFDL (GFDL-ESM2M) 7.1 1.38 1.21 5.1
INM (INMCM4) 6.0 1.56 0.83 3.9
IPSL (IPSL-CM5A-LR) 6.7 0.79 1.14 8.5
MIROC (MIROC5) 8.9 1.58 1.19 5.6
MOHC (HadGEM2-ES) 6.8 0.61 1.54 11.1
MPIM (MPI-ESM-LR) 9.4 1.21 1.42 7.8
MRI (MRI-CGCM3) 7.1 1.31 1.25 5.4
NCC (NorESM1-M) 7.4 1.15 1.57 6.5
Multimodel mean 7.4 1.14 1.29 7.0
Standard deviation 1.0 0.32 0.27 2.1

27



Table 2. The atmosphere/land/upper ocean surfacic heat capacity C, deep-ocean surfacic
heat capacity C0, heat exchange coefficient γ and fast and slow relaxation times estimates
in the framework of the EBM-ε of the twelve CMIP5 models used in this paper, and their
multimodel mean and standard deviation.

C C0 γ τf τs

Model (W y m−2 K−1) (W y m−2 K−1) (W m−2 K−1) (y) (y)

BCC (BCC-CSM1-1) 8.4 56 0.59 4.1 152
CCCMA (CanESM2) 8.0 77 0.54 4.5 139
CNRM (CNRM-CM5.1) 8.3 95 0.51 5.2 266
CSIRO (CSIRO-Mk3-6-0) 8.5 76 0.71 4.2 316
GFDL (GFDL-ESM2M) 8.8 112 0.85 3.6 233
INM (INMCM4) 8.5 271 0.67 4.0 546
IPSL (IPSL-CM5A-LR) 8.1 100 0.57 5.5 327
MIROC (MIROC5) 8.7 158 0.73 3.6 338
MOHC (HadGEM2-ES) 7.5 98 0.49 5.4 457
MPIM (MPI-ESM-LR) 8.5 78 0.62 4.0 220
MRI (MRI-CGCM3) 9.3 68 0.59 4.4 181
NCC (NorESM1-M) 9.7 121 0.76 4.1 328
Multimodel mean 8.5 109 0.64 4.4 300
Standard deviation 0.6 58 0.11 0.7 113
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Table 3. Intermodel correlations between the equilibrium temperature at 4xCO2 T4xCO2

and the physical parameters F , λ, ε, γ, C0, C of the EBM-ε for the 12 CMIP5 AOGCMs.

T4xCO2
F λ ε γ C0 C

T4xCO2
1 0.02 -0.86 0.64 -0.38 -0.45 -0.51

F 1 0.23 0.18 0.06 -0.28 0.12
λ 1 -0.55 0.42 0.46 0.47
ε 1 0.14 -0.48 0.09
γ 1 0.29 0.62

C0 1 0.06
C 1
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Table 4. The LW and SW components of the radiative forcing, FLW and FSW , of the total
feedback parameter, λLW and λSW , and of the deep-ocean heat-uptake feedback parameter,
λLW

D and λSW
D , estimates in the framework of the EBM-ε of the twelve CMIP5 models used

in this paper, and their multimodel mean and standard deviation STDV.

FLW FSW λLW λSW λLW
D λSW

D

Model (W m−2) (W m−2) (Wm−2K−1) (Wm−2K−1) (Wm−2K−1) (Wm−2K−1)
BCC 6.4 1.0 1.69 -0.42 1.68 -0.68
CCCMA 6.2 2.0 1.42 -0.37 1.38 -0.57
CNRM 5.1 2.1 1.62 -0.50 1.67 -0.46
CSIRO 7.4 -0.4 1.97 -1.29 1.81 -1.43
GFDL 5.4 1.7 1.37 0.01 1.68 -0.54
INM 6.8 -0.7 2.12 -0.55 2.65 -0.76
IPSL 3.4 3.3 1.92 -1.13 1.89 -1.20
MIROC 6.9 2.0 1.93 -0.35 1.70 -0.37
MOHC 6.2 0.6 1.56 -0.96 1.55 -1.16
MPIM 7.0 2.5 1.67 -0.46 1.50 -0.65
MRI 6.6 0.5 2.24 -0.93 2.16 -1.11
NCC 6.3 1.1 1.82 -0.67 1.67 -0.93
Mean 6.1 1.3 1.78 -0.63 1.78 -0.82
STDV 1.1 1.2 0.27 0.37 0.34 0.34
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List of Figures587

1 EBM-ε results. Upper panels: time evolution of global mean surface air tem-588

perature (thick black), upper-ocean heat-uptake temperature TU (thick grey)589

and deep-ocean heat-uptake temperature TD (dot-dashed grey) for a step-590

forcing case; the black dotted line shows the equilibrium temperature Teq.591

Middle panels: global mean net radiative flux (thick black) and its decompo-592

sition into NU = −λTU (thick grey) and ND = −λDTD (dot-dashed grey) as593

functions of the global mean surface air temperature. Bottom panels: global594

mean net radiative flux (thick black, same as above) and its decomposition into595

the linear term F −λT (dot grey) and the deviation term −(ε− 1)H (dashed596

grey). Plots are for three ε values indicated on the panels and F = 3.9 W597

m−2, λ = 1.3 W m−2 K−1, C = 8 W y m−2 K−1, C0 = 100 W y m−2 K−1,598

γ = 0.7 W m−2 K−1. 33599

2 Global mean net radiative flux at TOA N as a function of global mean surface600

air temperature T for the abrupt 4xCO2 experiments (black dots, large dots601

for the first 15 years), for 6 AOGCMs. The thick black line is the EBM-ε602

fit. The dotted and dashed lines show, respectively, the linear contribution603

F − λT and the deviation contribution −(ε − 1)H . The grey line is Gregory604

et al. (2004)’s linear fit. The thin black line shows N = 0. Note that the605

range of T can differ from one panel to another. 34606

3 Same as Fig. 2 for the 6 other AOGCMs. 35607

4 Parameter estimates: ε values for the 12 AOGCMs (a) and EBM-ε estimates608

as a function of EBM-1 estimates for F4xCO2
(b), λ (c), Teq4xCO2

(d), τf (e),609

τs (f), γ (g), C0 (h), and C (i). Superscripts 1 and ε denote, respectively,610

estimates from the EBM-1 and the EBM-ε methods. The dotted line shows611

ε = 1 in (a), and the solid lines in (b)-(i) indicate a perfect match between612

EBM-ε and EBM-1 estimates. 36613
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5 Temperature response of AOGCMs with the highest ε value for the abrupt614

4xCO2 and 1% y−1 CO2 experiments (grey dots) and corresponding fit for615

EBM-1 (dashed grey) and EBM-ε (thin black). Note that the EBM-1 and616

the EBM-ε solutions are superposed for the 1% y−1 CO2 and the beginning617

of the abrupt 4xCO2 experiments. The dotted lines denote the equilibrium618

temperature for EBM-1 (grey) and EBM-ε (black). 37619

6 Global mean net LW (grey) and SW (black) radiative flux at TOA as a func-620

tion of global mean surface air temperature T for the abrupt 4xCO2 experi-621

ments (black dots, large dots for the first 15 years), for the first 6 AOGCMs.622

The thick grey and black lines are the EBM-ε fits, respectively of the LW and623

the SW radiative flux. The grey dashed line and the black dot-dashed lines624

show, respectively, the LW and SW components of the −(ε− 1)H term. The625

thin black line shows N = 0. Note that the range of T can differ from one626

panel to another. 38627

7 Same as Fig. 6 for the 6 other AOGCMs. 39628
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Fig. 1. EBM-ε results. Upper panels: time evolution of global mean surface air temperature
(thick black), upper-ocean heat-uptake temperature TU (thick grey) and deep-ocean heat-
uptake temperature TD (dot-dashed grey) for a step-forcing case; the black dotted line shows
the equilibrium temperature Teq. Middle panels: global mean net radiative flux (thick black)
and its decomposition into NU = −λTU (thick grey) and ND = −λDTD (dot-dashed grey)
as functions of the global mean surface air temperature. Bottom panels: global mean net
radiative flux (thick black, same as above) and its decomposition into the linear term F−λT
(dot grey) and the deviation term −(ε − 1)H (dashed grey). Plots are for three ε values
indicated on the panels and F = 3.9 W m−2, λ = 1.3 W m−2 K−1, C = 8 W y m−2 K−1,
C0 = 100 W y m−2 K−1, γ = 0.7 W m−2 K−1.
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Fig. 2. Global mean net radiative flux at TOA N as a function of global mean surface
air temperature T for the abrupt 4xCO2 experiments (black dots, large dots for the first 15
years), for 6 AOGCMs. The thick black line is the EBM-ε fit. The dotted and dashed lines
show, respectively, the linear contribution F−λT and the deviation contribution −(ε−1)H .
The grey line is Gregory et al. (2004)’s linear fit. The thin black line shows N = 0. Note
that the range of T can differ from one panel to another.
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Fig. 3. Same as Fig. 2 for the 6 other AOGCMs.
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Fig. 4. Parameter estimates: ε values for the 12 AOGCMs (a) and EBM-ε estimates as a
function of EBM-1 estimates for F4xCO2

(b), λ (c), Teq4xCO2
(d), τf (e), τs (f), γ (g), C0 (h),

and C (i). Superscripts 1 and ε denote, respectively, estimates from the EBM-1 and the
EBM-ε methods. The dotted line shows ε = 1 in (a), and the solid lines in (b)-(i) indicate
a perfect match between EBM-ε and EBM-1 estimates.
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Fig. 5. Temperature response of AOGCMs with the highest ε value for the abrupt 4xCO2

and 1% y−1 CO2 experiments (grey dots) and corresponding fit for EBM-1 (dashed grey)
and EBM-ε (thin black). Note that the EBM-1 and the EBM-ε solutions are superposed
for the 1% y−1 CO2 and the beginning of the abrupt 4xCO2 experiments. The dotted lines
denote the equilibrium temperature for EBM-1 (grey) and EBM-ε (black).
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Fig. 6. Global mean net LW (grey) and SW (black) radiative flux at TOA as a function of
global mean surface air temperature T for the abrupt 4xCO2 experiments (black dots, large
dots for the first 15 years), for the first 6 AOGCMs. The thick grey and black lines are the
EBM-ε fits, respectively of the LW and the SW radiative flux. The grey dashed line and
the black dot-dashed lines show, respectively, the LW and SW components of the −(ε−1)H
term. The thin black line shows N = 0. Note that the range of T can differ from one panel
to another.
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Fig. 7. Same as Fig. 6 for the 6 other AOGCMs.
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