
Kernelization

Theory of Parameterized Preprocessing

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh and Meirav

Zehavi

June 1, 2018

Preface

Preprocessing, also known as data reduction, is one of the basic and most

natural types of heuristic algorithms. The idea of preprocessing informa-

tion to speed up computations can be traced much before the invention

of the first computers. The book Mirifici Logarithmorum Canonis De-

scriptio (A Description of the Admirable Table of Logarithm) authored

by Napier (1550–1617), who is credited with the invention of logarithms,

was published in 1614. A quote attributed to Laplace states that this

table

“by shortening the labours, doubled the life of the astronomer.”

As a strategy of coping with hard problems preprocessing is univer-

sally employed in almost every implementation, ranging from lossless

data compression and navigation systems to microarray data analysis for

the classification of cancer types. The “gold standard” successes in soft-

ware development for hard problems, such as CPLEX for integer linear

programming, depend heavily on sophisticated preprocessing routines.

However, even very simple preprocessing can be surprisingly effective.

Developing rigorous mathematical theories that explain the behav-

ior of practical algorithms and heuristics has become an increasingly

important challenge in the Theory of Computing for the 21st century.

Addressing issues central to the Theory of Computing, the report of

Condon et al. (1999) states:

“While theoretical work on models of computation and methods for analyzing
algorithms has had enormous payoff, we are not done. In many situations,
simple algorithms do well. We don’t understand why! It is apparent that worst-
case analysis does not provide useful insights on the performance of algorithms
and heuristics and our models of computation need to be further developed and
refined.”

iii

iv Preface

A natural question in this regard is how to measure the quality of

preprocessing rules proposed for a specific problem, yet for a long time

the mathematical analysis of polynomial time preprocessing algorithms

was neglected. One central reason for this anomaly stems from the fol-

lowing observation: showing that in polynomial time an instance I of an

NP-hard problem can be replaced by an equivalent instance whose size is

smaller than the size of I implies that P=NP with classical computation.

The situation has changed drastically with the advent of mulivariate

complexity theory, known as Parameterized Complexity. By combining

tools from Parameterized Complexity and Classical Complexity it has

become possible to derive upper and lower bounds on sizes of reduced

instances, or so called kernels. According to Fellows (2006):

“It has become clear, however, that far from being trivial and uninteresting,
pre-processing has unexpected practical power for real world input distribu-
tions, and is mathematically a much deeper subject than has generally been
understood.”

The foundations of kernelization are rooted in Parameterized Com-

plexity: the classical book Downey and Fellows (1999) mentions the

method of reduction to a problem kernel as one of the basic tools to

tackle problems in Parameterized Complexity. Indeed, for a parameter-

ized problem admitting an exponential kernel is roughly equivalent to

being fixed-parameter tractable. However, some problems admit poly-

nomial or even linear kernels! It is thus natural to ask whether for a

parameterized problem admitting a polynomial kernel is also roughly

equivalent to being fixed-parameter tractable. On the one hand, there

is a growing number of examples of polynomial kernelization, scattered

with the development of various algorithmic tools. On the other hand,

some fixed-parameter tractable problems are only known to admit ex-

ponential kernels despite many attempts to prove that they do have

polynomial kernels. The breakthrough work of Bodlaender et al. (2009b)

showed that under reasonable complexity-theoretic assumptions, there

exist fixed-parameter tractable problems that simply cannot have a ker-

nel of polynomial size! This result led to a flurry of research activity in

the field of kernelization, propagating kernelization algorithms for con-

crete parameterized problems and kernel lower bound techniques.

Kernelization is an emerging subarea of algorithms and complexity.

In spite of its dynamic state, we believe the time is ripe for surveying

major results and summarizing the current status of the field. The ob-

jective of this book is to provide a valuable overview of basic methods,

Preface v

important results and current issues. We have tried to make the pre-

sentation accessible not only to the specialists working in this field, but

to a more general audience of students and researchers in Computer

Science, Operations Research, Optimization, Combinatorics and other

areas related to the study of algorithmic solutions of hard optimization

problems. Parts of this book were used to teach courses on kernelization

for graduate students in Bergen and Chennai.

The content of the book is divided into four parts. The first part,

Upper Bounds, provides a thorough overview of main algorithmic tech-

niques employed to obtain polynomial kernels. After discussing the de-

sign of simple reduction rules, it shows how classical tools from Combina-

torial Optimization, especially min-max theorems, are used in kerneliza-

tion. Among other methods, this part presents combinatorial matroid-

based methods as well as probabilistic techniques. The second part, Meta

Theorems, explores relations between logic and combinatorial structures.

By gaining deep understanding of these relations, we can devise general

rather than problem specific kernelization techniques. The third part,

Lower Bounds, is devoted to aspects of complexity theory. This part

explains cases where we do not expect that there exist efficient data

reductions, and provides insights into the reasons that underlie our pes-

simism. The book also contains a fourth part, which discusses topics

that do not fit into the previous parts, such as the notion of Turing and

lossy kernels.

Using the book for teaching

The book is self-contained, and it can be used as the main textbook for

a course on kernelization. Prior knowledge assumed includes only basic

knowledge of algorithmics. For an introductory course on kernelization,

we suggest to teach material covered in Parts I and III. In particular,

we suggest to teach Chapters 2–4, Chapter 5 (without Sections 5.3 and

5.4), Chapter 6 (without Section 6.4), Chapter 8 and Chapters 17-19.

Missing sections in Chapters 5 and 6, and the whole of Chapters 7, 12

and 13 can be used for a more extensive course. The book can also serve

as a companion book to Parameterized Algorithms book of Cygan et al.

(2015) for teaching a course on parameterized algorithms.

Bergen, Fedor V. Fomin

May 2018 Daniel Lokshtanov

Saket Saurabh

vi Preface

Meirav Zehavi

Acknowledgments

Many of our colleagues helped with valuable advices, comments, cor-

rections and suggestions. We are grateful for feedback from Faisal Abu-

Khzam, Marek Cygan, P̊al Drange, Markus Sortland Dregi, Bart M.

Jansen, Mike Fellows, Petr Golovach, Gregory Gutin, Stefan Kratsch,

Neeldhara Misra, Rolf Möhring, Christophe Paul, Marcin and Micha l

Pilipczuks, Venkatesh Raman, Ignasi Sau, Sigve Sæther, Dimitrios M.

Thilikos, Magnus Wahlström, and Mingyu Xiao.

Our work has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP/2007-

2013)/ERC Grant Agreements No. 267959 (Rigorous Theory of Prepro-

cessing), 306992 (Parameterized Approximation), and 715744 (Pareto-

Optimal Parameterized Algorithms), from the Bergen Research Foun-

dation and the University of Bergen through project “BeHard”, and the

Norwegian Research Council through project “MULTIVAL”.

vii

Contents

Preface page iii

Acknowledgments vii

1 What is a kernel? 6

1.1 Introduction 6

1.2 Kernelization: Formal definition 11

Part ONE Upper Bounds 19

2 Warm up 21

2.1 Trivial kernelization 22

2.2 Vertex Cover 24

2.3 Feedback Arc Set in Tournaments 27

2.4 Dominating Set in graphs of girth at least 5 28

2.5 Alternative parameterization for Vertex Cover 31

2.6 Edge Clique Cover 35

3 Inductive priorities 39

3.1 Priorities for Max Leaf Subtree 40

3.2 Priorities for Feedback Vertex Set 47

4 Crown Decomposition 58

4.1 Crown Decomposition 59

4.2 Vertex Cover and Dual Coloring 60

4.3 Maximum Satisfiability 63

4.4 Longest Cycle parameterized by vertex cover 65

5 Expansion Lemma 69

5.1 Expansion Lemma 70

1

2 Contents

5.2 Cluster Vertex Deletion: Bounding the

number of cliques 73

5.3 Weighted Expansion Lemma 75

5.4 Component Order Connectivity 79

5.5 Feedback Vertex Set 82

6 Linear Programming 93

6.1 The Theorem of Nemhauser and Trotter 93

6.2 2-SAT of minimum weight 98

6.3 Reduction of Min-Weight-2-IP to Min-Ones-2-

SAT 102

6.4 Component Order Connectivity 105

6.4.1 Existence of a reducible pair 107

6.4.2 Computation of a reducible pair 109

6.4.3 Putting it all together 113

7 Hypertrees 115

7.1 Hypertrees and partition-connectedness 115

7.2 Set Splitting 118

7.3 Max-Internal Spanning Tree 125

7.3.1 Proof of Lemma 7.10 128

8 Sunflower Lemma 131

8.1 Sunflower lemma 131

8.2 d-Hitting Set 132

8.3 d-Set Packing 133

8.4 Domination in degenerate graphs 135

8.5 Domination in Ki,j-free graphs 139

9 Modules 144

9.1 Modular partition 144

9.2 Cluster Editing 150

9.3 Cograph Completion 158

9.3.1 Minimum completions and properties of

modules 160

9.3.2 Reduction rules 163

9.3.3 Least common ancestor closure 165

9.3.4 Putting things together: kernel for Co-

graph Completion 167

9.4 FAST revisited 170

10 Matroids 176

10.1 Matroid basics 176

Contents 3

10.2 Cut-Flow data structure 181

10.3 Kernel for Odd Cycle Transversal 186

10.3.1 FPT algorithm 186

10.3.2 Compression 190

10.3.3 Kernel 193

11 Representative families 196

11.1 Introduction to representative sets 196

11.2 Computing representative families 198

11.3 Kernel for Vertex Cover 205

11.4 Digraph Pair Cut 206

11.5 An abstraction 214

11.6 Combinatorial approach 217

11.6.1 Cut-covering lemma 217

11.6.2 Applications of Cut-covering lemma 226

12 Greedy Packing 232

12.1 Set Cover 233

12.2 Max-Lin-2 above average 237

12.3 Max-Er-SAT 247

12.3.1 Kernel for Max-Er-SAT 251

13 Euler’s formula 253

13.1 Preliminaries on planar graphs 253

13.2 Simple planar kernels 254

13.2.1 Planar Connected Vertex Cover 255

13.2.2 Planar Edge Dominating Set 257

13.3 Planar Feedback Vertex Set 260

Part TWO Meta Theorems 271

14 Introduction to treewidth 273

14.1 Properties of tree decompositions 275

14.2 Computing treewidth 278

14.3 Nice tree decompositions 282

14.4 Dynamic programming 284

14.4.1 Reasonable problems 291

14.4.2 Dynamic programming for Dominating

Set 293

14.5 Treewidth and MSO2 296

14.5.1 Monadic second-order logic on graphs 296

14.5.2 Courcelle’s theorem 301

4 Contents

14.6 Obstructions to bounded treewidth 304

15 Bidimensionality and protrusions 315

15.1 Bidimensional problems 316

15.2 Separability and treewidth modulators 319

15.3 Protrusion decompositions 324

15.4 Kernel for Dominating Set on planar graphs 328

16 Surgery on graphs 335

16.1 Boundaried graphs and finite integer index 338

16.2 Which problems have finite integer index? 343

16.3 A general reduction rule 347

16.4 Kernelization in quadratic running time 353

16.5 Linear time algorithm 360

Part THREE Lower Bounds 379

17 Framework 381

17.1 OR-Distillation 382

17.2 Cross-Composition 388

17.3 Examples of compositions 392

17.3.1 Lower bound for Steiner Tree 392

17.3.2 Clique parameterized by Vertex Cover 394

18 Instance selectors 400

18.1 Disjoint Factors 402

18.2 SAT parameterized by the number of variables 404

18.3 Colored Red–Blue Dominating Set 406

19 Polynomial parameter transformation 413

19.1 Packing paths and cycles 414

19.2 Red-Blue Dominating Set 416

20 Polynomial lower bounds 423

20.1 Weak cross-composition 423

20.2 Lower bound for Vertex Cover 426

20.3 Lower bound for d-Hitting Set 429

20.4 Ramsey 433

21 Extending distillation 438

21.1 Oracle Communication Protocol 438

21.2 Hardness of communication 440

21.3 Lower bounds for Point Line Cover 445

21.4 Lower bounds using co-nondeterminism 451

Contents 5

21.5 AND-distillations and AND-compositions 452

Part FOUR Beyond Kernelization 455

22 Turing kernelization 457

22.0.1 Max Leaf Subtree 459

22.1 Planar Longest Cycle 459

22.1.1 Hardness of Turing kernelization 465

23 Lossy kernelization 469

23.1 Framework 470

23.2 Cycle Packing 485

23.3 Partial Vertex Cover 487

23.4 Connected Vertex Cover 488

23.5 Steiner Tree 491

Appendix A Open problems 499

Appendix B Graphs and SAT Notation 506

Appendix C Problem Definitions 510

References 516

Author Index 539

Index 545

1

What is a kernel?

“Every block of stone has a statue inside it and it is the task of the sculptor
to discover it”

—Michelangelo Buonarroti (1475–1564)

1.1 Introduction

Preprocessing (data reduction or kernelization) is a computation that

transforms input data into “something simpler” by partially solving the

problem associated with it. Preprocessing is an integral part of almost

any application: both systematic and intuitive approaches to tackle dif-

ficult problems often involve it. Even in our everyday lives, we often rely

on preprocessing, sometimes without noticing it. Before we delve into

the formal details, let us start our acquaintance with preprocessing by

considering several examples.

Let us first look at the simple chess puzzle depicted in Fig. 1.1. In

the given board position, we ask if White can checkmate the black king

in two moves. A naive approach for solving this puzzle would be to

try all possible moves of White, all possible moves of Black, and then

all possible moves of White. This gives us a huge number of possible

moves—the time required to solve this puzzle with this approach would

be much longer than a human life. On the other hand, a reader with some

experience of playing chess will find the solution easily: First we move

the white knight to f7, checking the black king. Next, the black king has

to move to either h8 or to h7, and in both cases it is checkmated once the

white rook is moved to h5. So how we are able to solve such problems?

6

1.1 Introduction 7

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 1: King, Queen, Bishop, kNight, Rook and Pawn

1

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 1: King, Queen, Bishop, kNight, Rook and Pawn

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 2: King, Queen, Bishop, kNight, Rook and Pawn

1

Figure 1.1 Can White checkmate in two moves? The initial puzzle and an

“equivalent” reduced puzzle.

The answer is that while at first look the position on the board looks

complicated, most of the pieces on the board like white pieces on the

first three rows or black pieces on the first three columns, are irrelevant

to the solution. See the right-hand board in Fig. 1.1. An experienced

player could see the important patterns immediately, which allows the

player to ignore the irrelevant information and concentrate only on the

essential part of the puzzle. In this case, the player reduces the given

problem to a seemingly simpler problem, and only then tries to solve it.

In this example, we were able to successfully simplify a problem by

relying on intuition and acquired experience. However, we did not truly

give a sound rule, having provable correctness, to reduce the complexity

of the problem—this will be our goal in later examples. Moreover, in

this context we also ask ourselves whether we can turn our intuitive ar-

guments into generic rules that can be applied to all chess compositions.

While there exist many rules for good openings, middle-games and end-

ings in chess, turning intuition into generic rules is not an easy task, and

this is why the game is so interesting!

Let consider more generic rules in the context of another popular

game, Sudoku (see Fig. 1.2). Sudoku is a number-placement puzzle,

which is played over a 9 × 9 grid that is divided into 3 × 3 subgrids

called ”boxes”. Some of the cells of the grid are already filled with some

numbers. The objective is to fill each of the empty cells with a number

between 1 and 9 such that each number appears exactly once in each

row, column and box. While an unexperienced Sudoku-solver will try

to use a brute-force to guess the missing numbers this approach would

work only for very simple examples. The experienced puzzle-solver has a

number of preprocessing rules under her belt which allow to reduce the

8 What is a kernel?

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 2

Figure 1.2 A solution to a sudoku puzzle.

puzzle to a state where a brute-force approach can solve the problem

within reasonable time.

Several known such preprocessing techniques actually solve most easy

puzzles. For more difficult puzzles preprocessing is used to decrease the

number of cases one should analyze in order to find a solution, whereas

the solution itself is obtained by combining preprocessing with other

approaches. For example, one such well-known preprocessing technique

is cross-hatching. The cross-hatching rule is applied to 3× 3 boxes. For

example, let us look at the top-left box of the sample puzzle in Fig. 1.2.

Since all numbers between 1 and 9 must appear in this box, the six

empty cells should be filled with the numbers 1, 4, 5, 6, 7 and 9. Let us

attempt to find an empty cell that can be filled in with the missing

number 1. To identify such a cell, we use the fact that any number can

appear only once per row and once per column. As illustrated in Fig. 1.3,

we thus discover a unique cell that can accommodate the number 1. In

the bottom-right box, cross-hatching identifies a unique cell that can

accommodate the number 9.

Although many rules were devised for solving Sudoku puzzles, none

provides a generic solution to every puzzle. Thus while for Sudoku one

can formalize what a reduction is, we are not able to predict whether

reductions will solve the puzzle or even if they simplify the instance.

In both examples, in order to solve the problem at hand, we first

simplify first, and only then go about solving it. While in the chess

puzzle we based our reduction solely on our intuition and experience, in

the Sudoku puzzle we attempted to formalize the preprocessing rules.

But is it possible not only to formalize what a preprocessing rule is but

also to analyze the impact of preprocessing rigorously?

In all examples discussed so far, we did not try to analyze the poten-

1.1 Introduction 9

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 21

1

1 9

9

9

1

9
9

Figure 1.3 Applying the cross-hatching rule to the top-left and bottom-

right boxes.

tial impact of implemented reduction rules. We know that in some cases

reduction rules will simplify instances significantly, but we have no idea

if they will be useful for all instances or only for some of them. We would

like to examine this issue in the context of NP-complete problems, which

constitute a very large class of interesting combinatorial problems. It is

widely believed that no NP-complete problem can be solved efficiently,

i.e. by a polynomial time algorithm. Is it possible to design reduction

rules that can reduce a hard problem, say, by 5% while not solving it?

At first glance, this idea can never work unless P is equal to NP. In-

deed, consider for example the following NP-complete problem Vertex

Cover. Here we are given an n-vertex graph G and integer k. The task

is to decide whether G contains a vertex cover S of size at most k,

that is a set such that every edge of G has at least one endpoint in S.

Vertex Cover is known to be NP-complete. Suppose that we have a

polynomial time algorithm which is able to reduce the problem to an

equivalent instance of smaller size. Say, this algorithm outputs a new

graph G′ on n− 1 vertices and integer k′ such that G has a vertex cover

of size at most k if and only if G′ has a vertex cover of size at most k′. In

this situation, we could have applied the algorithm repeatedly at most

n times, eventually solving the problem optimally in polynomial time.

This would imply that P is equal to NP and thus the existence of such a

preprocessing algorithm is highly unlikely. Similar arguments are valid

for any NP-hard problem. However, before hastily determining that we

have reached a dead end, let us look at another example.

In our last example, we have a set of pebbles lying on a table, and

we ask if we can cover all pebbles with k sticks. In other words, we are

10 What is a kernel?

Figure 1.4 Covering all points with three lines.

given a finite set of points in the plane, and we need to decide if all these

points can be covered by at most k lines (see Fig. 1.4). This problem

is known under the name Point Line Cover. We say that the integer

k is the parameter associated with our problem instance. If there are n

points, we can trivially solve the problem by trying all possible ways to

draw k lines. Every line is characterized by two points, so this procedure

will require roughly nO(k) steps.

But before trying all possible combinations, let us perform some much

less time consuming operations. Towards this end, let us consider the

following simple yet powerful observation: If there is a line L covering

at least k+ 1 points, then this line should belong to every solution (that

is, at most k lines that cover all points). Indeed, if we do not use this

line L, then all the points it covers have to be covered by other lines,

which will require at least k+ 1 lines. Specifically, this means that if our

instance has a solution, then it necessarily contains L, and therefore the

instance obtained by deleting all points covered by L and decrementing

the budget k by 1 also has a solution. In the other direction, it is clear

that if our new instance has a solution, then the original one also has a

solution. We thus conclude that solving the original problem instance is

equivalent to solving the instance obtained by deleting all points covered

by L and decrementing the budget k by 1. In other words, we can apply

the following reduction rule.

Reduction Rule If there is a line L covering more than k points, re-

move all points covered by L and decrement the parameter k by

one.

This reduction rule is sound : the reduced problem instance has a solution

if and only if the original problem instance has a solution. The naive

1.2 Kernelization: Formal definition 11

implementation of Reduction Rule takes time O(n3): for each pair of

points we check if the line through it covers at least k + 1 points. After

each application of Reduction Rule, we obtain an instance with a smaller

number of points. Thus, after exhaustive repeated application of this

rule, we arrive at one of the following situations.

• We end up having an instance where no points are left, in which case

the problem has been solved.

• The parameter k is zero but some points are left. In this case the

problem does not have solution.

• Neither of the two previous conditions is true, yet Reduction Rule

cannot be applied.

What would be the number of points in an irreducible instance corre-

sponding to the last case? Since no line can cover more than k points,

we deduce that if we are left with more than k2 points, the problem

does not have solution. We have thus managed, without actually solving

the problem, to reduce the size of the problem from n to k2! Moreover,

we were able to estimate the size of the reduced problem as a func-

tion of the parameter k. This leads us to the striking realization that

polynomial-time algorithms hold provable power over exact solutions to

hard problems; rather than being able to find those solutions, they are

able to provably reduce input sizes without changing the answer.

It is easy to show that the decision version of our puzzle problem—

determining whether a given set of points can be covered by at most k

lines—is NP-complete. While we cannot claim that our reduction rule

always reduces the number of points by 5%, we are still able to prove

that the size of the reduced problem does not exceed some function of

the parameter k. Such a reduced instance is called a kernel of the prob-

lem, and the theory of efficient parameterized reductions, also known as

kernelization, is the subject of this book.

1.2 Kernelization: Formal definition

In order to define kernelization formally, we need to define what a pa-

rameterized problem is. The algorithmic and complexity theory studying

parameterized problems is called parameterized complexity.

Definition 1.1. A parameterized problem is a language L ⊆ Σ∗ × N,

where Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is

called the parameter.

12 What is a kernel?

For example, an instance of Point Line Cover parameterized by the

solution size is a pair (S, k), where we expect S to be a set of points on a

plane encoded as a string over Σ, and k is a positive integer. Specifically,

a pair (S, k) is a yes-instance, which belongs to the Point Line Cover

parameterized language, if and only if the string S correctly encodes a

set of points, which we will also denote by S, and moreover this set of

points can be covered by k lines. Similarly, an instance of the CNF-SAT

problem (satisfiability of propositional formulas in CNF), parameterized

by the number of variables, is a pair (ϕ, n), where we expect ϕ to be

the input formula encoded as a string over Σ and n to be the number of

variables of ϕ. That is, a pair (ϕ, n) belongs to the CNF-SAT param-

eterized language if and only if the string ϕ correctly encodes a CNF

formula with n variables, and the formula is satisfiable.

We define the size of an instance (x, k) of a parameterized problem as

|x|+ k. One interpretation of this convention is that, when given to the

algorithm on the input, the parameter k is encoded in unary.

The notion of kernelization is tightly linked to the notion of fixed-

parameter tractability of parameterized problems. Before we formally

define what is a kernel, let us first briefly discuss this basic notion,

which serves as background to our story. Fixed-parameter algorithms

are the class of exact algorithms where the exponential blowup in the

running time is restricted to a small parameter associated with the input

instance. That is, the running time of such an algorithm on an input of

size n is of the form O (f (k)nc), where k is a parameter that is typically

small compared to n, f (k) is a (typically super-polynomial) function of

k that does not involve n, and c is a constant. Formally,

Definition 1.2. A parameterized problem L ⊆ Σ∗ × N is called fixed-

parameter tractable (FPT) if there exists an algorithm A (called a fixed-

parameter algorithm), a computable function f : N→ N, and a constant

c with the following property. Given any (x, k) ∈ Σ∗ ×N, the algorithm

A correctly decides whether (x, k) ∈ L in time bounded by f(k) · |x|c.
The complexity class containing all fixed-parameter tractable problems

is called FPT.

The assumption that f is a computable function is aligned with the

book Cygan et al. (2015). This assumption helps avoiding running into

1.2 Kernelization: Formal definition 13

trouble when developing complexity theory for fixed-parameter tractabil-

ity.

We briefly remark that there is a hierarchy of intractable parameter-

ized problem classes above FPT. The main ones are the following.

FPT ⊆ M[1] ⊆W[1] ⊆ M[2] ⊆W[1] ⊆ · · · ⊆W[P] ⊆ XP

The principal analogue of the classical intractability class NP is W[1].

In particular, a fundamental problem complete for W[1] is the k-Step

Halting Problem for Nondeterministic Turing Machines (with

unlimited nondeterminism and alphabet size). This completeness result

provides an analogue of Cook’s theorem in classical complexity. A con-

venient source of W[1]-hardness reductions is provided by the result that

Clique is complete for W[1]. Other highlights of this theory are that

Dominating Set is complete for W[2], and that FPT=M[1] if and only

if the Exponential Time Hypothesis fails. The classical reference on Pa-

rameterized Complexity is the book of Downey and Fellows (1999). A

rich collection of books for further reading about Parameterized Com-

plexity is provided in Bibliographic Notes to this chapter.

Let us now turn our attention back to the notion of kernelization,

which is formally defined as follows.

Definition 1.3. Let L be a parameterized problem over a finite alphabet

Σ. A kernelization algorithm, or in short, a kernelization, for L is an

algorithm with the following property. For any given (x, k) ∈ Σ∗ ×N, it

outputs in time polynomial in |(x, k)| a string x′ ∈ Σ∗ and an integer

k′ ∈ N such that

((x, k) ∈ L⇐⇒ (x′, k′) ∈ L) and |x′|, k′ ≤ h(k),

where h is an arbitrary computable function. If K is a kernelization for

L, then for every instance (x, k) of L, the result of running K on the

input (x, k) is called the kernel of (x, k) (under K). The function h is

referred to as the size of the kernel. If h is a polynomial function, then

we say that the kernel is polynomial.

We remark that in the definition above, the function h is not unique.

However, in the context of a specific function h known to serve as an

upper bound on the size of our kernel, it is conventional to refer to this

function h as the size of the kernel.

14 What is a kernel?

We often say that a problem L admits a kernel of size h, meaning that

every instance of L has a kernel of size h. We also often say that L admits

a kernel with property Π, meaning that every instance of L has a kernel

with property Π. For example, saying that Vertex Cover admits a

kernel with O(k) vertices and O(k2) edges is a short way of saying that

there is a kernelization algorithm K such that for every instance (G, k)

of the problem, K outputs a kernel with O(k) vertices and O(k2) edges.

While the running times of kernelization algorithms are of clear im-

portance, the optimization of this aspect is not the topic of this book.

However, we remark that lately, there is some growing interest in opti-

mizing this aspect of kernelization as well, and in particular in the design

of linear-time kernelization algorithms. Here, linear time means that the

running time of the algorithm is linear in |x|, but it can be non-linear in

k.

It is easy to see that if a decidable (parameterized) problem admits

a kernelization for some function f , then the problem is FPT: for every

instance of the problem, we call a polynomial time kernelization algo-

rithm, and then we use a decision algorithm to identify if the resulting

instance is valid. Since the size of the kernel is bounded by some function

of the parameter, the running time of the decision algorithm depends

only on the parameter. Interestingly, the converse also holds, that is, if

a problem is FPT then it admits a kernelization. The proof of this fact

is quite simple, and we present it here.

Theorem 1.4. If a parameterized problem L is FPT then it admits a

kernelization.

Proof. Suppose that there is an algorithm deciding if (x, k) ∈ L in time

f(k)|x|c for some computable function f and constant c. On the one

hand, if |x| ≥ f(k), then we run the decision algorithm on the instance

in time f(k)|x|c ≤ |x|c+1. If the decision algorithm outputs yes, the

kernelization algorithm outputs a constant size yes-instance, and if the

decision algorithm outputs no, the kernelization algorithm outputs a

constant size no-instance. On the other hand, if |x| < f(k), then the

kernelization algorithm outputs x. This yields a kernel of size f(k) for

the problem.

Theorem 1.4 shows that kernelization can be seen as an alternative

definition of fixed-parameter tractable problems. So to decide if a param-

eterized problem has a kernel, we can employ many known tools already

given by Parameterized Complexity. But what if we are interested in

1.2 Kernelization: Formal definition 15

kernels that are as small as possible? The size of a kernel obtained us-

ing Theorem 1.4 equals the dependence on k in the running time of the

best known fixed-parameter algorithm for the problem, which is usually

exponential. Can we find better kernels? The answer is yes, we can, but

not always. For many problems we can obtain polynomial kernels, but

under reasonable complexity-theoretic assumptions, there exist fixed-

parameter tractable problems that do not admit kernels of polynomial

size.

Finally, if the input and output instances are associated with different

problems, then the weaker notion of compression replaces the one of

kernelization. In several parts of this book polynomial compression will

be used to obtain polynomial kernels. Also the notion of compression

will be very useful in the theory of lower bounds for polynomial kernels.

Formally, we have the following weaker form of Definition 1.3.

Definition 1.5. A polynomial compression of a parameterized language

Q ⊆ Σ∗ ×N into a language R ⊆ Σ∗ is an algorithm that takes as input

an instance (x, k) ∈ Σ∗ × N, works in time polynomial in |x| + k, and

returns a string y such that:

(i) |y| ≤ p(k) for some polynomial p(·), and

(ii) y ∈ R if and only if (x, k) ∈ Q.

If |Σ| = 2, the polynomial p(·) will be called the bitsize of the compres-

sion.

In some cases, we will write of a polynomial compression without spec-

ifying the target language R. This means that there exists a polynomial

compression into some language R.

Of course, a polynomial kernel is also a polynomial compression. We

just treat the output kernel as an instance of the unparameterized ver-

sion of Q. Here, by an unparameterized version of a parameterized lan-

guage Q we mean a classic language Q̃ ⊆ Σ∗ where the parameter is

appended in unary after the instance (with some separator symbol to

distinguish the start of the parameter from the end of the input). The

main difference between polynomial compression and kernelization is

that the polynomial compression is allowed to output an instance of any

language R, even an undecidable one.

When R is reducible in polynomial time back to Q, then the combi-

nation of compression and the reduction yields a polynomial kernel for

Q. In particular, every problem in NP can be reduced in polynomial

16 What is a kernel?

time by a deterministic Turing machine to any NP-hard problem. The

following theorem about polynomial compression and kernelization will

be used in several places in this book.

Theorem 1.6. Let Q ⊆ Σ∗×N be a parameterized language and R ⊆ Σ∗

be a language such that the unparameterized version of Q ⊆ Σ∗ × N is

NP-hard and R ⊆ Σ∗ is in NP. If there is a polynomial compression of

Q into R, then Q admits a polynomial kernel.

Proof. Let (x, k) be an instance of Q. Then the application of a poly-

nomial compression to (x, k) results in a string y such that |y| = kO(1)

and y ∈ R if and only if (x, k) ∈ Q. Because Q̃ is NP-hard and R is

in NP, there is a polynomial time many-to-one reduction f from R to

Q̃. Let z = f(y). Since the time of the reduction is polynomial in the

size of y, we have that it runs in time kO(1) and hence |z| = kO(1). Also

we have that z ∈ Q̃ if and only if y ∈ R. Let us remind that z is an

instance of the unparameterized version of Q, and thus we can rewrite

z as an equivalent instance (x′, k′) ∈ Q. This two-step polynomial-time

algorithm is the desired kernelization algorithm for Q.

Two things are worth a remark. Theorem 1.6 does not imply a poly-

nomial kernel when we have a polynomial compression in a language

which is not in NP. There are examples of natural problems for which

we are able to obtain a polynomial compression but to a language R

of much higher complexity than Q, and we do not know if polynomial

kernels exist for such problems.

While Theorem 1.6 states the existence of a polynomial kernel, its

proof does not explain how to construct such a kernel. The proof of

Cook-Levin theorem constructs a reduction from any problem in NP

to CNF-SAT. This reduction, combined with an NP-hardness proof for

Q, provides a constructive kernel for Q.

Bibliographic notes

The classical reference on Parameterized Complexity is the book (Downey

and Fellows, 1999). In this book Downey and Fellows also introduced the

concept of reduction to a problem kernel. For more updated material we

refer to the books (Flum and Grohe, 2006; Niedermeier, 2006; Downey

and Fellows, 2013), and (Cygan et al., 2015). Each of these books con-

tains a part devoted to kernelization. Theorem 1.4 on the equivalence of

1.2 Kernelization: Formal definition 17

kernelization and fixed-parameter tractability is due to Cai et al. (1997).

For surveys on kernelization we refer to (Bodlaender, 2009; Fomin and

Saurabh, 2014; Guo and Niedermeier, 2007a; Hüffner et al., 2008; Misra

et al., 2011). Approaches to solve Sudoku puzzles, including formulations

of integer programs, are given by Kaibel and Koch (2006) and Bartlett

et al. (2008).

We remark that Theorem 1.6 was first observed by Bodlaender et al.

(2011). An example of a compression for which a kernelization is not

known is given in (Wahlström, 2013) for a problem where one is in-

terested in finding a cycle through specific vertices given as input. As

noted in this chapter, in this book we do not optimize running times

of kernelization algorithms, except one chapter on meta-kernelization.

However, this is also an aspect of interest in the design of kernels. For

a recent example of a linear-time kernelization algorithm for the Feed-

back Vertex Set problem, we refer to (Iwata, 2017).

Part ONE

UPPER BOUNDS

2

Warm up

In this warm up chapter we provide simple examples of kernelization algo-

rithms and reduction rules. Our examples include kernels for Max-3-SAT,

Planar Independent Set, Vertex Cover, Feedback Arc Set in Tour-

naments, Dominating Set in graphs of girth 5, Vertex Cover parameter-

ized by degree-1 modulator and Edge Clique Cover.

Sometimes even very simple arguments can result in a kernel. Such

arguments are often formulated as reduction rules. In fact, the design

of sets of reduction rules is the most common approach to obtain ker-

nelization algorithms. Reduction rules transform a problem instance to

an equivalent instance having beneficial properties, whose size is usually

smaller than the size of the original problem instance. Standard argu-

ments that analyze such rules are often formulated as follows. Suppose

that we applied our set of reduction rules exhaustively. In other words,

the current problem instance is irreducible subject to our rules. Then,

the size of the current problem instance is bounded appropriately, which

results in a bound on the size of the kernel.

Formally, a data reduction rule, or simply, a reduction rule, for a pa-

rameterized problem Q is a function ϕ : Σ∗ × N → Σ∗ × N that maps

an instance (I, k) of Q to an equivalent instance (I ′, k′) of Q. Here, we

assume that ϕ is computable in time polynomial in |I| and k, and we

say that two instances of Q are equivalent if (I, k) ∈ Q if and only

if (I ′, k′) ∈ Q. Usually, but not always, |I ′| < |I| or k′ < k. In other

words, it is often the case that ϕ reduces the size of the instance or

the parameter. The guarantee that a reduction rule ϕ translates a prob-

lem instance to an equivalent instance is referred to as the safeness or

21

22 Warm up

soundness of ϕ. In this book, we use the phrases a rule is safe and the

safeness of a reduction rule.

Some reduction rules can be complicated both to design and to ana-

lyze. However, simple rules whose analysis is straightforward occasion-

ally already result in polynomial kernels—this chapter presents such

examples. The simplest reduction rule is the one that does nothing, and

for some problems such a strategy is just fine. For example, suppose

that our task is to decide if a cubic graph G (i.e. graph with all vertex

degrees at most 3) contains an independent set of size at least k. By the

classical result from Graph Theory called Brook’s theorem, every graph

with maximum degree ∆, can be properly colored in at most ∆ + 1 col-

ors. Moreover, such a coloring can be obtained in polynomial time. Since

each color class in proper coloring is an independent set, G should con-

tain an independent set of size at least |V (G)|/4. Thus, if |V (G)| ≥ 4k,

it contains an independent set of size k and, moreover, such a set can

be found in polynomial time. Otherwise, G has at most 4k vertices, and

thus the problem admits a kernel with at most 4k vertices.

Next, we give examples of other such “trivial” kernels for Max-3-SAT

and Planar Independent Set. Then we proceed with examples of

basic reduction rules, when trivial operations like deleting a vertex or an

edge, or reversing directions of arcs, result in kernels. Here, we consider

the problems Vertex Cover, Feedback Arc Set in Tournaments,

Dominating Set in graphs of girth 5, Vertex Cover parameterized

by the number of vertices whose removal leaves only isolated edges and

vertices, and Edge Clique Cover.

2.1 Trivial kernelization

In some situations, one can directly conclude that a given problem in-

stance is already a kernel. We start by giving two examples of such

“trivial” kernels.

Max-3-SAT. In the CNF-SAT problem (satisfiability of propositional

formulas in conjunctive normal form), we are given a Boolean formula

that is a conjunction of clauses, where every clause is a disjunction

of literals. The question is whether there exists a truth assignment to

variables that satisfies all clauses. In the optimization version of this

problem, namely Maximum Satisfiability, the task is to find a truth

assignment satisfying the maximum number of clauses. We consider a

2.1 Trivial kernelization 23

special case of Maximum Satisfiability, called Max-3-SAT, where

every clause is of size at most 3. That is, in Max-3-SAT we are given a

3-CNF formula ϕ and a non-negative integer k, and the task is to decide

whether there exists a truth assignment satisfying at least k clauses of ϕ.

Lemma 2.1. Max-3-SAT admits a kernel with at most 2k clauses and

6k variables.

Proof. Let (ϕ, k) be an instance of Max-3-SAT, and let m and n denote

its number of clauses and its number of variables, respectively. Let ψ

be a truth assignment to the variables of ϕ. We define ¬ψ to be the

assignment obtained by complementing the assignment of ψ. Thus ψ

assigns δ ∈ {>,⊥} to some variable x then ¬ψ assigns ¬δ to x. In other

words, ¬ψ is the bitwise complement of ψ. So if the parameter k is

smaller than m/2, there exists an assignment that satisfies at least k

clauses, and therefore (ϕ, k) is a yes-instance. Otherwise, m ≤ 2k and

so n ≤ 6k, which implies that the input itself is a kernel of the desired

size.

Planar Independent Set. Our second example of a “trivial” kernel

concerns the special case of Independent Set on planar graphs. Let us

recall that a set of pairwise non-adjacent vertices is called an independent

set, and that a graph is planar if it can be drawn on the plane in such a

way that its edges intersect only at vertices. In Planar Independent

Set, we are given a planar graph G and a non-negative integer k. The

task is to decide whether G has an independent set of size k.

Lemma 2.2. Planar Independent Set admits a kernel with at most

4(k − 1) vertices.

Proof. By one of the most fundamental theorems in Graph Theory, the

Four Color Theorem, there is a coloring of the vertices of every planar

graph that uses only four colors and such that vertices of the same color

form an independent set. This theorem implies that if a planar graph

has at least 4k− 3 vertices, it has an independent set of size k, and thus

we have a yes-instance at hand. Otherwise the number of vertices in the

graph is at most 4k− 4, and therefore (G, k) is a kernel with the desired

property.

Let us note that it is important that we restricted the problem to pla-

nar graphs. On general graphs, Independent Set is W[1]-hard, which

means that the existence of a (not even polynomial) kernel for this prob-

lem is highly unlikely.

24 Warm up

The arguments used in the proof Lemma 2.2 are trivially extendable

to the case when input graph is colorable in a constant number of colors.

However, it is not known whether Planar Independent Set admits

a kernel with 4k − 5 vertices. In fact, to the best of our knowledge, it is

open whether an independent set of size at least n/4 + 1 in an n-vertex

planar graph can be found in polynomial time.

2.2 Vertex Cover

In this section we discuss a kernelization algorithm for Vertex Cover

that is based on simple, intuitive rules. Let us remind that a vertex set

S is a vertex cover of a graph G if G − S does not contain edges. In

the Vertex Cover problem, we are given a graph G and integer k, the

task is to decide whether G has a vertex cover of size at most k.

The first reduction rule is based on the following trivial observation:

If the graph G has an isolated vertex, the removal of this vertex does

not change the solution, and this operation can be implemented in poly-

nomial time. Thus, the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, remove v from

G. The resulting instance is (G− v, k).

The second rule is also based on a simple observation: If G contains a

vertex of degree larger than k, then this vertex should belong to every

vertex cover of size at most k. Indeed, the correctness of this claim follows

from the argument that if v does not belong to some vertex cover, then

this vertex cover must contain at least k + 1 other vertices to cover the

edges incident to v. Thus, the following reduction is also safe.

Reduction VC.2. If G contains a vertex v of degree at least k + 1,

remove v (along with edges incident to v) from G and decrement the

parameter k by 1. The resulting instance is (G− v, k − 1).

Reduction Rules VC.1 and VC.2 are already sufficient to deduce that

Vertex Cover admits a polynomial kernel:

Lemma 2.3. Vertex Cover admits a kernel with at most k(k + 1)

vertices and k2 edges.

2.2 Vertex Cover 25

Proof. Let (G′, k′) be an instance of Vertex Cover obtained from

(G, k) by exhaustively applying Rules VC.1 and VC.2. Note that k′ ≤
k, and that G has a vertex cover of size at most k if and only if G′

has a vertex cover of size at most k′. Because we can no longer apply

Rule VC.1, G′ has no isolated vertices. Thus for any vertex cover C of

G′, every vertex of G′ − C should be adjacent to some vertex from C.

Since we cannot apply Rule VC.2, every vertex of G′ is of degree at most

k′. Therefore, if G′ has more than k′(k′+ 1) ≤ k(k+ 1) vertices, (G′, k′)
is a no-instance. Moreover, every edge of G′ must be covered by a vertex,

and every vertex can cover at most k′ edges. Hence, if G′ has more than

(k′)2 ≤ k2 edges, we again deduce that (G′, k′) is a no-instance. To

conclude, we have shown that if we can apply neither Rule VC.1 nor

Rule VC.2, the irreducible graph has at most k(k + 1) vertices and k2

edges.

Finally, all rules can be easily performed in polynomial time.

Since the design of this kernelization was rather simple, let us try to

add more rules and see if we can obtain a better kernel. The next rule is

also very intuitive. If a graph has a vertex v of degree 1, there is always

an optimal solution containing the neighbor of v rather than v. We add

a rule capturing this observation:

Reduction VC.3. If G contains a vertex v of degree 1, remove v

and its neighbor from G, and decrement the parameter k by 1. The

resulting instance is (G−N [v], k − 1).

Once Rule VC.3 cannot be applied, the graph G′ has no vertices of

degree 1. Hence, |V (G′)| ≤ |E(G′)|. We have already proved that in the

case of a yes-instance, we have |E(G′)| ≤ k2. Thus by adding the new

rule, we have established that Vertex Cover admits a kernel with at

most k2 vertices.

If all vertices of a graph G are of degree at least 3, then |V (G)| ≤
2|E(G)|/3. Thus, if we found a reduction rule that gets rid of vertices of

degree 2, we would have obtained a kernel with at most 2k2/3 vertices.

Such a rule exists, but it is slightly more complicated than the previous

ones. We have to distinguish between two different cases depending on

whether the neighbors of the degree-2 vertex are adjacent. If the neigh-

bors u and w of a degree-2 vertex v are adjacent, then every vertex cover

should contain at least two vertices of the triangle formed by v, u and

26 Warm up

u
v

w

x

Figure 2.1 Rule VC.5

w. Hence to construct an optimal solution, among v, u and w, we can

choose only u and w. This shows that the following rule is safe.

Reduction VC.4. If G contains a degree-2 vertex v whose neighbors

u and w are adjacent, remove v, u and w from G, and decrement the

parameter k by 2. The resulting instance is (G−N [v], k − 2).

In case a vertex of degree 2 is adjacent to two non-adjacent vertices,

we apply the following rule.

Reduction VC.5. If G contains a degree-2 vertex v whose neigh-

bors u and w are non-adjacent, construct a new graph G′ from G by

identifying u and w and removing v (see Fig. 2.1), and decrement the

parameter k by 1. The resulting instance is (G′, k − 1).

Let us argue that Rule VC.5 is safe. For this purpose, let X be a

vertex cover of G′ of size k−1, and let x be the vertex of G′ obtained by

identifying u and w. On the one hand, if x ∈ X, then (X\{x})∪{u,w} is

a vertex cover of G of size k. On the other hand, if x 6∈ X, then X ∪{v}
is a vertex cover of G of size k. Thus if G′ has a vertex cover of size

k − 1, then G has a vertex cover of size at most k.

In the opposite direction, let Y be a vertex cover of G of size k . If

both u and w belong to Y , then (Y \ {u,w, v}) ∪ {x} is a vertex cover

in G′ of size at most k − 1. If exactly one of u,w belongs to Y , then v

should belong to Y , in which case (Y \ {u,w, v})∪{x} is vertex cover of

G′ of size k − 1. Finally, if u,w 6∈ Y , then v ∈ Y , and therefore Y \ {v}
is a vertex cover of G′ of size k − 1.

We have proved that both Rules VC.4 and VC.5 are safe. After we

apply all rules exhaustively the resulting graph will have at most 2k2/3

vertices and k2 edges. Clearly, each of the rules can be implemented in

polynomial time. Thus we arrive at the following lemma.

2.3 Feedback Arc Set in Tournaments 27

Lemma 2.4. Vertex Cover admits a kernel with at most 2k2/3 ver-

tices and k2 edges.

A natural idea to improve the kernel would be to design reduction

rules which can handle vertices of degree 3. However, coming up with

such rules is much more challenging. One of the reasons to that is that

Vertex Cover is NP-complete already on graphs with vertices of de-

gree at most 3. However this does not exclude a possibility of obtaining

a better kernel for Vertex Cover, we just have to adapt another ap-

proaches. In Chapters 4 and 6, we use different ideas to construct kernels

for Vertex Cover with at most 2k vertices. We complement these re-

sults in Chapter 20 by arguing that it is highly unlikely that Vertex

Cover admits a kernel of size k2−ε for any ε > 0. Thus the bound on the

number of edges in the kernels presented in this section is asymptotically

tight.

2.3 Feedback Arc Set in Tournaments

In this section we discuss a kernel for Feedback Arc Set in Tour-

naments (FAST). A tournament is a directed graph T such that for

every pair of vertices u, v ∈ V (T), there is exactly one arc in T : either

uv or vu. A set of arcs A of T is called a feedback arc set if every cycle

of T contains an arc from A. In other words, the removal of A from T

turns it into an acyclic graph. We remark that acyclic tournaments are

often said to be transitive. In FAST, we are given a tournament T and

a non-negative integer k. The task is to decide whether T has a feedback

arc set of size at most k.

Deletions of arcs of tournaments can result in graphs that are not

tournaments anymore. Due to this fact, reversing (redirecting) arcs is

much more convenient than deleting arcs. We leave the proof of the

following lemma as an exercise (Problem 2.5).

Lemma 2.5. A graph is acyclic if and only if it is possible to order

its vertices in a way such that for every arc uv, it holds that u < v.

Moreover, such an ordering can be found in polynomial time.

An ordering of an acyclic graph in Lemma 2.5 is called transitive.

Lemma 2.6. FAST admits a kernel with at most k2 + 2k vertices.

Proof. By Lemma 2.5, a tournament T has a feedback arc set of size

28 Warm up

at most k if and only if it can be turned into an acyclic tournament

by reversing at most k arcs (see also Problem 2.6). In what follows, we

reverse arcs and use the term triangle to refer to a directed triangle. We

present two simple reduction rules which can be easily implemented to

run in polynomial time.

Reduction FAST.1. If there exists an arc uv that belongs to more

than k distinct triangles, construct a new tournament T ′ from T by

reversing uv. The new instance is (T ′, k − 1).

Reduction FAST.2. If there exists a vertex v that is not contained

in any triangle, delete v from T . The new instance is (T − v, k).

To see that the first rule is safe, note that if we do not reverse uv,

we have to reverse at least one arc from each of k + 1 distinct triangles

containing uv. Thus, uv belongs to every feedback arc set of size at

most k.

Let us now argue that Rule FAST.2 is safe. Let X be the set of heads

of the arcs whose tail is v, and let Y be the set of tails of the arcs whose

head is v. Because T is a tournament, (X,Y) is a partition of V (T)\{v}.
Since v is not contained in any triangle in T , we have that there is no

arc from X to Y . Moreover, for any pair of feedback arc sets A1 and

A2 of the tournaments T [X] and T [Y], respectively, the set A1 ∪ A2

is a feedback arc set of T . Thus, (T, k) is a yes-instance if and only if

(T − v, k) is a yes-instance.

Finally, we show that in any reduced yes-instance, T has at most

k(k+ 2) vertices. Let A be a feedback arc set of T of size at most k. For

every arc e ∈ A, aside from the two endpoints of e, there are at most k

vertices that are contained in a triangle containing e, because otherwise

the first rule would have applied. Since every triangle in T contains an

arc of A and every vertex of T is in a triangle, we have that T has at

most k(k + 2) vertices.

2.4 Dominating Set in graphs of girth at least 5

Let us remind that a vertex set S is a dominating set of a graph G if

every vertex of G either belongs to S or has a neighbor in S. In the

Dominating Set problem, we are given a graph G and integer k, and

2.4 Dominating Set in graphs of girth at least 5 29

the task is to decide whether G has a dominating set of size at most k.

The Dominating Set problem it is known to be W[2]-complete, and

thus it is highly unlikely that it admits a kernel (not even an exponential

kernel). The problem remains W[2]-complete on bipartite graphs and

hence on graphs without cycles of length 3. In this section, we show that

if a graph G has no cycles of lengths 3 and 4, i.e. G is a graph of girth

at least 5, then kernelization is possible by means of simple reduction

rules. Moreover, the kernel will be polynomial.

In our kernelization algorithm, it is convenient to work with the col-

ored version of domination called red-white-black domination. Here, we

are given a graph F whose vertices are colored in three colors: red, white

and black. The meaning of the colors is the following:

Red: The vertex has already been included in the dominating set D′

that we are trying to construct.

White: The vertex has not been included in the set D′, but it is domi-

nated by some vertex in D′.

Black: The vertex is not dominated by any vertex of D′.

A set D ⊆ V (F) is an rwb-dominating set if every black vertex v 6∈ D is

adjacent to some vertex of D, i.e. D dominates black vertices.

Let R, W and B be the sets of vertices of the graph F colored red,

white and black, respectively. We say that F is an rwb-graph if

• Every white vertex is a neighbor of a red vertex.

• Black vertices have no red neighbors.

In what follows, we apply reduction rules on rwb-graphs. Initially, we

are given an input graph G, and we color all its vertices black. After

every application of a reduction rule, we obtain an rwb-graph F with

V (F) = R∪W ∪B, |R| ≤ k, and such that F has an rwb-dominating set

of size k − |R| if and only if (G, k) is a yes-instance. Obviously, the first

rwb-graph F , obtained from G by coloring all vertices black, satisfies

this condition.

The following lemma essentially shows that if an rwb-graph of girth

at least 5 has a black or white vertex dominating more than k black

vertices, then such a vertex must belong to every solution of size at

most k − |R|.

Lemma 2.7. Let F be an rwb-graph of girth at least 5 with |R| ≤ k,

and let V (F) = R ∪W ∪ B. Let v be a black or white vertex with more

30 Warm up

than k − |R| black neighbors. Then, v belongs to every rwb-dominating

set of size at most k − |R|.

Proof. LetD be an rwb-dominating set of size k−|R|, i.e.D dominates all

black vertices in F . Targeting a contradiction, let us assume that v /∈ D.

Let X be the set of black neighbors of v which are not in D, and let Y

be the set of black neighbors of v in D. It holds that |X|+ |Y | > k−|R|.
Observe that for every vertex u ∈ X, there is a neighbor ud ∈ D which

is not in Y , because otherwise v, u and ud form a cycle of length 3.

Similarly, for every pair of vertices u,w ∈ X, u 6= w implies that

ud 6= wd, because otherwise v, u, ud, w and v form a cycle of length 4.

This means that |D| ≥ |X|+ |Y | > k−|R|, which is a contradiction.

Given an rwb-graph F , Lemma 2.7 suggests the following simple re-

duction rule.

Reduction DS.1. If there is a white or a black vertex v having

more than k − |R| black neighbors, then color v red and color its

black neighbors white.

It should be clear that the following reduction rule is safe and does

not decrease the girth of a graph.

Reduction DS.2. If a white vertex v is not adjacent to a black

vertex, delete v.

For each rwb-graph F with V (F) = R∪W ∪B obtained after applying

any of the rules above, we have that F has an rwb-dominating set of size

k − |R| if and only if G has a dominating set of size k. Thus, if at some

moment we arrive at a graph with |R| > k, this implies that (G, k) is a

no-instance.

Now, we estimate the size of an irreducible colored graph.

Lemma 2.8. Let F be an rwb-graph with V (F) = R ∪W ∪ B and of

girth at least 5, such that Rules DS.1 and DS.2 cannot be applied to F .

Then, if F has an rwb-dominating set of size k − |R|, it has at most

k3 + k2 + k vertices.

Proof. Suppose that F has an rwb-dominating set of size k − |R|. We

argue then that each of |R|, |B| and |W | is bounded by a function of k.

First of all, |R| ≤ k because otherwise F is a no-instance. By Rule DS.1,

2.5 Alternative parameterization for Vertex Cover 31

every vertex colored white or black has at most k− |R| black neighbors.

We also know that no red vertex has a black neighbor. Moreover, at

most k − |R| black or white vertices should dominate all black vertices.

Thus, since each black or white can dominate at most k black vertices,

we deduce that |B| ≤ k2.

It remains to argue that |W | ≤ k3. Towards this end, we show that

every black vertex has at most k white neighbors. Since |B| ≤ k2 and

every white vertex is adjacent to some black vertex (due to Rule DS.2),

the conclusion will follow. We start by noting that every white vertex

has a red neighbor. Moreover, the white neighbors of any black vertex

have distinct red neighbors, i.e. if w1 and w2 are white neighbors of a

black vertex b, then the sets of red neighbors of w1 and of w2 do not

overlap. Indeed, if w1 and w2 had a common red neighbor r, then b, w1, r

and w2 would have formed a cycle of length 4. Since |R| ≤ k, we have

that a black vertex can have at most k white neighbors.

We conclude with the following theorem.

Theorem 2.9. Dominating Set on graphs of girth at least 5 has a

kernel with at most k3 + k2 + 2k vertices.

Proof. For an instance (G, k) of Dominating Set, we construct a col-

ored graph by coloring all vertices of G black. Afterwards we apply

Rules DS.1 and DS.2 exhaustively. Each of the rules runs in polynomial

time. Let F = (R ∪W ∪B,E) be the resulting rwb-graph. Note that F

has an rwb-dominating set of size k − |R| if and only if G has a domi-

nating set of size k. Because none of the rules decreases girth, the girth

of F is also at least five. Hence if F has more than k3 + k2 + k vertices,

by Lemma 2.8 we have that G is a no-instance.

We construct a non-colored graph G′ from F by attaching a pendant

vertex to every red vertex of F and uncoloring all vertices. The new

graph G′ has at most k3 +k2 +k+ |R| ≤ k3 +k2 +2k vertices, its girth is

at most the girth of G, and it is easy to check that G′ has a dominating

set of size k if and only if F has an rwb-dominating set of size k − |R|.
Thus, (G′, k) is a yes-instance if and only if (G, k) is a yes-instance.

2.5 Alternative parameterization for Vertex Cover

So far we have studied parameterized problems with respect to “nat-

ural” parameterizations, which are usually the sizes of their solutions.

32 Warm up

However, in many cases it is very interesting to see how other param-

eterizations influence the complexity of the problem. In this book, we

consider several examples of such problems. We start with an alternative

parameterization for Vertex Cover.

Towards presenting the alternative parameterization, consider some

vertex cover S of a graph G. The graph G − S has no edges, and thus

every vertex of G − S is of degree 0. For an integer d, we say that

a vertex set S of a graph G is a degree-d modulator if all vertices of

G − S are of degree at most d. For example, every vertex cover is a

degree-0 modulator, and, of course, every degree-d modulator is also a

degree-(d+ 1) modulator. Since the size of a degree-1 modulator can be

smaller than the size of a vertex cover, that is, a degree-0 modulator, it is

reasonable to consider kernelization for a “stronger” parameterization.

We define the Vertex Cover (degree-1-modulator) problem

(vertex cover parameterized by degree-1 modulator) as follows. Given

a graph G, a degree-1 modulator S of size k and an integer `, the task

is to decide whether G contain a vertex cover of size at most `. In the

rest of this section, we prove the following theorem.

Theorem 2.10. Vertex Cover (degree-1-modulator) admits a

kernel with O(k3) vertices.

Let us note that the kernel obtained in Theorem 2.10 is incomparable

to a kernel for Vertex Cover from Theorem 2.4. While one kernel is

for a stronger parameterization, the size of another kernel has a better

dependence on the parameter.

Let (G,S, `), |S| = k, be an instance of Vertex Cover (degree-

1-modulator). Thus, every vertex of F = G − S is of degree at most

1 in F . We assume that G has no isolated vertices, otherwise we delete

these vertices. According to the degrees of the vertices in F , we partition

F into two sets, one of 0-F -degree vertices and the other of 1-F -degree

vertices.

The first reduction rule is similar to the degree reduction rule designed

for Vertex Cover.

Reduction VC/1D.1. If there is a vertex s ∈ S adjacent to more

than |S| 0-F -degree vertices of F , then delete s and decrease ` by 1.

The new instance is (G− s, S \ {s}, `− 1).

Reduction Rule VC/1D.1 is safe for the following reason: there is

2.5 Alternative parameterization for Vertex Cover 33

always a minimum vertex cover of G containing s. Indeed, if a vertex

cover C of G does not contain s, then all the neighbors of s from F

should be in C. However, the set obtained from C by deleting the 0-F -

degree neighbors of s and adding all the missing vertices from S to C is

also a vertex cover of size at most |C|. By using similar arguments, we

also have that the following rule is safe.

Reduction VC/1D.2. If there is a vertex s ∈ S such that the

neighborhood NG(s) of s contains more than |S| pairs of adjacent

1-F -degree vertices of F , then delete s and decrease ` by 1. The new

instance is (G− s, S \ {s}, `− 1).

If there is a vertex v in F that has no neighbors in S, then because

G has no isolated vertices, v should be adjacent to some vertex u of

F . In this situation, the vertex v is not only a degree-1 vertex in F ,

but it is also a degree-1 vertex in G. Hence there is always a minimum

vertex cover containing u and excluding v. This brings us to the following

reduction rule.

Reduction VC/1D.3. If there is a vertex v ∈ V (F) which is not

adjacent to any vertex of S, delete v and its neighbor u from V (F),

and decrease ` by 1. The new instance is (G− {u, v}, S, `− 1).

Our next reduction rule is the following.

Reduction VC/1D.4. If there is a pair of non-adjacent vertices

s, t ∈ S such that the neighborhood NG(s) ∪ NG(t) contains more

than |S| pairs of adjacent 1-F -degree vertices of F , then add the

edge st to G. Let G′ be resulting graph. Then, the new instance is

(G′, S, `).

Reduction Rule VC/1D.4 is safe because there is always a minimum

vertex cover of G containing at least one vertex among s and t. Indeed,

every vertex cover C not containing s and t, should contain all vertices

in NG(s) ∪ NG(t). By adding to C all vertices of S and removing at

least |S|+ 1 vertices (one from each of the pairs of adjacent vertices in

NG(s) ∪NG(t)), we obtain a smaller vertex cover.

Our last reduction rule is the following.

34 Warm up

Reduction VC/1D.5. Let u, v ∈ V (F) be a pair of adjacent vertices

such that NG(u) ∩ NG(v) = ∅, and for every pair of vertices s ∈
S ∩NG(u) and t ∈ S ∩NG(v), s is adjacent to t. Then, delete u and

v, and decrease ` by 1. The new instance is (G− {u, v}, S, `− 1).

Lemma 2.11. Reduction Rule VC/1D.5 is safe.

Proof. The safeness of Reduction Rule VC/1D.5 is based on the obser-

vation that if its conditions hold, there is always a minimum vertex cover

C containing the open neighborhood (in G) of exactly one of the vertices

u and v. First, note that as the vertices u and v are adjacent, at least

one of them should belong to every vertex cover of G. Thus, if G has a

vertex cover C of size at most `, then G \ {u, v} has a vertex cover of

size `− 1.

Let us now show that if G \ {u, v} has a vertex cover C ′ of size at

most `− 1, then G has a vertex cover of size at most `. Since the graph

induced by the open neighborhoods of u and v in S contains a complete

bipartite graph with bipartition (NG(u) ∩ S,NG(v) ∩ S) as a subgraph,

either all the vertices of NG(u)∩S or all the vertices of NG(v)∩S should

belong to C. Let us assume w.l.o.g that NG(u)∩S ⊆ C ′. Then, C ′∪{v}
is a vertex cover of G, which concludes proof that the reduction rule is

safe.

Each of the reduction rules can be easily implemented to run in poly-

nomial time. Thus, it remains to argue that every irreducible instance is

of size O(|S|3). Due to Rule VC/1D.1, the number of 0-F -degree vertices

of G is at most |S|2. Moreover, due to Rule VC/1D.2, the number of

pairs of adjacent 1-F -degree vertices having a common neighbor in S is

at most |S|2. But how many other pairs of adjacent 1-F -degree vertices

can belong to G?

By Rule VC/1D.3, every 1-F -degree vertex should have a neighbor

in S. Then, by Rule VC/1D.5, for every pair of adjacent vertices u, v ∈
V (F) that do not have a common neighbor, there is a neighbor s ∈ S
of u and a neighbor t ∈ S of v which are distinct and non-adjacent.

However, by Rule VC/1D.4, the union of the neighborhoods of two non-

adjacent vertices in S contains at most |S| pairs of adjacent vertices from

F . Thus, the number of pairs of adjacent 1-F -degree vertices is at most

|S|2 +
(|S|

2

)
· |S|, and hence the total number of vertices of G is O(|S|3).

This concludes the proof of Theorem 2.10.

2.6 Edge Clique Cover 35

2.6 Edge Clique Cover

Unfortunately, some problems are only known to have kernels of expo-

nential sizes. As we will see later, there are convincing arguments that

for some problems, this is the best we can hope for. One such example

is Edge Clique Cover, for which we present a data reduction which

results in a kernel of exponential size. In Edge Clique Cover, we are

given a graph G and a non-negative integer k. The task is to decide

whether the edges of G can be covered by at most k cliques. In what

follows, recall that we use N [v] to denote the closed neighborhood of a

vertex v in G.

Reduction ECC.1. Remove isolated vertices.

Reduction ECC.2. If there is an edge uv whose endpoints have

exactly the same closed neighborhood, that is, N [u] = N [v], then

contract uv. In case uv was an isolated edge, also decrease k by 1.

Theorem 2.12. Edge Clique Cover admits a kernel with at most 2k

vertices.

Proof. Since the removal of isolated vertices does not change the solu-

tion, Rule ECC.1 is safe. Let us now argue that Rule ECC.2 is also safe.

Since the removal of any isolated edge decreases the minimum size of

a clique cover by exactly 1, we next assume that uv is not an isolated

edge. Let G′ denote the graph obtained from G by contracting uv. Since

the contraction of an edge cannot increase the minimum size of a clique

cover, it holds that if G has a clique cover of size at most k, so does

G′. To prove the other direction, let C1, . . . , Ck be a clique cover of G′,
and let w be the vertex of G′ that is the result of the contraction of

uv. Since uv was not an isolated edge in G, w is not an isolated vertex

in G′, and therefore it is contained in at least one of the cliques. Thus,

since N [u] = N [v], by replacing w by u and v in each of the cliques Ci,

1 ≤ i ≤ k, which contains w, we obtain a clique cover for G.

Next, let G be a graph to which both rules do not apply, and which has

a clique cover C1, . . . , Ck. We claim that G has at most 2k vertices. Tar-

geting a contradiction, let us assume that G has more than 2k vertices.

We assign a binary vector bv of length k to each vertex v ∈ V , where

bit i, 1 ≤ i ≤ k, is set to 1 if and only if v is contained in the clique Ci.

Since there are only 2k possible vectors, there must be distinct vertices

36 Warm up

u, v ∈ V (G) such that bu = bv. If bu = bv is the zero vector, the first

rule is applicable. Thus, bu = bv is not the zero vector, which implies

that u and v have the same closed neighborhood, and, in particular, u

and v are adjacent. In this case, the second reduction rule is applicable,

and thus we necessarily reach a contradiction.

Exercises

Problem 2.1 (l). Prove that the size of a graph which is irreducible subject to
Reduction Rules VC.1, VC.3, and VC.4 cannot be bounded by a function of k only.
Here, we do not apply Reduction Rule VC.2.

Problem 2.2. In the Odd Subgraph problem, we are given a graphG and an integer
k. The task is to decide whether G has a subgraph on k edges where all vertices are
of odd degrees. Prove that the problem admits a kernel with O(k2) vertices.

Problem 2.3. In the Cluster Editing problem, we are given a graph G and integer
k. The task is to decide whether G can be transformed into a disjoint union of cliques
by adding or deleting at most k edges in total, i.e. by at most k editing operations.
Prove that the problem admits a kernel with O(k2) vertices.

Problem 2.4. In Section 1.1, we gave a kernel with k2 points for the Point Line
Cover problem. Prove that Point Line Cover admits a kernel with k2 − c points
for some c ≥ 1.

Problem 2.5. Prove Lemma 2.5.

Problem 2.6. Let D be a directed graph and F be a minimal feedback arc set of D.
Let D′ be the graph obtained from D by reversing the arcs of F in D. Show that D′

is acyclic, and that the requirement of minimality from F is necessary, i.e. without
it the statement is not correct.

Problem 2.7. Give a kernel of size kO(1) for the Longest Cycle (vc) problem.
Given a graph G, a vertex cover S of G of size k and an integer `, the objective of
this problem is to decide whether G contains a cycle on at least ` vertices.

Problem 2.8. The input of the Test Cover problem consists of a set V of n
vertices, and a collection E = {E1, . . . , Em} of distinct subsets of V , called tests.
A test Eq separates a pair vi, vj of vertices if |{vi, vj} ∩ Eq | = 1. A subcollection
T ⊆ E is a test cover if each pair vi, vj of distinct vertices is separated by a test in T .
The task is to decide whether an instance (V, E) of Test Cover has a test cover of
size at most k. Let r be a positive integer. The Test r-Cover problem is the Test
Cover problem in which n ≥ r and |Ej | ≤ r for each j ∈ {1, . . . ,m}. Prove that
Test r-Cover has a kernel with O(k) vertices and O(kr) tests.

Problem 2.9 (A). Let G be a graph with n vertices. A bijection σ : V (G) →
{1, . . . , n} is a linear ordering of G. For a linear ordering σ of G, the cost of an edge
xy ∈ E(G) is c(xy) = |σ(x) − σ(y)| and the net cost of σ is

∑
e∈E(c(e) − 1). In the

Net Linear Arrangement problem, given a graph G and a parameter k, decide
whether there is a linear ordering of G of net cost at most k. Prove that Net Linear
Arrangement admits a kernel with O(k) vertices and edges.

Problem 2.10. In the (k, n − k)-MaxCut problem, we are given a graph G, and
integers k and p. The task is to decide whether there is a partition A] B of V (G)
such that |A| = k and G has at least p edges with one endpoint in A and the other

endpoint in B. Give a kernel of size pO(1) for this problem.

2.6 Edge Clique Cover 37

Problem 2.11 (A). Vertex Cover (fvs) is the problem of computing a vertex
cover of size at most ` parameterized by the size k of a minimum feedback vertex set.
Show that this problem admits a polynomial kernel.

Problem 2.12 (A). Vertex Cover (degree-2-modulator) is the problem of com-
puting a vertex cover of size at most ` parameterized by the size k of a minimum
degree-2 modulator. Show that this problem admits a polynomial kernel.

Bibliographic notes

The classical reference on Parameterized Complexity is the book of

Downey and Fellows (1999). For more updated material we refer to the

books of Flum and Grohe (2006), Niedermeier (2006), Downey and Fel-

lows (2013) and Cygan et al. (2015).

Since Independent Set admits “trivial” kernelization on graphs of

bounded vertex degree when parameterized by the size of the solution,

it is more natural to study this problem with different, “above guaran-

tee” parameterizations. Dvorák and Lidický (2017) have shown that the

problem of deciding whether an n-vertex graph G with maximum vertex

degree ∆ contains an independent set of size at least n/∆ + k, admits a

kernel with O(k) vertices. See also (Dvorak and Mnich, 2014).

The design of reduction rules for Vertex Cover of the type discussed

in this chapter is often called Buss kernelization, attributed to Sam Buss

in (Buss and Goldsmith, 1993). A more refined set of reduction rules for

Vertex Cover was introduced by Balasubramanian et al. (1998). The

kernelization algorithm for FAST follows the lines provided by Dom

et al. (2010). An improved kernel with (2 + ε)k vertices, where ε > 0,

was obtained by Bessy et al. (2011) (see also Chapter 9). The kernel for

Dominating Set on graphs of large girth is due to Raman and Saurabh

(2008). As a complete bipartite graph K2,2 is a cycle on four vertices, the

following result of Philip et al. (2012) is a generalization of Theorem 2.9:

for every fixed i, j, Dominating Set has a kernel of size O(kh) in graphs

containing no Ki,j as a subgraph, where h = 2(min{i, j})2 depends

only on i and j. Kernelization for Dominating Set on other classes of

sparse graphs is discussed in chapters of this book on Meta-Theorems.

A polynomial kernel for (k, n−k)-MaxCut, given as Problem 2.10, was

obtained in (Saurabh and Zehavi, 2016). Problems 2.8 and 2.9 are taken

from (Gutin et al., 2013b) and (Gutin et al., 2013a), respectively. We

remark that Net Linear Arrangement is an above guarantee version

of a problem called Optimal Linear Arrangement. An exponential

kernel for Edge Clique Cover was given by Gramm et al. (2008) (see

38 Warm up

also (Gyárfás, 1990)). Cygan et al. (2011) showed that Edge Clique

Cover does not admit a kernel of polynomial size unless the polynomial

time hierarchy collapses to the third level.

The paper of Niedermeier (2010) discusses different aspects of param-

eterization by different parameters, and the thesis of Jansen (2013), as

well as (Fomin et al., 2014) discusses kernelization algorithms for dif-

ferent problems parameterized by vertex cover. A result generalizing

the polynomial kernel for Vertex Cover (degree-1-modulator),

given as Problem 2.11, provides a kernel with O(k3) vertices for Vertex

Cover (fvs) and was obtained by Jansen and Bodlaender (2013). Later,

an improved kernel for Vertex Cover (degree-1-modulator), a

kernel for Vertex Cover (degree-2-modulator) and related results

were given by Majumdar et al. (2015). Recently, Fomin and Strømme

(2016) gave a polynomial kernel for Vertex Cover parameterized by

the size of a vertex set whose removal results in a graph where each

connected component has at most one cycle, called pseudoforest modu-

lator. They also show that Vertex Cover parameterized by the size

of a vertex set whose removal results in a graph where no two cycles

share a vertex, called a mock forest modulator, is unlikely to admit a

polynomial kernel.

3

Inductive priorities

In this chapter we introduce the method of inductive priorities. This method

can be seen as a systematic way of obtaining reduction rules. We exemplify this

method by providing kernels for Max Leaf Subtree and Feedback Vertex

Set.

We have seen already several examples of kernelization algorithms

based on reduction rules. So far we were only explaining why and how

reduction rules work. But how to come up with such rules? We do not

know a universal recipe for making reductions—normally this is a cre-

ative process requiring deep insight into the structural properties of the

problem. However, in some situations the following “direct” attack can

be successful.

Suppose that we have some initial solution at hand, which can be of

low quality. The manner in which the initial solution is obtained depends

on the problem in question, and it can involve the use of greedy argu-

ments or approximation algorithms. We implement simple rules which

aim to improve the quality of the initial solution. Once we reach a bound-

ary situation, where no further improvement is possible, we seek reasons

underlying this stalemate. Such a strategy brings us either to additional

reduction rules or to a reasonable upper bound on the size of the current

instance. As a result, we may either solve the problem or obtain a kernel.

This approach is known as the method of inductive priorities; it can be

viewed as a systematic way to design reduction rules. We exemplify this

method by providing kernels for Max Leaf Subtree and Feedback

39

40 Inductive priorities

Vertex Set. While the kernels given in this chapter are not the best

possible, the approach used to obtain them sheds some light on the

manner in which one can systematically design kernelization algorithms.

3.1 Priorities for Max Leaf Subtree

In this section, we demonstrate how to use the method of inductive

priorities in the context of the Max Leaf Subtree problem. In this

problem, we are given a graph G and a non-negative integer k. The task

is to decide whether G has a subtree with at least k leaves. We refer

the reader to the Bibliographic notes for the relation between this prob-

lem and the more well known Max Leaf Spanning Tree problem. In

what follows, we always assume that the input graph G is connected.

This assumption is crucial: without the connectivity requirement, Max

Leaf Subtree does not admit a polynomial kernel under a reasonable

complexity-theoretic assumption (see Bibliographic Notes for further ref-

erences). Notice that since G is connected, if there exists a solution, then

there also exists a solution that is a spanning tree. Indeed, extending a

subtree cannot decrease the number of leaves it contains.

On a high level, we employ the following strategy. First of all, given

the (connected) input graph G, we obtain some spanning tree, say a tree

constructed by using depth-first search. If this tree contains at least k

leaves, we have already solved the problem. Otherwise, we try to improve

it. If we succeed to obtain a tree with a larger number of leaves, we restart

the procedure using the new tree. The most interesting case occurs at

the moment we cannot improve our spanning tree. In this case we start

to analyze the structure of the graph and the tree, and this will bring us

either to a new reduction idea or to a bound on the size of the graph.

In order to articulate the structure that a bound on the max leaf

number imposes, we seek to prove (for the best possible constant c) the

following generic lemma regarding the kernelization for the problem:

Boundary Lemma. Let G be a connected graph, and suppose that

(G, k) is a “reduced” yes-instance of Max Leaf Subtree such that

(G, k + 1) is a no-instance. Then, |V (G)| ≤ ck. (Here c is a small con-

stant that we will clarify below.)

The lemma says that if G is reduced (where the meaning of reduced

3.1 Priorities for Max Leaf Subtree 41

is still to be determined), contains a tree with k leaves and does not

contain a tree with k + 1 leaves, then the number of vertices in G is at

most ck. Hence, once we have proved this lemma, we know that if G is

reduced but has more than ck vertices, then either (G, k) is a no-instance

or (G, k+1) is a yes-instance. Then, if G is reduced but has more than ck

vertices, one way to proceed is to find some operation that modifies the

graph G so that the resulting graph G′ is smaller, while satisfying two

conditions: if (G, k) is a no-instance, then so is (G′, k), and if (G, k+1) is

a yes-instance, then so is (G′, k). In the context of Max Leaf Subtree,

a possible operation is simply the one that contracts any edge so that

the resulting graph remains a connected graph. Afterwards, we restart

the application of the reduction rules. Thus, to obtain a kernel, it is

sufficient to prove such a Boundary Lemma. Later, we present another

argument why it is sufficient to prove the Boundary Lemma in order to

obtain our kernel, which does not require the use of the operation above.

Obtaining a Boundary Lemma involves two crucial strategic choices:

(1) A choice of a witness structure for the hypothesis that (G, k) is a yes-

instance. In the context of Max Leaf Subtree, a possible witness

structure is simply a tree with k leaves.

(2) A choice of inductive priorities. To illustrate the methodology for

Max Leaf Subtree, we give two examples where one is an extension

of the other.

The structure of the proof is “by minimum counterexample”, where we

assume that (G, k) is a yes-instance while (G, k+1) is a no-instance. Here,

the arguments are guided by the inductive priorities established by (2),

which involve reference to (1). Generally, given the inductive priorities,

the proof consists of a series of structural claims that eventually lead to

a detailed structural picture at the “boundary”, and thereby to a bound

on the size of G that is the conclusion.

We will describe three natural reduction rules. After the application of

these rules, we will be able to derive some properties that the structure

of the input should satisfy. Let us begin by explaining the intuition that

leads to the design of these reduction rules, and then state the rules

themselves. To this end, we consider a combinatorial result due to Linial

and Sturtevant (1987) and Kleitman and West (1991), which we do not

prove here. This combinatorial result (stated below) implies that if G

is a connected graph with minimum vertex degree at least 3, then we

already have a kernel. While we are not able to apply this result (since

we are not able to reduce the graph appropriately), it shades light on

42 Inductive priorities

which vertices are to be handled if one is interested in a kernel. Indeed,

inspired by this result, we will try to eliminate certain degree-1 and

degree-2 vertices in G, though we will not be able to eliminate all of

them. Formally, this result is stated as follows.

Theorem 3.1 (Linial and Sturtevant (1987); Kleitman and West (1991)).

Every connected graph G with minimum vertex degree at least 3 has a

spanning tree with at least |V (G)|/4 + 2 leaves. Moreover, such a span-

ning tree can be found in polynomial time.

By Theorem 3.1, if we were to succeed in safely eliminating all vertices

of degrees 1 and 2, then either the reduced graph G would have had more

than 4k vertices, in which case (G, k) is automatically a yes-instance, or

the reduced graph G would have had at most 4k vertices, in which case

we are also done. While vertices of degree 1 can be “shaved off” (though

this task is not as easy as in the case of Vertex Cover), with degree-2

vertices the situation is much more delicate. We will not get rid of all

vertices of degrees 1 and 2, but nevertheless, we will target these vertices

and be able to obtain a kernel by doing so.

The first rule is the following.

Reduction ML.1. Let u be a vertex of degree 1 in (the connected

graph) G adjacent to a vertex v of degree 2 in G. Delete u from G.

The new instance is (G− u, k).

To see that this rule is safe, note that if G contains a tree with k

leaves, then it also has a spanning tree T with at least k leaves such

that u is a leaf of T . The vertex v is of degree 2 in T , and therefore

the deletion of u does not decrease the number of leaves in T—once the

vertex u is deleted, the vertex v becomes a new leaf.

Let us remind that an edge uv is a bridge in a graph G if its deletion

increases the number of connected components in G. Since a bridge

should be contained in every spanning tree of G, we deduce that the

following reduction rule is safe.

Reduction ML.2. If an edge uv is a bridge in G and neither u nor

v is of degree 1, then contract uv. The new instance of the problem

is (G/uv, k).

Our final rule is the following.

3.1 Priorities for Max Leaf Subtree 43

Reduction ML.3. If u and v are two adjacent vertices of degree 2

(where uv is not a bridge), then delete the edge uv from G. The new

instance of the problem is (G− uv, k).

This rule is safe for the following reason. Let T be a spanning tree

of G with k leaves. If uv is not an edge of T , then the deletion of uv

does not change T . If uv belongs to T , then because uv is not a bridge,

there is another edge xy in G such that T ′, obtained from T − uv by

adding xy, is a tree. By adding xy, we eliminate at most two leaves from

T while after deleting uv, the vertices u and v become leaves. Thus T ′

also has at least k leaves and therefore the rule is safe.

We say that the graph G is reduced if none of the reduction rules

above can be applied to it.

We first show how to obtain the following Boundary Lemma.

Lemma 3.2 (Max-Leaf Boundary Lemma I). Let G be a reduced

connected graph. Suppose that (G, k) is a yes-instance of Max Leaf

Subtree, and that (G, k + 1) is a no-instance of this problem. Then,

|V (G)| ≤ 7k.

Proof. Targeting a contradiction, let us assume that the lemma does not

hold. For a given integer k, we assume that there is a counterexample,

which is a connected graph G such that:

(i) (G, k) is a reduced instance of Max Leaf Subtree,

(ii) (G, k) is a yes-instance of Max Leaf Subtree,

(iii) (G, k + 1) is a no-instance of Max Leaf Subtree, and

(iv) |V (G)| > 7k.

Since (G, k) is a yes-instance, it contains a witness structure, which is

a tree subgraph T of G with k leaves. Among all such counterexamples,

consider one where the witness subgraph tree T has the maximum num-

ber of vertices. In the case of Max Leaf Subtree, this choice simply

means that T is a spanning tree.

Due to our choice of inductive priorities, we immediately conclude

that the set of “outsiders” O = V (G) \ V (T) is simply empty. Let L

denote the set of leaves of T , I the set of internal (non-leaf) vertices of

T , B ⊆ I the set branch vertices of T (the non-leaf, internal vertices of

T that have degree at least 3 with respect to T), and J the set subdivider

vertices of T (the non-branch, internal vertices of T that have degree 2

44 Inductive priorities

T
B

J

O

L

Figure 3.1 A witness tree T , and the vertex sets B,L, J and O.

with respect to T). An illustrative example is given in Fig. 3.1. Recall

that we already know that O = ∅, which clearly simplifies our picture.

Since we need to discuss the structure of the tree T in more detail,

we introduce the following terminology. A path bj1 · · · jrb′ in T , where

b, b′ ∈ B ∪ L are branch or leaf vertices of T and the vertices ji for

i ∈ {1, . . . , r} are subdivider vertices of T , is termed a subdivided edge

of T . In order to be able to refer to the length of the path bj1 · · · jrb′,
we say that b and b′ are joined by an r-subdivided edge in T . Note that

a 0-subdivided edge is just an ordinary edge of T .

We also need the following lemma, whose proof is left as an exercise.

Lemma 3.3. Let T be a tree. Then,

• |B| ≤ |L| − 2, and

• the number of subdivided edges is at most |L|.

Next, we must bound the size of T . By Lemma 3.3,

|B| ≤ k − 2. (3.1)

We proceed by proving several claims that reveal some properties of

the structure of T .

Claim 3.4. The subgraph of G induced by the vertices of a subdivided

edge of T is a path.

The claim is trivially true for an r-subdivided edge where r = 0, so

suppose that r ≥ 1. In this case, as shown in Fig. 3.2, we can re-engineer

T to have k+1 leaves, which results in a contradiction to the assumption

that (G, k + 1) is a no-instance.

Claim 3.5. There are no r-subdivided edges in T for r ≥ 6.

3.1 Priorities for Max Leaf Subtree 45

Figure 3.2 An illustration for Claim 3.4.

Tb

b
. . .

j1 j2 j3b

Tb

. . .
j1 j2 j3

Figure 3.3 An illustration for Claim 3.5.

Proof. Suppose, by way of contradiction, that we have a subdivided

edge bj1 · · · jrb′ in T where b, b′ ∈ B ∪L and r ≥ 6. Since G is a reduced

graph, at least one vertex among j3 and j4 is of degree more than 2 in G.

Without loss of generality, suppose that j3 is adjacent in G to a vertex

outside the subdivided edge. Then, we can re-engineer T to have k + 1

leaves as shown in Fig. 3.3, which results in a contradiction. y

We are ready to conclude the proof of the Boundary Lemma. We know

that

|V (G)| = |L|+ |B|+ |J |+ |O|.

We have that |L| = k. By Lemma 3.3, |B| ≤ k − 2. By Lemma 3.3

and Claim 3.5, |J | ≤ 5k. Finally, recall that O = ∅, and thus |V (G)| ≤
7k.

We now show that it is possible to further improve the bound by

introducing another Boundary Lemma.

Lemma 3.6 (Max-Leaf Boundary Lemma II). Let G be a re-

duced connected graph. Suppose (G, k) is a yes-instance of Max Leaf

Subtree, and that (G, k + 1) is a no-instance of this problem. Then,

|V (G)| ≤ 5k.

Proof. The proof is again by minimum counterexample. Witnessing that

(G, k) is a yes-instance, we have a spanning tree T with k leaves, as in

the proof of Boundary Lemma I. Here we need to further analyze the

46 Inductive priorities

structure of T , and therefore we rely on another inductive priority. We

choose some arbitrary vertex s in G, and view this vertex as the root

of T . The possible counterexample that we entertain in our argument is

one where

(1) T is a spanning tree, and among all counterexamples satisfying this

requirement, one where

(2) the sum over all leaves l ∈ L of the distance in T from s to l is

minimized.

All of the structural claims derived in the proof of Boundary Lemma I

hold here as well, since all we have done is to introduce one additional in-

ductive priority. This additional priority allows us to establish a stronger

version of Claim 3.5.

Claim 3.7. There are no r-subdivided edges in T for r ≥ 4 that do not

contain s.

Proof. Suppose, by way of contradiction, that we have an r-subdivided

edge bj1 · · · jrb′ in T , where b, b′ ∈ B ∪ L and r ≥ 4. The deletion of the

vertices j1, . . . , jr splits T into two subtrees. Let Tb be the subtree con-

taining b, and let Tb′ the subtree containing b′. Without loss of generality,

let us assume that the root of T , s, lies in the subtree Tb′ . The vertices

j1 and j2 cannot be adjacent to vertices in Tb′ , else we can re-engineer

T to have k + 1 leaves, as in the proof of Claim 3.5. By Claim 3.4 and

since G is irreducible (in particular, j1 and j2 do not both have degree

2 in G), at least one among j1 or j2 is adjacent by an edge e to a vertex

x of Tb. Let us add the edge e to T and remove the edge xu that is the

first edge on the path in T from x to b. In this manner, we obtain a tree

T ′ with the same number of leaves as T as every vertex that is a leaf

in T , including possibly x, is also a leaf in T ′. However, we have thus

improved priority (2), reaching a contradiction. Indeed, the distance be-

tween s and every leaf outside the subtree of x has not changed, while

the distance between s and every leaf in this subtree has decreased by

at least 1. This concludes the proof of the claim, from which we derive

the correctness of the Boundary Lemma. y

The proofs of the Boundary Lemmata almost directly yield a kernel-

ization algorithm for Max Leaf Subtree.

3.2 Priorities for Feedback Vertex Set 47

Theorem 3.8. The Max Leaf Subtree problem on connected graphs

admits a kernel with at most 5k vertices.

Proof. While in the statement of the Boundary Lemma we require that

(G, k+1) is a no-instance, the only property of a no-instance that we ac-

tually need is that none of the negations of the conditions of Claims 3.4–

3.7 holds. In the kernelization algorithm, we first apply our reduction

rules to handle some degree-1 vertices and two adjacent degree-2 ver-

tices (Rules ML.1, ML.2 and ML.3), obtaining a reduced graph. Each of

these rules can be clearly implemented in polynomial time. Then, in this

graph we build (in polynomial time) a spanning tree T with ` leaves. If

` ≥ k, we have thus solved the problem. Otherwise, we try to modify T

by making use of the analysis of any of Claims 3.4–3.7 whose negation

is satisfied. Here, if no negation is satisfied, we correctly conclude that

(G, k) is a no-instance. Again, each of the checks for the satisfaction of

the appropriate condition and the modification described in the proof

is easily implementable in polynomial time. If we succeed in construct-

ing a tree T ′ with more than ` leaves, then we restart the process with

T := T ′. Thus, if we do not already find a solution or conclude that a

solution does not exist, we end up in the situation where the conditions

of Claims 3.4–3.7 hold. However, in this case (if (G, k) is a yes-instance),

the number of vertices in the graph is at most 5k.

3.2 Priorities for Feedback Vertex Set

Our second example of the method of inductive priorities concerns the

Feedback Vertex Set problem. Let us remind that a set S ⊆ V (G)

is a feedback vertex set of G if S contains at least one vertex from each

cycle in G. That is, G − S is a forest. In the Feedback Vertex Set

problem, we are given a graph G and a non-negative integer k, and the

task is to decide whether G has a feedback vertex set of size at most k.

With more deep arguments, it is possible to show that Feedback

Vertex Set admits a kernel with O(k2) vertices (see Section 5.5). In

this section, we show how inductive priorities lead us to the design of

reduction rules reducing the problem to a kernel with O(k3) vertices.

Here, we assume that graphs can have multiple edges and loops, and

that there exist at most two parallel edges between each pair of vertices.

If two vertices are connected by two parallel edges, we say that they are

connected by a double edge.

48 Inductive priorities

We begin by computing some feedback vertex set F , say one that is

obtained by a constant factor approximation algorithm. The strategy

we present now differs from the one employed to handle Max Leaf

Subtree in the following sense. While in the previous section we tried

to modify the current witness to obtain one that contains more leaves,

here we do not try to modify F to obtain a smaller feedback vertex set.

Instead, we will try to create double edges. Let us briefly explain the

intuition indicating why the addition of double edges simplifies the in-

stance at hand. Every double edge “contributes” to any feedback vertex

set by ensuring that at least one of its points should be selected. Thus,

every new double edge provides additional information on the structure

of any feedback vertex set of the graph. The interesting case occurs at

the moment we cannot add new double edges. In this case, we analyze

the structure of the graph G and the forest G − F , and this results in

new ideas for reduction rules.

Let us first give two simple reduction rules. The first rule is based on

the observation that no vertex of degree at most 1 can be a part of any

cycle. Thus, the following rule is safe.

Reduction FVS.1 (Degree-1 Rule). If G has a vertex v of degree

at most 1, remove it from the graph. The new instance is (G− v, k).

The second rule is based on the observation that if a vertex of degree

2 belongs to a minimum feedback vertex set, then another minimum

feedback vertex set can be obtained by swapping this vertex with one of

its neighbours.

Reduction FVS.2 (Degree-2 Rule). If G has a vertex x of degree

2 adjacent to vertices y and z, such that y, z 6= x, then construct

a graph G′ from G as follows. Remove x, and if y and z are not

connected by a double edge, then add a new edge yz (even if y and

z were adjacent earlier). The new instance is (G′, k).

If both of the reduction rules above are not applicable to the graph

G, we still cannot bound the size of G as we desire. To see this, take a

complete bipartite graph H with bipartition (A,B), where A is of size

k and B is arbitrarily large. Such a graph has feedback vertex set of

3.2 Priorities for Feedback Vertex Set 49

size k and all its vertices are of degree more than 2. Thus, Rules FVS.1

and FVS.2 are not applicable to such graphs; in particular, we cannot

bound the sizes of such graphs by a function of k.

In the following Boundary Lemma we purposely use the term “re-

duced” vaguely, that is, without yet defining what it means. A formally

correct way of stating this lemma would be to provide all reduction rules

first, and then to define a reduced instance as one to which these rules

do not apply. However, we find the current order much more instructive

when explaining how new reduction rules are designed.

Lemma 3.9 (FVS Boundary Lemma). If (G, k) is a reduced yes-

instance of Feedback Vertex Set, then |V (G)| ≤ 10k3 + 9k2 − 3k.

Proof. Suppose we are given a feedback vertex set F whose size is “close”

to k, say at most 2k. For our purposes, any size that is a constant times k

would be fine. Since later we would like to turn our combinatorial argu-

ments into a kernelization algorithm, we select 2k to be able to employ a

known 2-approximation polynomial-time algorithm for Feedback Ver-

tex Set. The graph T = G− F , obtained from G by removing F , is a

forest. We partition the vertex set of T according to the degrees of the

vertices in T :

• T1 is the set of leaves in T , i.e. the vertices of degree at most 1,

• T2 is the set of vertices of degree 2 in T , and

• T3 is the set of vertices of degree at least 3 in T .

We start by estimating the number of vertices in T1. So far, there is no

reason why the size of T1 should be bounded: in the complete bipartite

graph H with bipartition (A,B) such that |A| = k and |B| = n, a

feedback vertex set F = A leaves us with T1 = B, whose size cannot be

bounded by any function of k. On the other hand, if T1 is large enough,

then due to Rule FVS.1, some pairs of vertices in F have many common

neighbors in T1. Moreover, due to Rule FVS.2, if a pair f, g ∈ F has

many common neighbors in T1, then there are a lot of cycles containing

both f and g. Thus, every optimal feedback vertex set should contain

at least one of these vertices. Let us formalize this intuition.

Reduction FVS.3. If there are two vertices f, g ∈ F that are not

connected by a double edge and which have at least k + 2 common

neighbors in T1, i.e. |T1∩N(f)∩N(g)| ≥ k+ 2, then construct a new

graph G′ from G by connecting f and g by a double edge. The new

instance is (G′, k).

50 Inductive priorities

Claim 3.10. Reduction Rule FVS.3 is safe.

Proof. Every feedback vertex set in G′ is also a feedback vertex set in G.

Now, let us show that every feedback vertex set in G is also a feedback

vertex set in G′. To this end, let S be a feedback vertex set of size k in

G. At least one of f and g should belong to every feedback vertex set

of size at most k because otherwise we need at least k + 1 vertices to

hit all the cycles passing through f and g. Thus, at least one of f and g

belongs to S, and therefore S is a feedback vertex set in G′ as well. y

The reduction rule adding a double edge exposes the structure of

a feedback vertex set: the presence of a double edge indicates that at

least one of its endpoints should be in every solution. However, this rule

does not decrease the number of vertices in the graph. Coming back to

our running example of the complete bipartite graph H, after applying

Reduction Rule FVS.3 we can end up in the situation where every pair

of vertices in A is connected by a double edge. Accordingly, we define the

notion of a double clique: we say that a set of vertices C ⊂ F is a double

clique if every pair of vertices in C is connected by a double edge. Let

us note that a single vertex is also a double clique. In this context, we

observe that if the neighborhood of a vertex v ∈ T1 is a double clique C,

then either all or all but one of the vertices of C should belong to every

feedback vertex set. Can we use this observation to get rid of vertices

from T1 whose neighborhood is a double clique?

We next employ different reductions depending on whether or not a

vertex v from T1 is isolated in T . If the vertex v is isolated in T and has

a double clique as its neighborhood, we would like to delete it. However,

we should be a bit careful here because if v is connected to some vertices

in C by double edges, its deletion can change the size of the solution.

We fix this case by adding loops to vertices adjacent to v.

Reduction FVS.4. Let v ∈ T1 be an isolated vertex in T . If the set

C = N(v) ∩ F is a double clique, then construct the following graph

G′ from G: Add a loop to every vertex x ∈ C connected to v by a

double edge and delete it v. The new instance is (G′, k).

Claim 3.11. Reduction Rule FVS.4 is safe.

Proof. Let S be a feedback vertex set in G of size k. Since C is a double

clique, at most one vertex of C does not belong to S. Hence we can

3.2 Priorities for Feedback Vertex Set 51

assume that v 6∈ S, otherwise the set (S − v) ∪ C is also a feedback

vertex set of size k in G and we could have taken it in the first place.

Then, if the graph G′ − S contain a cycle, this cycle is a loop at some

vertex x ∈ C \ S. This loop does not exist in the graph G − S as it

is acyclic, hence it appears in G′ because of the double edge vx in G.

However, since S does not contain v and x, the double edge is a cycle in

G− S, which is a contradiction.

For the opposite direction, let S be a feedback vertex set in G′. If

G − S contains a cycle, then this cycle is a double edge vx for some

x ∈ C. However, then G′ − S contains a loop at x, and thus it is not

acyclic, which is a contradiction. y

For the second case, where v is not isolated, we apply a slightly dif-

ferent reduction.

Reduction FVS.5. Let v ∈ T1 be a none-isolated vertex of T . Let u

be (the unique) neighbor of v in T . If the set C = N(v)∩F is a double

clique, then contract the edge uv. We denote the new vertex resulting

from this edge-contraction by v (see Fig. 3.4). The new instance is

(G/uv, k).

Claim 3.12. Reduction Rule FVS.5 is safe.

Proof. Denote G′ = G/uv. Note that every feedback vertex set of G is

also a feedback vertex set of G′, and hence one direction of the proof of

trivial.

For the opposite direction, we claim that every feedback vertex set S

of G′ is also a feedback vertex set of G. Suppose, by way of contradiction,

that this is not the case, and therefore G − S contains a cycle Q. This

cycle should pass through v and at least one vertex x ∈ C. Because C is

a double clique and G′ − S acyclic, x is the only vertex of C contained

in Q. Since x 6∈ S, we have that xv is not a double edge in G, and thus

Q contains at least three vertices. Hence, Q should contain edge uv, but

then the cycle obtained from Q by contracting uv is a cycle in G′ − S,

contradicting the choice of S as a feedback vertex set of G′.
y

At this point, we are already able to bound |T1|. Since Reduction Rule

FVS.2 cannot be applied to G, we have that every v ∈ T1 has at least

two neighbors in F . Then, due to Reduction Rules FVS.4 and FVS.5,

for every v ∈ T1, the neighborhood N(v) in F contains a pair of ver-

52 Inductive priorities

FC

Tu

v

FC

T

v

Figure 3.4 When the neighborhood of a leaf v in T is a double clique C,

we can contract the edge uv.

tices f, g ∈ F which are not connected by a double edge. By Reduction

Rule FVS.3, the common neighborhood in T1 of each such pair f, g ∈ F
is of size at most k + 1, and the total number of pairs does not exceed(|F |

2

)
. We arrive at the following bound

|T1| ≤
(|F |

2

)
(k + 1) ≤

(
2k

2

)
(k + 1) = k(k + 1)(2k − 1). (3.2)

By Lemma 3.3, we have that

|T3| ≤ |T1|. (3.3)

To bound the size of T2, we proceed as follows. Let E be the set of sub-

divided edges, i.e. the set of paths in T with endpoints in T1 and T3 and

all inner edges from T2. By Lemma 3.3, the number of subdivided edges

from E is at most |T1|. However, we are not yet done as an irreducible

graph can still have long subdivided edges. How can we deal with such

paths? Well, just as in the case of T1, long paths create pairs of ver-

tices in F having many short paths between them. In this situation, the

promising strategy is to add double edges as in the case of T1, and then

use a reduction similar to Reduction Rule FVS.5. However, this will not

be sufficient. The difference between the current case and the case of T1

is that in the latter one, due to degree-1 and degree-2 reduction rules,

every vertex from T1 should have at least two neighbors in F . This is

not the true for T2, so we should handle separately the “flower” case,

i.e. the case where a vertex from F is adjacent to many vertices from T2.

In this context, we notice that if a vertex v from F is adjacent to many

vertices in T2, there should be a lot of cycles intersecting only at v, and

therefore v should be in every solution of size k. Thus, our strategy will

3.2 Priorities for Feedback Vertex Set 53

be the following: We first fix the “flower” case, and then proceed in a

way similar to the one taken to bound the size of T1.

To follows our strategy, we first compute a matching M in T that

maximizes the number of matched vertices from T2. We say that two

vertices u, v ∈ V (T2) are matched if uv ∈ M . It is easy to check that

for every subdivided edge path E, there are at most two non-matched

vertices of degree 2. Hence, the number of vertices in V (E) \V (M), and

thus the total number of non-matched vertices from T2, is at most 2|T1|.
Now, notice that a vertex in T2 is either a matched vertex or a non-

matched vertex. To bound the number of matched vertices, we separately

consider pairs of matched vertices with a common neighbor in F , and

pairs with disjoint neighborhoods in F . The following reduction rule

handles the pairs of vertices of the first type.

Reduction FVS.6. If there is a vertex f ∈ F adjacent to more

than k pairs of vertices matched by M , then delete v and reduce the

parameter k by 1. The new instance is (G− v, k − 1).

Claim 3.13. Reduction Rule FVS.6 is safe.

Proof. If f is adjacent to k+1 pairs of matched vertices, then G contains

k+ 1 triangles intersecting only at f . Thus, every feedback vertex set of

size k should contain f . y

Let f, g ∈ F . We say that the pair {f, g} is adjacent to a matched

pair {u, v} if either u ∈ N(f) ∩ N(g) or both u ∈ N(f) and v ∈ N(g).

To reduce the number of pairs of matched vertices with disjoint neigh-

borhoods, we use two new reductions. The first one among them can

be seen as an extension of Reduction Rule FVS.3 for pairs of matched

vertices.

Reduction FVS.7. If vertices f, g ∈ F are adjacent to more than

k + 2 pairs of matched vertices, then construct a new graph G′ by

connecting f and g by a double edge. The new instance is (G′, k).

Claim 3.14. Reduction Rule FVS.7 is safe.

Proof. After observing that at least one of the vertices f and g should

be in every feedback vertex set with at most k vertices, the proof of this

claim is similar to the proof of Claim 3.10. y

54 Inductive priorities

The following reduction is an adaptation of Reduction Rule FVS.3 to

pairs of matched vertices.

Reduction FVS.8. Let u, v be matched vertices such that N(u)∩F
and N(v) ∩ F are disjoint. If (N(u) ∪ N(v)) ∩ F is a double clique,

then contract edge uv. The new instance is (G/uv, k).

Claim 3.15. Reduction Rule FVS.8 is safe.

Proof. The proof of this claim is almost identical to the proof of Claim 3.15,

and we leave it as an exercise. y

We are now ready to upper bound the size of T2. As we have already

mentioned, the number of non-matched vertices is at most 2|T1|. Thanks

to Reduction Rule FVS.6, we have that the number of matched pairs

whose endpoints have a common neighbor in F is at most k|F | ≤ 2k2,

and thus the number of vertices in these pairs is at most 4k2. Due to

Reduction Rules FVS.7 and FVS.8, we can bound the number of pairs

which endpoints have disjoint neighborhoods in F as follows. For every

pair uv ∈M of matched vertices such that N(u) ∩ F and N(v) ∩ F are

disjoint, we have that (N(u) ∪N(v)) ∩ F contains a pair of vertices not

connected by a double edge. Hence, the number of such matched pairs

is at most
(|F |

2

)
(k + 1) ≤ k(k + 1)(2k − 1).

Thus,

|T2| ≤ 2|T1|+ 4k2 + k(k + 1)(2k − 1).

The total number of vertices in T is

|T1|+ |T2|+ |T3|.

By (3.2) and (3.3), we have that

|V (T)| ≤ 4|T1|+ 4k2 + k(k + 1)(2k − 1) ≤ 4k2 + 5k(k + 1)(2k − 1).

We conclude that the total number of vertices in G is at most

|V (T)|+ |F | ≤ 2k + 4k2 + 5k(k + 1)(2k − 1) = 10k3 + 9k2 − 3k.

As in the case of Max Leaf Subtree, the proof of the Boundary

Lemma can be easily transformed into a kernelization algorithm, pro-

viding a kernel with O(k3) vertices for Feedback Vertex Set.

3.2 Priorities for Feedback Vertex Set 55

For our kernelization algorithm we need a constant factor approxima-

tion algorithm for Feedback Vertex Set. The proof of the following

theorem can be found in Bafna et al. (1999).

Theorem 3.16. There is a polynomial time algorithm that for a given

graph G outputs a feedback vertex set which size is at most twice the

minimum size of a feedback vertex set in G.

Now everything is settled to prove the main result of this section.

Theorem 3.17. Feedback Vertex Set admits a kernel with O(k3)

vertices.

Proof. We start with an approximation algorithm described in Theo-

rem 3.16. For a given instance (G, k), this algorithm returns a feedback

vertex set whose size is at most twice the size of an optimal one. Thus,

if the output is a set of size more than 2k, we conclude that (G, k) is a

no-instance. Otherwise, we have a feedback vertex set F of size at most

k.

Now, we exhaustively apply Reduction Rules FVS.1–FVS.8. Each of

these reduction rules is clearly implementable in polynomial time. If we

obtain a reduced instance with at most 10k3 + 9k2 − 3k vertices, we

are done. Otherwise, by Lemma 3.9, we conclude that (G, k) is a no-

instance.

Exercises

Problem 3.1 (l). Prove Lemma 3.3.

Problem 3.2 (A). Prove the following claim. For every r ≥ 1, there is a constant
c such that every connected graph G with ck vertices and no r-subdivided edges has
a spanning tree with at least k leaves.

Problem 3.3 (A). In a graph G, a set of vertices X is called a non-blocker set if
every vertex in X has a neighbor outside X. In other words, the complement V (G)\X
of a non-blocker X is a dominating set in G. In the Non-Blocker problem, we are
given a graph G and an integer k, and the task is to decide whether G contains a
non-blocker set of size at least k. By McCuaig and Shepherd (1989), every graph G
with at least eight vertices and without vertices of degree 1 has a dominating set of
size at most 2

5
|V (G)|. Use this to construct a Boundary Lemma and a polynomial

kernel for Non-Blocker.

Problem 3.4 (A). In a digraph G, a set of vertices X is called a directed non-blocker
set if every vertex in X has an outgoing neighbor outside X. In the directed version
of the Non-Blocker problem, we are given a digraph G and an integer k, and the
task is to decide whether G contains a directed non-blocker set of size at least k.
Prove that this version has a kernel with k2 + k − 1 vertices.

56 Inductive priorities

Problem 3.5. In K1,d-Packing, we are given a graph G and an integer k, and
the task is to decide whether G contains at least k vertex-disjoint copies of the star
K1,d with d leaves. Use the method of inductive priorities to obtain a kernel with

O(kd3 + k2d2) vertices for K1,d-Packing.

Problem 3.6 (l). Prove Claim 3.15.

Bibliographic notes

The Max Leaf Subtree was generally studied as a mean to analyze

Max Leaf Spanning Tree, where given a graph G and an integer k,

we ask whether G contains a spanning tree with at least k leaves. It is

easy to see that (G, k) is a yes-instance of Max Leaf Subtree if and

only if it is a yes-instance of Max Leaf Spanning Tree. The Max

Leaf Spanning Tree problem has gained more interest since it is the

parameteric dual of the Connected Dominating Set problem: given

a spanning tree T of G with at least k leaves, the set of internal vertices

of T is a connected dominating set of size at most n− k in G, and given

a connected dominating set D of size at most n − k in G, by taking a

spanning tree of G[D] and attaching to it the vertices in G−D as leaves,

we obtain a spanning tree of G with at least k leaves. We chose to focus

on Max Leaf Subtree rather than Max Leaf Spanning Tree to

exemplify the use of inductive properties; in particular, in Max Leaf

Subtree it is very natural to choose a counterexample of maximum size

as the first priority, and hence it serves as a good intuitive example.

The first kernelization algorithm for Max Leaf Subtree appeared

in (Bonsma et al., 2003). Our presentation of a kernel for Max Leaf

Subtree follows the work of Fellows and Rosamond (2007) and Fellows

et al. (2009) on inductive priorities. Currently, the smallest known kernel

for Max Leaf Subtree on connected graphs with at most 3.75k ver-

tices is claimed in (Estivill-Castro et al., 2005). In the general case, where

the input graph is not required to be connected, Max Leaf Subtree

does not admit a polynomial kernel. However, it admits a polynomial

Turing kernelization, see Chapter 22. Jansen (2012) extends the kernel-

ization algorithm to weighted graphs. The kernelization issues of the

directed version of the problem, namely Directed Max Leaf, are dis-

cussed in (Binkele-Raible et al., 2012; Daligault and Thomassé, 2009),

and (Daligault et al., 2010).

We note that Exercise 3.2 is taken from Appendix A in (Jansen,

2012). The thesis of Prieto (2005) is devoted to the systematic study

3.2 Priorities for Feedback Vertex Set 57

of the method of inductive priorities. In particular, Exercise 3.5 is taken

from (Prieto and Sloper, 2006) (see also (Xiao, 2017b)). Exercises 3.3

and 3.4 are taken from (Dehne et al., 2006) and (Gutin et al., 2011a),

respectively.

Constant-factor approximation algorithms for feedback vertex set are

due to Bafna et al. (1999) and Bar-Yehuda et al. (1998). Kernelization

algorithm for Feedback Vertex Set by making use of inductive pri-

orities resulting in kernel of size O(k11) was given by Burrage et al.

(2006). It was improved to O(k3) by Bodlaender and van Dijk (2010).

The quadratic kernel of Thomassé (2010) uses more powerful combinato-

rial techniques and is discussed in detail in Section 5.5. Our presentation

here is an adaptation of the kernel from Fomin et al. (2012b) for a more

general F-deletion problem.

4

Crown Decomposition

In this chapter we study a graph structure that resembles a crown. We show

how to design reduction rules that are based on the existence (or absence)

of such a structure. In this context, we examine the Vertex Cover, Dual

Coloring, Maximum Satisfiability, and Longest Cycle problems.

A general technique to obtain kernels is based on the analysis of a

graph structure that resembles a crown, known as a Crown decompo-

sition. The foundations of this technique are the classical theorems of

Kőnig and Hall. The first theorem, known as Kőnig’s Minimax Theorem,

is the following statement about bipartite graphs.

Theorem 4.1 (Kőnig’s theorem, Kőnig (1916)). Let G be a bipartite

graph. Then, the minimum size of a vertex cover in G is equal to the

maximum size of a matching in G.

To state the second theorem, known as Hall’s Theorem, let us first

remind that for a vertex set X ⊆ V (G), we let N(X) denote the set of

vertices in V (G) \X adjacent to vertices from X. When G is a bipartite

graph with bipartition (A,B) and M is a matching in G, we say that M

is a matching of A into B if all the vertices of A are covered (saturated,

matched) by M . In other words, for every vertex in A, there exists at

least one edge in M that contains that vertex as an endpoint.

Theorem 4.2 (Hall’s theorem, Hall (1935)). Let G be a bipartite graph

with bipartition (A,B). Then, G has a matching of A into B if and only

if |N(X)| ≥ |X| for all X ⊆ A.

We will also be using an algorithmic version of Kőnig’s Theorem,

58

4.1 Crown Decomposition 59

R

H

C

Figure 4.1 A crown decomposition: the set C is an independent set, H

separates C and R, and there exists a matching of H into C.

which is due to Hopcroft and Karp (1973). For the proof of the (non-

standard) second claim of the theorem, see (Cygan et al., 2015, Exer-

cise 2.21).

Theorem 4.3 (Hopcroft-Karp algorithm, Hopcroft and Karp (1973)).

Let G be an undirected bipartite graph with bipartition A and B, on n

vertices and m edges. Then we can find a maximum matching as well as

a minimum vertex cover of G in time O(m
√
n). Furthermore, in time

O(m
√
n) either we can find a matching saturating A or an inclusion-

wise minimal set X ⊆ A such that |N(X)| < |X|.

4.1 Crown Decomposition

Definition 4.4. A crown decomposition of a graph G is a partition of

V (G) into three sets, C, H and R, where C and H are nonempty and

the following properties are satisfied.

(i) The set C, C 6= ∅, is an independent set.

(ii) There does not exist an edge with one endpoint in C and the other

endpoint in R, i.e. H separates C and R.

(iii) There is a matching of H into C. In other words, let E′ be the set of

edges with one endpoint in C and the other endpoint in H. Then, E′

contains a matching of size |H|.
A crown decomposition can be seen as a Crown (C) put on a Head

(H) of a Royal body (R). Fig. 4.1 illustrates an example of a crown

decomposition.

The following lemma lies at the heart of kernelization algorithms that

make use of crown decompositions.

60 Crown Decomposition

Lemma 4.5 (Crown Lemma). Let G be a graph without isolated ver-

tices and with at least 3k + 1 vertices. Then, there is a polynomial time

algorithm that either

• finds a matching of size k + 1 in G, or

• finds a crown decomposition of G.

Proof. We first find a maximal matching M in G. This can be done

by a greedy insertion of edges. If the size of M is k + 1, we are done.

Hence, let us next assume that |M | ≤ k, and let VM be the set of the

endpoints of the edges in M . Note that |VM | ≤ 2k. Because M is a

maximal matching, the set of the remaining vertices, I = V (G) \ VM , is

an independent set.

Let us examine the bipartite graph GI,VM formed by the edges of G

with one endpoint in VM and the other endpoint in I. If the size of the

maximum matching in GI,VM is at least k+1, then we are done. Thus, we

next assume that GI,VM has no matching of size k+1. By Kőnig’s Theo-

rem, the minimum size of a vertex cover in the bipartite graph GI,VM is

equal to the maximum size of matching. Moreover, by Theorem 4.3, we

can compute a minimum-sized vertex cover, X, of GI,VM in polynomial

time.

If no vertex of X belongs to VM , then every vertex of I should belong

to X (because G has no isolated vertices). But then |I| ≤ k, implying

that G has at most

|I|+ |VM | ≤ k + 2k = 3k

vertices, which is a contradiction.

Hence, X ∩ VM 6= ∅. We obtain a crown decomposition (C,H,R) as

follows. We define the head as H = X∩VM and the crown as C = I \X.

Obviously, C is an independent set. Moreover, because X is a vertex

cover in GI,VM , every vertex of C can be adjacent only to vertices of H.

By Kőnig’s Theorem, GI,VM contains a matching of size |X|. Every edge

of this matching has exactly one endpoint in X, and thus the edges of

this matching with endpoints in H form a matching of H into C.

4.2 Vertex Cover and Dual Coloring

In this section we show how the Crown Lemma can be used to obtain

kernels for the Vertex Cover and Dual Coloring problems. Let

us start with Vertex Cover. We remark that later, in Chapter 6, we

4.2 Vertex Cover and Dual Coloring 61

also show how to construct a kernel for Vertex Cover by making use

of linear programming (LP). Here, we focus only on crown decomposi-

tions. Given a crown decomposition (C,H,R) of G, we first observe that

one can reduce the instance (G, k) of Vertex Cover by applying the

following reduction rule.

Reduction VC.6 (Crown Reduction for Vertex Cover). Let

(C,H,R) be a crown decomposition of G. Construct a new instance

of the problem, (G′, k′), by removing H ∪ C from G and reducing k

by |H|. In other words, G′ = G[R] and k′ = k − |H|.

We first prove that the Crown Reduction Rule is safe.

Lemma 4.6. Let (G′, k′) be the result of an application of the Crown

Reduction Rule. Then, (G, k) is a yes-instance of Vertex Cover if and

only if (G′, k′) is a yes-instance of Vertex Cover.

Proof. We need to show that G has a vertex cover of size k if and only if

G′ = G[R] has a vertex cover of size k′ = k−|H|. For the first direction,

let S be a vertex cover of G of size k. By the properties of a crown

decomposition, there is a matching M of H into C. This matching is of

size |H| and it saturates every vertex of H. Thus, as each vertex cover

must pick at least one vertex from each of the edges in M , we have that

|S ∩ (H ∪ C)| ≥ |H|. Hence, the number of vertices in S covering the

edges not incident with any vertex in H ∪ C is at most k − |H|.
For the other direction, we simply observe that if S′ is a vertex cover

of size k − |H| for G′, then S′ ∪H is a vertex cover of size k for G.

Next, we show how the Crown Reduction Rule can be used to obtain

a kernel with 3k vertices.

Theorem 4.7. Vertex Cover admits a kernel with at most 3k ver-

tices.

Proof. Given an instance (G, k) of Vertex Cover, we perform the fol-

lowing operations. First, apply Reduction Rule VC.1: Delete all isolated

vertices of G.

If G contains at most 3k vertices, then (G, k) itself is the desired

kernel. Otherwise, we use the Crown Reduction Lemma (Lemma 4.5).

If G has a matching of size k + 1, then to cover these edges we need at

least k+1 vertices, and therefore we answer no. Otherwise, we construct

in polynomial time a crown decomposition (C,H,R). Then, we apply

62 Crown Decomposition

the Crown Reduction Rule. The application of this rule results in an

equivalent instance (G′, k′), where G′ = G[R] and k′ = k − |H|. We

repeat the above procedure with each reduced instance until we either

obtain a no answer or reach a kernel with 3k vertices.

In our next example, we would like to properly color the vertex set of

a graph. Specifically, a k-coloring of an undirected graph G is a function

c : V (G)→ {1, 2, . . . , k} that assigns a color to each vertex of the graph

such that adjacent vertices have different colors. The smallest k for which

G has a k-coloring is called the chromatic number of G, and it is de-

noted by χ(G). It is well known that deciding if χ(G) is at most 3 is an

NP-complete problem. Thus, to analyze the chromatic number from the

perspective of Parameterized Complexity, we consider the parameteriza-

tion called Dual Coloring. Formally, given an n-vertex graph G and

a non-negative integer k, the Dual Coloring problem asks whether G

has a (n− k)-coloring.

We would like to analyze a crown decomposition of the complement

of the input graph. In this context, recall that the complement of an

undirected graph G, denoted by G, is the graph on the vertex set V (G)

and whose edge set is E(G) = {{u, v} | {u, v} /∈ E(G), u 6= v}. In what

follows, we would rely on the observation that coloring an n-vertex graph

with (n−k) colors is equivalent to covering the complement of the graph

by (n− k) cliques.

Given a crown decomposition (C,H,R) of G, we apply a reduction rule

that is exactly the Crown Rule presented for Vertex Cover, where the

only difference is that this time we use a crown decomposition ofG rather

than G. Formally, the rule is stated as follows.

Reduction DC.1 (Crown Reduction for Dual Coloring). Let

(C,H,R) be a crown decomposition of G. Construct a new instance

of the problem, (G′, k′), by deleting H ∪C from G and reducing k by

|H|. In other words, G′ = G[R] and k′ = k − |H|.

The following lemma shows that Rule DC.1 is safe.

Lemma 4.8. Let (G′, k′) be the result of an application of the Crown

Reduction Rule. Then, (G, k) is a yes-instance of Dual Coloring if

and only if (G′, k′) is a yes-instance of Dual Coloring.

Proof. We need to show that G is (|V (G)| − k)-colorable if and only if

G′ = G[R] is (|V (G′)| − k′)-colorable, where k′ = k − |H|.

4.3 Maximum Satisfiability 63

For the first direction, let c be a (|V (G)| − k)-coloring of G. Since C

is a clique, all the vertices in C are assigned different colors by c. None

of these colors can be reused to color any of the vertices of R because

every vertex in R is adjacent to all the vertices in C. Thus, the number

of color using which c colors G′ = G[R] is at most

(|V (G)| − k)− |C| = |V (G)| − (|C|+ |H|)− (k − |H|) = |V (G′)| − k′.

For the second direction, let c′ be a (|V (G′)| − k′)-coloring of G′. We

introduce |C| new colors to color the vertices in C. Because there is a

matching M of H into C in G, we can reuse the |C| colors using which

we colored C to color H as well: For every vertex u ∈ H, we select the

color of the vertex from C matched by M to u. Thus, the number of

colors that we used to color G is at most

(|V (G′)|−k′)+ |C| = |V (G)|−(|C|+ |H|)−(k−|H|)+ |C| = |V (G)|−k.

Theorem 4.9. Dual Coloring admits a kernel with at most 3k − 3

vertices.

Proof. Let (G, k) denote an instance of Dual Coloring, where G is a

graph on n vertices. First, suppose that the complement G of G contains

an isolated vertex v. Then, in G this vertex v is adjacent to all other

vertices, and thus (G, k) is a yes-instance if and only if (G− v, k − 1) is

a yes-instance. Hence, in this case, we can reduce the instance.

Let us now assume that G does not have isolated vertices. In this case,

we apply the Crown Lemma on G. If G has a matching M of size k, then

G is (n− k)-colorable. Indeed, the endpoints of every edge of M can be

colored with the same color. If G has no matching M of size k, then

either n ≤ 3(k − 1), or G can be reduced by making use of the Crown

Reduction Rule for Dual Coloring.

4.3 Maximum Satisfiability

Our next example concerns Maximum Satisfiability. Here, for a given

CNF formula ϕ with n variables and m clauses, and a non-negative

integer k, the objective is to decide whether ϕ has a truth assignment

satisfying at least k clauses.

By the following lemma, we can always assume that the instance of

Maximum Satisfiability contains at most 2k clauses.

64 Crown Decomposition

Lemma 4.10. If m ≥ 2k, then (ϕ, k) is a yes-instance of Maximum

Satisfiability.

Proof. We already used this argument in the proof of Lemma 2.1: Let ψ

be a truth assignment to the variables of ϕ and ¬ψ be the assignment

obtained by complementing the assignment of ψ. Then at least one of ψ

and ¬ψ satisfies at least m/2 clauses of ϕ. Hence if m ≥ 2k, then (ϕ, k)

is a yes-instance.

In what follows we give a kernel with at most k variables.

In the design of the kernel, we use the notion of the variable-clause

incidence graph of ϕ, which is a bipartite graph with bipartition (X,Y),

defined as follows. The sets X and Y correspond to the set of variables

of ϕ and the set of clauses of ϕ, respectively. For a vertex x ∈ X, we

refer to x as both the vertex in Gϕ and the corresponding variable in

ϕ. Similarly, for a vertex c ∈ Y , we refer to c as both the vertex in Gϕ
and the corresponding clause in ϕ. The graph Gϕ has an edge between

a variable x ∈ X and a clause c ∈ Y if and only if c contains either x or

the negation of x.

We proceed with the construction of the kernel.

Theorem 4.11. Maximum Satisfiability admits a kernel with at

most k variables and 2k clauses.

Proof. Let ϕ be a CNF formula with n variables and m clauses. By

Lemma 4.10, we may assume that m ≤ 2k. If n ≤ k, then there is

nothing to prove.

Suppose that ϕ has at least k variables. Let Gϕ be the variable-clause

incidence graph of ϕ with bipartition (X,Y). If there is a matching of

X into Y in Gϕ, then there is a truth assignment satisfying at least

|X| ≥ k clauses. Indeed, in this case we set each variable in X in such a

way that the clause matched to it becomes satisfied. We now show that

if Gϕ does not have a matching of X into Y , then in polynomial time

we can either reduce (F, k) to an equivalent smaller instance or find an

assignment to the variables satisfying at least k clauses.

By making use of Theorem 4.3, in polynomial time we can find

• either a matching of X into Y , or

• a non-empty inclusion-wise minimal set C ⊆ X such that |N(C)| <
|C|.

If we found a matching then we are done, as we have already argued

that in such a case we can satisfy at least |X| ≥ k clauses. Thus, suppose

4.4 Longest Cycle parameterized by vertex cover 65

that we found a non-empty inclusion-wise minimal set C ⊆ X such that

|N(C)| < |C|. Denote H = N(C) and R = V (Gϕ) \ (C ∪ H). Clearly,

G[C] is an independent set. Also because H = N(C), H separates C and

R. Furthermore, due to the minimality of C, for every vertex x ∈ C, we

have |N(C ′)| ≥ |C ′| for all C ′ ⊆ C \ {x}. Therefore, by Hall’s Theorem,

there exists a matching of C \{x} into H. Since |C| > |H|, we have that

a matching of C \{x} into H is in fact the matching of H into C. Hence,

(C,H,R) is a crown decomposition of Gϕ.

We claim that all clauses in H are satisfied in every truth assignment

to the variables satisfying the maximum number of clauses. Indeed, con-

sider any truth assignment ψ that does not satisfy all clauses in H. For

every variable y in C \ {x}, change the value of y such that the clause

in H matched to y is satisfied. Let ψ′ be the new assignment obtained

from ψ in this manner. Since N(C) ⊆ H and ψ′ satisfies all clauses in

H, more clauses are satisfied by ψ′ than by ψ. Hence, ψ could not have

been an assignment satisfying the maximum number of clauses.

The argument above shows that (ϕ, k) is a yes-instance of Maximum

Satisfiability if and only if (ϕ \ H, k − |H|) is a yes-instance of this

problem. This claim gives rise to the following reduction rule.

Reduction MSat.1 (Crown Reduction for Max Sat). Let (ϕ, k) and

H be as above. Then remove H from ϕ and decrease k by |H|. That

is, (ϕ \H, k − |H|) is the new instance.

By repeating the above arguments and applying Reduction Rule MSat.1,

we obtain the desired kernel.

4.4 Longest Cycle parameterized by vertex cover

In this section we employ crown decompositions to obtain the kernel for

the Longest Cycle problem parameterized by vertex cover. Here, we

are given a graph G, integers k and ` and a vertex cover S of G such

that |S| = k. The parameter is k, and the task is to decide whether G

contains a cycle on ` vertices.

We proceed directly to show how crown decompositions can be used

to obtain a kernel for Longest Cycle (vc) with O(k2) vertices.

Theorem 4.12. Longest Cycle (vc) admits a kernel with O(k2)

vertices.

66 Crown Decomposition

Proof. Let (G, k, `, S) be an instance of Longest Cycle (vc). Since S

is a vertex cover, we have that I = V (G) \ S is an independent set. We

construct an auxiliary bipartite graph GS , where each of the vertices in

one set of the bipartition represents an unordered pair of elements from

S, and the other set of the bipartition is simply I. Thus, GS has
(
k
2

)
+ |I|

vertices. The graph GS contains an edge between a pair {u, v} ∈
(
S
2

)
and

x ∈ I if x ∈ NG(u) ∩NG(v).

By Theorem 4.3, in polynomial time we can find in GS either a match-

ing saturating I or an inclusion-wise minimal set C ⊆ I such that

|N(C)| < |C|. If we found a matching, then we are done—in this case

|I| ≤
(
k
2

)
and G has |S|+ |I| = O(k2) vertices.

Thus, suppose that we found a non-empty inclusion-wise minimal set

C ⊆ I such that |NGS (C)| < |C|. We put H = NGS (C) and R =

V (GS) \ (C ∪H). We claim that (C,H,R) is the crown decomposition

of GS . Indeed, G[C] is an independent set and H separates C and R.

Furthermore, due to the choice of C, for every vertex x ∈ C, we have

that |N(C ′)| ≥ |C ′| for all C ′ ⊆ C \ {x}. Therefore there is a matching

of C \x into H. Since |C| > |H|, we have that every matching of C \{x}
into H is in fact a matching of H into C. Hence, (C,H,R) is a crown

decomposition of GS .

We define the following reduction rule.

Reduction LC.1. Find a matching M saturating H in GS . Let x be

(the unique) vertex of C that is not saturated by M . Delete x from

G. That is, (G− x, S, k, `) is the new instance.

In order to prove that Reduction Rule LC.1 is safe, let us consider the

new instance (G − x, S, k, `) of Longest Cycle (vc). We claim that

(G,S, k, `) is a yes-instance if and only if (G−x, S, k, `) is a yes-instance.

The reverse direction is trivial since G− x is a subgraph of G and thus

every cycle in G−x is also a cycle in G. For the forward direction, let L

be a cycle of length ` in G and let {a1, . . . , aq} be the set of vertices of

L that belong to C. Let xi and yi be the neighbors of ai in L. Clearly,

{xi, yi} ∈ H. Let bi ∈ C be the vertex matched to {xi, yi} by M , and

note that bi 6= x. Now, we obtain a new cycle L′ from L by replacing the

vertex ai by bi for every i ∈ {1, . . . , q}. In particular, if x = ai for some

i ∈ {1, . . . , q}, then it is replaced by bi 6= x. Therefore, the construction

of GS ensures that L′ is a cycle of length ` avoiding x. Thus, we have

shown that if G has a cycle of length `, then so does G− x.

4.4 Longest Cycle parameterized by vertex cover 67

We have shown that either the graph already contains at most O(k2)

vertices or we can obtain an equivalent instance by deleting a vertex from

the graph. Moreover, the desired vertex can be found in polynomial time.

By applying the arguments and the reduction rule, we obtain the desired

kernel. This completes the proof.

In Chapter 5, with the help of a tool called the Expansion Lemma, we

show how to extend ideas relevant to crown decompositions to additional

problems.

Exercises

Problem 4.1. In the Max-Internal Spanning Tree problem, we are given graph
G and an integer k. The task is to decide whether G has a spanning tree of G with
at least k internal vertices. Prove that Max-Internal Spanning Tree/VC admits
a kernel with O(`2) vertices, where ` is the vertex cover number of G.

Problem 4.2. Prove that Max-Internal Spanning Tree admits a kernel with
O(k2) vertices.

Problem 4.3. In the d-Set Packing problem, we are given a universe U , a family
A of sets over U , where each set in A is of size at most d, and an integer k. The task
is to decide whether there exists a family A′ ⊆ A of k pairwise-disjoint sets. Prove
that this problem admits a kernel with O(kd) elements, where d is a fixed constant.

Problem 4.4 (A). Prove that the d-Set Packing problem admits a kernel with

O(kd−1) elements, where d is a fixed constant.

Problem 4.5 (A). In the d-Hitting Set problem, we are given a universe U , a
family A of sets over U , where each set in A is of size at most d, and an integer k.
The task is to decide whether there exists a set X ⊆ U of size at most k that has a
nonempty intersection with every set of A. Prove that this problem admits a kernel
with O(kd−1) elements, where d is a fixed constant.

Bibliographic notes

Hall’s Theorem (Theorem 4.2) is due to Hall (1935), see also the book of

Lovász and Plummer (2009). Kőnig’s Minimax Theorem (Theorem 4.1)

is attributed to Kőnig (1916). The first chapter of the book (Lovász and

Plummer, 2009) contains a nice historical overview on the development

of the matching problem. The algorithm finding a minimum-size vertex

cover and maximum-size matching in bipartite graphs in time O(
√
nm)

is due to Hopcroft and Karp (1973) and Karzanov (1974). We refer

to Chapter 16 of Schrijver’s book (Schrijver, 2003) for an overview of

maximum-size matching algorithms on bipartite graphs.

68 Crown Decomposition

The bound obtained on the kernel for Vertex Cover in Theorem 4.7

can be further improved to 2k with much more sophisticated use of crown

decomposition (folklore). The Crown Rule was introduced by Chor et al.

(2004), see also (Fellows, 2003). Implementation issues of kernelization

algorithms for vertex cover that are relevant to the Crown Rule are dis-

cussed in (Abu-Khzam et al., 2004). Theorem 4.11 is due to Lokshtanov

(2009), and Theorem 4.12 is due to Bodlaender et al. (2013).

Exercises 4.1 and 4.2 are based on the paper of Prieto and Sloper

(2005), which used the technique of crown decomposition to obtain a

quadratic kernel for Max-Internal Spanning Tree. Exercises 4.4 and

4.5 are due to Abu-Khzam, who used this technique to obtain a kernel

for d-Set Packing with at most O(kd−1) elements (see Abu-Khzam,

2010a), and a kernel for d-Hitting Set with at most (2d− 1)kd−1 + k

elements (Abu-Khzam, 2010b). For other examples of problems where

crown decompositions and related variations of these structures were

employed to obtain kernels, we refer to the papers (Wang et al., 2010;

Prieto and Sloper, 2005, 2006; Fellows et al., 2004; Moser, 2009), and

(Chleb́ık and Chleb́ıková, 2008).

5

Expansion Lemma

In this chapter we generalize the notion of a crown decomposition. We thus

derive a powerful method that is employed to design polynomial kernels for

Component Order Connectivity and Feedback Vertex Set.

In the previous chapter, we showed how crown decompositions can

be used to obtain polynomial kernels for a variety of problems. The

foundation of the method was Hall’s Theorem, and the construction of

crown decompositions further relied on König’s Theorem. We proceed

by introducing a powerful variation of Hall’s Theorem, which is called

the Expansion Lemma. Here, König’s Theorem again comes into play in

the proof of the lemma. In fact, the Expansion Lemma can be viewed as

König’s Theorem in an auxiliary graph. This lemma essentially says that

if one side of a bipartition of a bipartite graph is much larger than the

other side, then we can find more than one matching, where the distinct

matchings are of course pairwise edge-disjoint, and exploit these match-

ings to obtain a polynomial kernel, even when the problem in question

exhibits a non-local behavior. In this context, our example would con-

sider Feedback Vertex Set. We also give a weighted version of the

Expansion Lemma, whose formulation is very close to the one of the

Santa Claus problem studied in combinatorial optimization. We em-

ploy this version to design a polynomial kernel for a generalization of

Vertex Cover, called Component Order Connectivity.

69

70 Expansion Lemma

A B

Figure 5.1 The set A has a 2-expansion into B.

5.1 Expansion Lemma

Towards the presentation of the Expansion Lemma, we first note that

a q-star, q ≥ 1, is a graph with q + 1 vertices such that one vertex is

of degree q and all other vertices are of degree 1. Let G be a bipartite

graph with vertex bipartition (A,B). A set of edges M ⊆ E(G) is called

a q-expansion, q ≥ 1, of A into B if

• every vertex of A is incident with exactly q edges of M , and

• M saturates exactly q|A| vertices in B.

Let us note that the expansion saturates all the vertices of A (see

Fig. 5.1). Moreover, for every u, v ∈ A, u 6= v, the set of vertices adjacent

to u via edges of M does not intersect the set of vertices adjacent to v

via edges of M . Thus, every vertex v of A could be thought of as the

center of a star with its q leaves in B, overall resulting in |A| stars that

are vertex-disjoint. Furthermore, the collection of these stars also forms

a family of q edge-disjoint matchings, with each matching saturating A.

Let us remind that by Hall’s Theorem (Theorem 4.2), a bipartite

graph with bipartition (A,B) has a matching of A into B if and only

if |N(X)| ≥ |X| for all X ⊆ A. The following lemma is an extension of

this result.

Lemma 5.1. Let G be a bipartite graph with bipartition (A,B). Then,

there is a q-expansion of A into B if and only if |N(X)| ≥ q|X| for all

X ⊆ A.

Proof. In one direction, note that if A has a q-expansion into B, then

trivially |N(X)| ≥ q|X| for all X ⊆ A.

To prove the opposite direction, we construct a new bipartite graph

G′ with bipartition (A′, B) from G as follows. For every vertex v ∈ A, we

5.1 Expansion Lemma 71

add (q − 1) copies of v, where the neighborhood of each of these copies

in B is the same neighborhood of v in B. We would like to prove that

there is a matching M of A′ into B in G′. If we prove this claim, then

by identifying the endpoints of M corresponding to copies of the same

vertex from A, we obtain a q-expansion in G. It suffices to check that

the assumptions of Hall’s Theorem are satisfied by G′. Suppose, by way

of contradiction, that there is a set X ⊆ A′ such that |NG′(X)| < |X|.
Without loss of generality, we can assume that if X contains some copy

of some vertex v, then it contains all the copies of v, as inserting all the

remaining copies increases |X| but does not change |NG′(X)|. Hence, the

set X in A′ naturally corresponds to a set XA of size |X|/q in A, namely,

the set of vertices whose copies are in X. However, we then have that

|NG(XA)| = |NG′(X)| < |X| = q|XA|, which is a contradiction. Thus,

A′ has a matching into B, which implies that A has a q-expansion into

B.

Lemma 5.2. (Expansion Lemma) Let q be a positive integer, and G

be a bipartite graph with vertex bipartition (A,B) such that

(i) |B| ≥ q|A|, and

(ii) there are no isolated vertices in B.

Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that

• X has a q-expansion into Y , and

• no vertex in Y has a neighbor outside X, i.e. N(Y) ⊆ X.

Furthermore, the sets X and Y can be found in time O(mn1.5).

Let us remark that the sets X, Y and V (G) \ (X ∪ Y) form a crown

decomposition of G with a property stronger than one of an arbitrary

crown decomposition—not only does every vertex of X can be matched

to a distinct vertex in Y , but there is a q-expansion of X into Y .

We proceed with the proof of the Expansion Lemma.

Proof. The proof is based on induction on |A|. In the basis, where |A| =
1, the lemma holds trivially. Next, suppose that that |A| ≥ 2.

We apply Lemma 5.1 to G. If A has a q-expansion into B, we are done.

Otherwise, there is a (nonempty) set Z ⊆ A such that |N(Z)| < q|Z|. We

construct the graph G′ by removing Z and N(Z) from G. We claim that

G′ satisfies the assumptions of the lemma. Indeed, because the number

of vertices we removed from B is smaller than q times the number of

vertices we removed from A, we have that G′ satisfies (i). Moreover,

72 Expansion Lemma

no vertex from B \ N(Z) has a neighbor in Z, and therefore G′ also

satisfies (ii). Note that Z 6= A, because otherwise N(A) = B (as there

are no isolated vertices in B) and then |B| ≥ |A|. By the inductive

hypothesis for G′, there are nonempty sets X ⊆ A\Z and Y ⊆ B\N(Z)

such that both X has a q-expansion into Y and NG′(Y) ⊆ X. Because

Y ⊆ B \N(Z), we have that no vertex in Y has a neighbor in Z. Hence,

NG′(Y) = NG(Y) ⊆ X and the pair (X,Y) satisfies all the required

properties.

Finally, let us analyze the running time of the algorithm that is the

naive algorithmic interpretation of the inductive proof of the lemma.

We claim that the running time of this algorithm can be bounded by

O(mn1.5). Note that when |A| ≥ 2, we have that one vertex is removed

from the side A of the bipartition, and therefore the number of iterations

of the algorithm is bounded by |A| = O(n/q). In each iteration, the

algorithm invokes the procedure given by Theorem 4.3 on a graph with

at most q|A| + |B| ≤ 2|B| = O(n) vertices and qm edges. Thus, the

running time of one iteration is bounded by O(qm
√
n). Overall, we have

that the total running time is bounded by O(mn1.5).

Sometimes the following slightly stronger version of the Expansion

Lemma is handy.

Lemma 5.3. Let q be a positive integer, and G be a bipartite graph with

vertex bipartition (A,B) such that

• |B| > `q, where ` is the size of the maximum matching in G, and

• there are no isolated vertices in B.

Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that

• X has a q-expansion in Y , and

• no vertex in Y has a neighbor outside X, i.e. N(Y) ⊆ X.

Furthermore, the sets X and Y can be found in time O(mn1.5).

Proof. Let C be a minimum vertex cover of G and M be a maximum

matching of G. By Kőnig’s Minimax Theorem (Theorem 4.1), we have

that |C| = |M | and that C contains exactly one vertex of every edge

of M . Let A′ = A ∩ C capture the vertices in A that belong to the

vertex cover C, and let B′ = N(A′) \ C capture the neighbors in B of

these vertices that lie outside the vertex cover C. We claim that the set

A′ is not empty. Suppose, by way of contradiction, that this claim is

5.2 Cluster Vertex Deletion: Bounding the number of cliques73

false. Then, we have that C ⊆ B. However, |C| = |M | ≤ |B|/q < |B|,
which means that B \C is not empty. Since B does not contain isolated

vertices, we have that B \C contains vertices incident to edges that are

not covered by C. We have thus reached a contradiction, and therefore

A′ 6= ∅.
Let G′ = G[A′ ∪ B′]. We now verify that G′ satisfies conditions of

Lemma 5.2. For (i), by definition B′ does not contain isolated vertices

in G′. For (ii), observe that B \B′ ⊆ C. Indeed, vertices of B \B′ that

are not in C cannot be incident to vertices in N(A′) (by the definition

of B′), which means that they are incident to edges not covered by C as

they are not isolated, and hence such vertices cannot exist. Therefore,

C = A′ ∪ (B \B′), which implies the following.

|B′| = |B| − |B \B′| ≥ q|C| − |B \B′|
= q|A′ ∪ (B \B′)| − |B \B′|
≥ (q − 1)|A′ ∪ (B \B′)|+ |A′|+ |B \B′| − |B \B′| ≥ q|A′|.

By Lemma 5.2, we can find nonempty sets X ⊆ A′ and Y ⊆ B′, such

that there is a q-expansion of X into Y and NG′(Y) ⊆ X. However,

note that in G, the vertices of the set Y ⊆ B′ cannot have neighbors

outside A′, because edges connecting them to these neighbors would not

be covered by C. Hence, pair (X,Y) is feasible also for G.

Finally, let us analyze the running time of the algorithm directly

suggested by the arguments above. By Theorem 4.3, a minimum ver-

tex cover and maximum matching in a bipartite graph can be found

in time O(m
√
n). Since application of Lemma 5.2 can be performed

in time O(mn1.5), we have that the total running time is bounded by

O(mn1.5).

5.2 Cluster Vertex Deletion: Bounding the
number of cliques

In the Cluster Vertex Deletion problem, we are given an undi-

rected graph G and an integer k, and the task is to decide if there exists

a set X of at most k vertices of G such that G −X is a cluster graph.

Here, a cluster graph is a graph where every connected component is

a clique. Observe that a graph is a cluster graph if and only if it does

not have an induced P3, that is, and induced path on three vertices. In

this section, we suppose that we have an approximate solution S, that

74 Expansion Lemma

is, G − S is a cluster graph. It is easy to obtain such a set S of size

at most 3k or conclude that we have a no-instance as follows. Initially,

S = ∅, and as long as G−S has a induced P3, we insert all of its vertices

into S. At the end, if |S| > 3k, we have a no-instance. We will show

how a simple application of the Expansion Lemma bounds the number

of cliques in G− S. This is the first step of the currently best kernel for

this problem (see the Bibliographic Notes in this chapter). Let us denote

the set of cliques in G− S by C.
First, we have the following simple rule, whose safeness is obvious.

Reduction CVD.1. If there exists C ∈ C such that no vertex in

C has a neighbor in S, then remove C from G. The new instance is

(G \ C, k).

Now, we define the bipartite graph B by setting one side of the bi-

partition to be S and the other side to be C, such that there exists an

edge between s ∈ S and C ∈ C if and only if s is adjacent to at least one

vertex in C. Here, we slightly abuse notation. Specifically, we mean that

each clique in C is represented by a unique vertex in V (B), and we refer

to both the clique and the corresponding vertex identically. Note that by

Reduction Rule CVD.1, no clique in C is an isolated vertex in B. We can

thus apply the following rule, where we rely on the Expansion Lemma.

It should be clear that the conditions required to apply the algorithm

provided by this lemma are satisfied.

Reduction CVD.2. If |C| ≥ 2|S|, then call the algorithm provided

by the Expansion Lemma (Lemma 5.3) to compute sets X ⊆ S and

Y ⊆ C such that X has a 2-expansion into Y in B and NB(Y) ⊆ X.

The new instance is (G \X, k − |X|).

We now argue that this rule is safe.

Lemma 5.4. Reduction Rule CVD.2 is safe.

Proof. In one direction, it is clear that if S? is a solution to (G \X, k−
|X|), then S? ∪X is a solution to (G, k). For the other direction, let S?

be a solution to (G, k). We denote S′ = (S? \V (Y))∪X. Notice that for

all s ∈ X, there exists an induced P3 in G of the form u − s − v where

u is any vertex in one clique associated to s by the 2-expansion that is

adjacent to s and v is any vertex in the other clique associated to s by

5.3 Weighted Expansion Lemma 75

the 2-expansion that is adjacent to s. The existence of such u and v is

implied by the definition of the edges of B. Thus, as S? is a solution to

(G, k), we have that |X \ S?| ≤ |S? ∩ V (Y)|, and hence |S′| ≤ |S?| ≤ k.

Note that G\S′ consists of (i) the collection of cliques Y that are isolated

in G\S′, and (i) a subgraph of G\S?. Thus, as G\S? does not contain

any induced P3, we derive that G \S′ also does not contain any induced

P3. We conclude that S′ is a solution to (G, k), and as X ⊆ S′, we have

that S′ \X is a solution to (G \X, k − |X|). Thus, (G \X, k − |X|) is a

yes-instance.

Due to Reduction Rule CVD.2, we have that |C| ≤ 6k.

5.3 Weighted Expansion Lemma

In this section we prove a weighted version of the Expansion Lemma. For

a weighted graph G and its weight function w : V (G) → {1, . . . ,W},
given a subset X ⊆ V (G), we let w(X) denote the sum of the weights

of the vertices in X, that is,
∑
x∈X w(x). Since we will be working with

weights, it will be more convenient to think of expansions as function.

In particular, a function f : B → A is called a weighted q-expansion,

q ≥ 1, of A into B if

• for every b ∈ B, f(b) ∈ N(b), and

• for every a ∈ A, w(f−1(a)) ≥ q −W + 1.

Towards the proof of the Weighted Expansion Lemma, we first prove

the following lemma.

Lemma 5.5. Let q be a positive integer, G be a bipartite graph with

vertex bipartition (A,B), and w : B → {1, . . . ,W} such that

(i) there are no isolated vertices in B, and

(ii) for every A′ ⊆ A, w(N(A′)) ≥ q|A′|.

Then, there is a weighted q-expansion f : B → A of A into B. Moreover,

such a function f can be found in time O(qm
√
nW 1.5 +mn).

Proof. We start by constructing a new (unweighted) bipartite graph G′

with bipartition (A,B′) from G. For every vertex v ∈ B, we add w(v)

copies of v to B′, where all of the copies of v have the same neighbor-

hood in A as v. Clearly, for every A′ ⊆ A, |NG′(A′)| ≥ q|A′|. Thus, by

76 Expansion Lemma

2
3 1

4 2

2

0

3

5 11
4

ui

vi

ui

vi

Figure 5.2 The left side of the figure shows the cycle C, and the right side

shows the result of alternately decreasing or increasing weights of edges by

1, starting with the edge uivi .

Lemma 5.1, there is a q-expansion of A into B′, and such an expan-

sion can found in time O(qm
√
nW 1.5) since |V (G′)| ≤ W · |V (G)| and

|E(G′)| ≤W ·|E(G)|. Hence, for every vertex u ∈ A, there exists a q-star

Su where u is the centre of star and for every u1, u2 ∈ A, u1 6= u2, we

have that Su1
and Su2

are pairwise vertex-disjoint. In what follows, we

construct a function f with the desired properties using the q-expansion

in G′.
For every vertex u ∈ A, let H(u) ⊆ B′ denote the set of vertices in B′

that belong to Su. Furthermore, let H∗(u) be the subset of vertices w

in B such that at least one copy of w belongs to H∗(u). For w ∈ H∗(u),

let du(w) denote the number of copies of w in H(u). Now, we construct

an auxiliary bipartite graph G∗ with vertex sets A and B. We add an

edge between u ∈ A and v ∈ B if and only if v ∈ H∗(u). We also define

a weight function w∗ : E(G∗) → {1, . . . ,W} as follows: for uv ∈ E(G∗)
with u ∈ A and v ∈ B, w∗(uv) = du(v). It is convenient to view w∗(uv)

as the weight w(v) of v being “fractionally assigned to u”. Under this

interpretation, our objective via f is to assign the weights of the vertices

of B to the vertices in A integrally, albeit at some loss. Observe that for

every u ∈ A, the sum of the weights of the edges incident to u in G∗ is

at least q. That is, for every u ∈ A,

∑

v∈NG∗ (u)

w∗(uv) ≥ q.

We now modify the graph G∗ and the weight function w∗ so that G∗

would become acyclic, while maintaining that for every u ∈ A, the sum

of the weights of the edges incident to u in G∗ is at least q. To this

end, suppose that G∗ is not yet acyclic. Then, there exists a cycle, say

C = u1v1 · · ·u`v`, where ui ∈ A and vi ∈ B for all i ∈ {1, . . . , `}. By

construction, the weight of every edge is a positive integer and thus the

5.3 Weighted Expansion Lemma 77

minimum weight among the edges in the cycle C, denoted by x, is at

least 1. Pick an edge that has weight x in C, which w.l.o.g. we denote by

uivi (it could also be that the edge is of the form viuj where j = (i+ 1)

mod (`+1)). We now traverse the cycle C in clockwise direction, starting

with the edge uivi, and alternately either decreasing the weight of the

currently visited edge by x or increasing the weight of this edge by x.

We start by decreasing the weight of uivi by x (see Fig. 5.2 for an

illustrative example). In particular, in the new assignment w∗(uivi) = 0.

We remark that if the edge would have been viuj , then again we would

have performed the same procedure though we would have then started

with the reduction of the weight of viuj by x. Observe that the weight

function w∗ only changes for the edges in the cycle C. Furthermore,

since G∗ is bipartite and thus |C| is even, we have that for every u ∈ A,

the sum of the weights of the edges incident to u in G∗ with respect to

the new assignment is also at least q. Now, we remove all the edges e in

G∗ for which w∗(e) = 0. We repeat the above procedure with the new

graph and weight function until G∗ becomes a forest. Observe that this

procedure is applied less than |E(G∗)| ≤ m times (where here we refer

to the original graph G∗), and that each application can be executed in

time O(|V (G∗)|) = O(n). Thus, this process can be performed in time

O(mn).

Let T be a tree in G∗. We root T at some vertex in A, say u ∈ A. Now,

we are ready to define the mapping f from B to A. We first define this

mapping for vertices of B∩V (T). For every vertex v ∈ B, we map v to its

parent. To obtain the entire map f , we perform this action separately

for every tree in G∗. By construction, we have that for every b ∈ B,

f(b) ∈ NG(b). Moreover, note that since G∗ is a forest, every neighbor

of a vertex a ∈ A is its child except possibly one (the parent in case a is

not the root). Let child(a) denote the children of a in T . Thus,

w(f−1(a)) =
∑

b∈child(a)

w(b) ≥
∑

b∈child(a)

w∗(ab). (5.1)

Since
∑

b∈NG∗ (a)

w∗(ab) ≥ q, this yields that if a is the root, then w(f−1(a)) ≥

q. Now, suppose that a is not the root, and let p denote the parent of a

in T . Then,
∑

b∈child(a)

w∗(ab) ≥ q − w∗(pa).

However, since T is rooted at some vertex from A, the vertex p has at

78 Expansion Lemma

least two neighbors in T : a and the parent of p. Because every edge in

G∗ has weight at least 1 and every vertex of B in G has weight at most

W , this implies that w∗(ap) ≤W − 1. Therefore,

w(f−1(a)) ≥ q − (W − 1).

This completes the proof that f satisfies the two properties that define

a weighted q-expansion, and it can be found in time O(qm
√
nW 1.5 +

mn).

Using Lemma 5.5, we prove the Weighted Expansion Lemma.

Lemma 5.6. (Weighted Expansion Lemma) Let q be a positive

integer, G be a bipartite graph with vertex bipartition (A,B), and w :

B → {1, . . . ,W} such that

(i) w(B) ≥ q|A|, and

(ii) there are no isolated vertices in B.

Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B and a function

f : Y → X such that

• f is a weighted q-expansion of X into Y , and

• no vertex in Y has a neighbor outside X, i.e. N(Y) ⊆ X.

Furthermore, the sets X and Y and the function f can be found in time

O(mn1.5W 2.5).

Proof. We start by constructing a new bipartite graph G′ with vertex

bipartition (A,B′) from G. For every vertex v ∈ B, we add w(v) −
1 copies of v to B′ (in addition to v), and let all the copies of the

vertex v have the same neighborhood in A as v. Clearly, |B′| ≥ q|A|. By

Lemma 5.2, there exist nonempty vertex sets X ⊆ A and Y ′ ⊆ B′ such

that

• X has a q-expansion into Y ′, and

• no vertex in Y ′ has a neighbor outside X, i.e. N(Y ′) ⊆ X.

Clearly, the sets X and Y ′ can be found in time O(mn1.5W 2.5) since

|V (G′)| = |A|+∑b∈B w(b) ≤ (W +1) · |V (G)| and |E(G′)| ≤W · |E(G)|.
By the q-expansion property, for every vertex u ∈ X, we have a q-star Su
where u is the centre of the star and for all u1, u2 ∈ X, u1 6= u2, we have

that Su1
and Su2

are pairwise vertex-disjoint. Let Y ⊆ B denote the set

of vertices that have at least one copy in Y ′. Since NG(Y) = NG′(Y
′)

and N(Y ′) ⊆ X, we have that that N(Y) ⊆ N(X).

5.4 Component Order Connectivity 79

Next, we would like to use Lemma 5.5 with respect to G[X ∪ Y], and

thus we need to show that for every X ′ ⊆ X, w(N(X ′)) ≥ q|X ′|. Note

that by construction, Y does not contain isolated vertices. For every

vertex u ∈ X, let H(u) ⊆ Y ′ denote the set of vertices in Y ′ that belong

to Su, and let H∗(u) denote the subset of vertices in Y that have at

least one copy in H(u). For z ∈ H∗(u), let du(z) denote the number of

copies of z in H(u). Clearly,
∑
u∈X d

u(z) ≤ w(z). Moreover, since X has

a q-expansion into Y , for all u ∈ X,
∑
z∈H∗(u) d

u(z) = q. We thus have

that for all X ′ ⊆ X,

w(N(X ′)) =
∑

z∈N(X′)

w(z) ≥
∑

z∈N(X′)

∑

u∈X′
du(z)

=
∑

u∈X′

∑

z∈H∗(u)

du(z) =
∑

u∈X′
q

= q|X ′|

This implies that X and Y satisfy the premises given in Lemma 5.5,

and thus there exists a function f : Y → X such that for every y ∈ Y ,

f(y) ∈ N(y), for all x ∈ X, w(f−1(x)) ≥ q − (W − 1). Moreover, by

Lemma 5.5, such a function f can be found in time O(qm
√
nW 1.5+mn),

which is upper bounded byO(mn1.5W 2.5). This completes the proof.

5.4 Component Order Connectivity

In the Component Order Connectivity problem, we are given an

undirected graph G, and positive integers k and `. The objective is to

determine whether there exists a vertex set X ⊆ V (G) of size at most

k such that every connected component of G − X has at most ` ver-

tices. Observe that for ` = 1, this corresponds to the classical Vertex

Cover problem. We remark that it is possible to design a kernel with

O(`3k) vertices using the unweighted version of the Expansion Lemma;

in fact, one can obtain a kernel with O(k`2 log `) vertices using this ap-

proach (see Problem 5.2). Here, we design a kernel with O(`2k) vertices

for Component Order Connectivity using the Weighted Expansion

Lemma. In the next chapter, we also see how method based on linear

programming can further reduce the size of the kernel to have only O(`k)

vertices.

Theorem 5.7. Component Order Connectivity admits a kernel

with O(`2k) vertices.

80 Expansion Lemma

Proof. Our kernelization algorithm starts by greedily computing an ap-

proximate solution A to Component Order Connectivity, as is

shown in Fig. 5.3.

Algorithm ApproximatingCOC.
Input: A graph G and an integer `.
Output: A set A ⊆ V (G) such that every connected component of

G−A has at most ` vertices.

A := ∅
while there exists a connected set Z of size `+ 1 in G do

set G := G− Z
A := A ∪ Z

Figure 5.3 Algorithm ApproximatingCOC

In ApproximatingCOC, to find a connected set Z of size ` + 1 (if one

exists), we first check whether there is a connected component C in

G of size at least ` + 1. If the answer is positive, then we compute a

BFS tree from some vertex of that component, terminating the com-

putation when the size becomes exactly equal to ` + 1. Since at least

one vertex of every connected set of size ` + 1 should be in every solu-

tion for Component Order Connectivity, and the connected sets

considered by ApproximatingCOC are pairwise disjoint, we have that

ApproximatingCOC is an (` + 1)-approximation algorithm for Compo-

nent Order Connectivity.

We compute an approximate solution A as described above. If |A| >
(`+ 1)k, then we return that (G, k, `) is a no-instance. Thus, from now

onwards, we assume that we have an approximate solution A to Com-

ponent Order Connectivity of size at most (`+1)k. Let Q = G−A.

Then, every connected component of Q is of size at most `. We proceed

by applying the following simple reduction rule, whose correctness is

evident.

Reduction COC.1. If there exists a connected component C of G

such that |C| ≤ `, then delete C. The new instance is (G− C, k, `).

We apply Reduction Rule COC.1 exhaustively. Now, we construct a

bipartite graph G′ with bipartition (A,B), where A is the approximate

solution, that is defined as follows. First, for every connected component

C of Q, we have a vertex vc in B. Second, there is an edge between a

5.4 Component Order Connectivity 81

vertex u ∈ A and vc ∈ B if and only if u has a neighbor in the connected

component C. This completes the description of the bipartite graph

G′. We also define a weight function w : B → {1, . . . `} as follows: for

every vertex vc ∈ B, the weight of vc is |V (C)| ≤ `, that is, the size

of the connected component it represents. This brings to the following

reduction rule.

Reduction COC.2. If |B| ≥ (2` − 1)|A|, then apply the Weighted

Expansion Lemma (Lemma 5.6) to obtain sets X ⊆ A and Y ⊆ B

with the properties described in its statement. Delete X and the

connected components corresponding to the vertices in Y . The new

instance is (G−X − (
⋃
vc∈Y C), k − |X|, `).

Claim 5.8. Reduction Rule COC.2 is safe.

Proof. Let T =
⋃
vc∈Y V (C). We want to show that G admits a solution

of size at most k if and only if G′ = G−X −T admits a solution of size

at most k′ = k − |X|. In one direction, let S be a solution with respect

to G of size at most k. By the properties of the Weighted Expansion

Lemma (Lemma 5.6), there is a function f : Y → X such that

• for all b ∈ Y , f(b) ∈ N(b),

• for all a ∈ X, w(f−1(a)) ≥ `, and

• no vertex in Y has a neighbor outside X, i.e. N(Y) ⊆ X.

Thus, we have that N(T) ⊆ X. Furthermore, since w(f−1(a)) ≥ `, we

have that
∑

vc∈f−1(a)

|V (C)| ≥ `.

For every a ∈ X, let

Ca = {a} ∪
⋃

vc∈f−1(a)

V (C).

Clearly, for two distinct vertices a1 and a2 in X, the sets Ca1 and Ca2
are pairwise disjoint. Furthermore, since S is a solution, it must contain

at least one vertex from each set Ca, a ∈ X, since G[Ca] is connected

and has size at least ` + 1. Let H = S ∩ (T ∪ X). Then, |H| ≥ |X|.
Let S∗ = (S \ H) ∪ X. Since |H| ≥ |X|, we have that |S∗| ≤ k. Every

connected component of G[T] has size at most `, and after deleting S∗,
each such connected component also becomes connected component of

82 Expansion Lemma

G − S∗. Furthermore, for every two connected components C and C ′

of G − S that have no vertex from T , there do not exists a connected

component of G − S∗ that contains both a vertex of C and a vertex of

C ′. Thus, we have that G−S∗ does not have any connected component

of size at least `.

Hence, we have that S∗ \X is a solution with respect to G′. Indeed,

this follows from the fact that G′ is an induced subgraph of G and

S∗ ∩V (G′) = S∗ \X. This completes the proof of the forward direction.

Let us now consider the reverse direction. To this end, let S′ be a

solution of of size at most k − |X| with respect to G′. Then, we simply

note that S′ ∪ X is a solution of size at most k for G. This concludes

the proof. y

After an exhaustive application of Reduction Rules COC.1 and COC.2,

either we already have concluded that the given instance is a no-instance

or we have that |A| ≤ (`+ 1)k and |V (Q)| ≤ (2`− 1)|A|. Thus, the total

number of vertices in the graph is upper bounded by

|V (G)| = |A|+ |V (Q)| ≤ 2`|A| ≤ 2`(`+ 1)k.

This concludes the proof.

5.5 Feedback Vertex Set

In Section 3.2, we gave a kernel with O(k3) vertices for Feedback Ver-

tex Set. In this section, we show how to obtain a better kernel.

We start with simple preprocessing rules (the Degree-1 and Degree-2

Rules already used in Section 3.2), which remove non-essential vertices

from the input graph without affecting the size of a minimum feedback

vertex set. Graphs resulting from applications of these rules may have

loops and parallel edges, and this is why in this section we work with

multigraphs. Then, we show that after the application of these rules, a

clever application of the Expansion Lemma will brings us to a quadratic

kernel for Feedback Vertex Set. More precisely, to obtain a quadratic

kernel, we implement the following plan.

• With simple reduction rules we eliminate vertices of degree at most 2.

Afterwards, we rely on the fact that the number of edges and vertices

in a graph with minimum vertex degree 3, maximum vertex degree ∆

5.5 Feedback Vertex Set 83

and a feedback vertex set of size k, is upper bounded by O(k∆). Thus,

if the maximum vertex degree ∆ of the reduced graph is bounded by

O(k), then we already have a quadratic kernel at hand.

• We next modify the instance so that every vertex would be of degree

O(k). This is the most difficult part of the proof. The reduction is

based on two ideas, described below.

• First, we show that for every vertex v, it is possible in polynomial time

to either identify that v belongs to k + 1 cycles pairwise intersecting

only in v (in which case v should belong to every feedback vertex set

of size at most k), or to construct a set Hv of size at most 3k that

does not contain v but hits all cycles passing through v.

• Second, we use the Expansion Lemma to design another reduction

rule, which for a given vertex v and a set Hv hitting all cycles con-

taining v, deletes and adds some edges incident to v. The exhaustive

application of this rule results in an equivalent instance, where every

vertex is of degree at most O(k). At this point, we derive a quadratic

kernel.

Let G be an undirected multigraph. We start by applying Degree-1

and Degree-2 Rules (Reduction Rules FVS.1 and FVS.2). Next, note

that any feedback vertex set has to destroy all existing loops. However,

the only way to destroy a loop is to delete its only vertex. Thus, we have

the following rule.

Reduction FVS.9. Let (G, k), k ≥ 1, be an instance of Feedback

Vertex Set. If G has a vertex x with a self-loop, then remove x and

decrease the parameter k by 1. The resulting instance is (G−x, k−1).

We apply Reduction Rules FVS.1, FVS.2 and FVS.9 to G as long as

possible. Let (G′, k′) be the resulting instance of Feedback Vertex

Set. Then, (G, k) is a yes-instance if and only if (G′, k′) is. If k′ =

0 and G′ is not a forest, then we conclude that G does not have a

feedback vertex set of size at most k. Otherwise, the degree of every

vertex of G′ is at least 3. The graph G′ can be constructed in time

O(mk), where m is the number of edges of G. Indeed, each application

of Rule FVS.9 decreases k by 1, and each exhaustive application of Rules

FVS.1 and FVS.2 can be performed in time O(m). Thus, we have the

following lemma.

84 Expansion Lemma

Lemma 5.9. Given an undirected multigraph G with m edges and a

positive integer k, in time O(mk) we can

• either conclude that G has no feedback vertex set of size k, or

• produce a multigraph G′ with minimum degree 3 and a positive integer

k′ such that G has a feedback vertex set of size k if and only if G′ has

a feedback vertex set of size k′.

We first obtain a kernel for Feedback Vertex Set on graphs whose

maximum degree is bounded by ∆. Here, we rely on the observation that

for this class of graphs, the size of any feedback vertex is linear in n.

Lemma 5.10. Let G be a graph on n vertices with minimum degree

δ ≥ 3 and maximum degree ∆. Then, the size of a minimum feedback

vertex set of G is larger than n(δ − 2)/(2(∆− 1)).

Proof. Let F be a minimum feedback vertex set of G, and let EF be the

set of edges with at least one endpoint in F . Since G− F is a forest, it

contains at most n− |F | − 1 edges, and therefore |EF | ≥ |E(G)| − (n−
|F | − 1). Thus,

∆|F | ≥ |EF | ≥ |E(G)| − n+ |F |+ 1 > nδ/2− n+ |F |,

which implies

(∆− 1)|F | > n(δ − 2)/2.

We thus have that |F | > n(δ − 2)/(2(∆− 1)).

Lemma 5.10 implies the following lemma.

Lemma 5.11. Let G be the class of graphs of maximum vertex degree

at most ∆. Then, Feedback Vertex Set on G admits a kernel of size

O(k∆).

Proof. Given a graph G ∈ G, we first apply Lemma 5.9 to obtain an

equivalent instance (G′, k′), where the graph G′ has minimum vertex

degree at least 3. Let n be the number of vertices in G′. By Lemma 5.10,

every minimum feedback vertex set of G′ must have size at least n(δ −
2)/(2(∆ − 1)) ≥ n/(2(∆ − 1)). Hence, if k′ < n/(2(∆ − 1)), then we

return that G does not have a feedback vertex set of size at most k.

Thus k′ ≥ n/2(∆ − 1), and hence n ≤ 2k′(∆ − 1). Furthermore, every

graph with a feedback vertex set of size at most k′ and maximum degree

∆, has at most k′∆+(n−1) edges: there are at most k′∆ edges incident

to the vertices of the feedback vertex set, and at most (n − 1) edges in

5.5 Feedback Vertex Set 85

the forest. Hence if (G′, k′) is a yes-instance, the number of edges in G′

is at most

k′∆ + (n− 1) < k′∆ + 2k′(∆− 1) = 3k′∆− 2k′.

Therefore, if G′ has at least 3k′∆−2k′ edges, we return that G does not

have a feedback vertex set of size at most k. Otherwise, |V (G′)| = O(k∆)

and |E(G′)| = O(k∆), and thus the lemma follows.

Next, we describe additional reduction rules that allowsus to bound

the maximum degree of a yes-instance of Feedback Vertex Set by

a linear function of k. This together with Lemma 5.11 would imply a

quadratic kernel for Feedback Vertex Set.

Our next rule is analogous to the one in Section 2.2 handling vertices of

high degree in the context of Vertex Cover. Towards the formulation

of this rule, we introduce a notion of x-flower of G for a vertex x ∈ V (G).

Given a vertex x of G, an x-flower of order k is a set of k cycles pairwise

intersecting exactly at x.

If G has a x-flower of order k + 1, then the vertex x should belong to

every feedback vertex set of size at most k, as otherwise we would have

needed at least k + 1 vertices to hit all cycles passing through x. Thus,

the following rule is safe.

Reduction FVS.10. Let (G, k) be an instance of Feedback Ver-

tex Set. IfG has an x-flower of order at least k+1, then remove x and

decrease the parameter k by 1. The resulting instance is (G−x, k−1).

The correctness of Reduction rule FVS.10 is clear. Next, we describe

how we can potentially find a vertex x, if there exists one, which has an

x-flower of order at least k + 1. More precisely, we prove the following

lemma.

Lemma 5.12. Let G be a multigraph and x be a vertex of G without

a self-loop. Then, in polynomial time we can correctly satisfy one of the

following requirements.

• decide that (G, k) is a no-instance of Feedback Vertex Set;

• determine whether there is an x-flower of order k + 1;

• find a set of vertices Z ⊆ V (G) \ {x} of size at most 3k intersecting

every cycle containing x.

86 Expansion Lemma

Proof. As we have already discussed in Section 3.2, Feedback Ver-

tex Set admits a factor 2 approximation algorithm. That is, there is a

polynomial time algorithm that returns a feedback vertex set S of size

at most 2OPT, where OPT is the size of the smallest feedback vertex

set of G. We first call this algorithm to obtain a feedback vertex set S

of size at most 2OPT. If |S| > 2k, we immediately return that (G, k) is

a no-instance of Feedback Vertex Set. Thus, from now onwards, we

assume that |S| ≤ 2k.

If x /∈ S then we return S as Z. Indeed, S intersects every cycle in

G, and in particular, every cycle passing through x. So from now on, we

assume that both |S| ≤ 2k and x ∈ S.

The set S is a feedback vertex set, and thus F = G−S is a forest. Let

Nx denote the set of neighbors of x in F . That is, Nx = N(x) ∩ V (F).

Our objective is to find either a set P of k + 1 vertex disjoint paths in

F whose endpoints belong to Nx or a set X of size at most k such that

every connected component of F −X contains at most one vertex from

Nx. In other words, in the latter case the graph F − X has no path

between any pair of vertices in Nx. Notice that in the former case, we

can use the paths in P to construct a x-flower of order k+ 1, and in the

latter case, Z := (S ∪X) \ {x} is a set of size at most 3k that intersects

every cycle containing x.

Let T1, . . . , T` denote the trees in G − S. We root each of the trees

at some arbitrarily chosen vertex ri. Now, for each tree Ti, we proceed

as follows. Let N i
x denote the set of neighbors of x in Ti, that is, N i

x =

N(x)∩V (Ti). Moreover, let H denote the set of pairs formed by vertices

in N i
x, that is, H = {{u, v} | u, v ∈ N i

x}. For every pair of vertices

{u, v} ∈ H, let auv denote the least common ancestor of u and v in Ti.

Observe that auv could of course be equal to u or v (when the path

from the root ri to u is a subpath of the path from the root to v or the

other way round). Now, we sort these ancestors in a list L, possibly with

multiple occurrences of one ancestor, by decreasing order of their depth.

(The depth of a vertex in a rooted tree is the length of the path from

the root to that vertex.) Finally, as long as the list L is non-empty, we

perform the following operations.

(i) Let {u, v} denote a pair for which auv is the first vertex in the list L.

Observe that because we sorted the list, the unique path Puv between

u and v in the tree Ti does not contain any other vertex of N i
x besides

u and v.

(ii) Add auv to X.

5.5 Feedback Vertex Set 87

(iii) Add Puv to P.

(iv) Delete all pairs from H containing at least one vertex among u and

v, and delete all vertices au′v′ from L such that there is no path

between u′ and v′ in Ti −X.

(v) Observe that in the current H there is no pair of vertices {u′, v′}
such that at least one of the vertices u′ and v′ belongs to the the

subtree rooted at auv in Ti. Thus, we delete the subtree rooted at

auv from Ti.

We repeat this process for each tree Ti. Clearly, the above process can be

implemented in polynomial time. Observe that the last item ensures that

any two distinct paths Pi, Pj ∈ P are pairwise vertex-disjoint and their

endpoints belong to Nx. By construction, the set X has the property

that in the graph F −X there is no path between any pair of vertices

in Nx. In addition, we have that |X| = |P|.
Finally, we show the desired assertion. If |X| > k, then we return that

there is an x-flower of order k + 1, guaranteed by the paths in P Else,

we return Z := S∪X ⊆ V (G)\{x} of size at most 3k intersecting every

cycle containing x. This concludes the proof.

We apply Reduction Rules FVS.1, FVS.2, FVS.9, and FVS.10 on the

input instance as long as possible. Let (G, k) be the resulting instance

of Feedback Vertex Set. Observe that now G does not contain any

vertex with a self-loop, there is no x-flower of order at least k + 1, and

the minimum degree of G is at least 3. Next, we show how to bound the

maximum degree of the the graph by applying the Expansion Lemma.

q-Expansion Rule with q = 2. Given an instance (G, k), we show

that if there is a vertex v of degree larger than 11k, then we can reduce

its degree by repeatedly applying the Expansion Lemma with q = 2.

To this end, let v be a vertex of degree larger than 11k. Due to our

application of Reduction Rule FVS.10, we have that there is no v-flower

of order k + 1. By Lemma 5.12, there exists a set Hv of size at most 3k

that intersects every cycle passing through v and such that v 6∈ Hv.

Consider the graph G− (Hv ∪{v}). Let the components of this graph

that contain a neighbor of v be C1, C2, . . . , Ct. Note that v cannot have

more than one neighbor in any component Ci, else Ci ∪ {v} would con-

tain a cycle, which would contradict the fact that Hv intersects all cycles

passing through v. Also note that we can next assume that at most k

of the components Ci can contain a cycle—indeed, otherwise we imme-

diately conclude that G does not have a feedback vertex set of size at

88 Expansion Lemma

v

D1 D2 Ds

Hv

· · ·

Figure 5.4 The vertex v, vertex set Hv hitting all cycles containing v, and

acyclic connected components Di of G \ (Hv ∪ v).

most k. We rename the components Ci that are trees by D1, D2, . . . , Ds.

An illustrative example is given by Fig. 5.4. From now onwards, we only

work with components D1, D2, . . . , Ds.

We say that a component Di, 1 ≤ i ≤ s, is adjacent to Hv if there

exist vertices u ∈ Di and w ∈ Hv such that uw ∈ E(G). We argue that

every component Di is adjacent to Hv. Indeed, observe that Di is a tree

and hence it has a vertex x of degree 1 in Di. However, every vertex of G

is of degree at least 3, thus x should be adjacent to at least two vertices

outside Di, and hence it is adjacent to at least one vertex of Hv.

Let us proceed by first stating the following simple reduction rule. This

rule is based on the observation that if a pair of vertices uw is joined by

more that two multiple edges, one of these edges can be safely removed.

Reduction FVS.11. Let (G, k) be an instance of Feedback Ver-

tex Set. If G has a pair of vertices u and w joined by at least three

multiple edges, then delete one of these edges. Let G′ denote the

resulting graph. Then, the new instance is (G′, k).

After an exhaustive application of Reduction Rule FVS.11, every pair

of vertices have at most two edges connecting them. In particular, for

every vertex u ∈ Hv, there are at most two edges between u and v. Let

p be the number of vertices in Hv connected to v by two edges. Notice

5.5 Feedback Vertex Set 89

that since there are no v-flowers of order at least k + 1, p ≤ k. Because

|Hv| ≤ 3k, there are at most

2p+ (|Hv| − p) = p+ |Hv| ≤ 4k

edges from v to vertices in Hv. Since v sends at most one edge to each

component Ci and all but at most k components Ci are trees, it follows

that if d(v) > 11k, then the number s of components Di is larger than 6k.

We consider a bipartite graph B with vertex bipartition (Hv, D), where

in the set D = {d1, . . . , ds}, each vertex di corresponds to a component

Di. For u ∈ Hv, we add the edge udi if there is a vertex w ∈ Di such

that uw ∈ E(G). Observe that |D| > 6k ≥ 2|Hv|, and that no vertex in

D is isolated (since the minimum degree of a vertex in G is 3).

Now we are ready to state our last reduction rule.

Reduction FVS.12. Let (G, k) be an instance of Feedback Ver-

tex Set, v be a vertex of degree larger than 11k, and Hv be a set

of size at most 3k that does not contain v and intersects every cycle

that passes through v. Construct the graph GR from G as follows.

• Let T ⊆ D and S ⊆ Hv be the sets obtained by applying the

Expansion Lemma with q = 2, A = Hv and B = D. The set S has

|S| 2-stars with both leaves in T , and N(T) = S in the graph B;

• Delete from G all the edges of the form vu for all u ∈ Di such that

di ∈ T ;

• Add edges between v and vertices in S such that for every w ∈ S,

there would be two parallel edges between v and w.

The new instance is (GR, k).

By Lemma 5.12, every step of Reduction Rule FVS.12 can be per-

formed in polynomial time. Let us also remark that the rule cannot be

applied more than |E(G)| times. To see this, let µ(u) be the number of

neighbors of a vertex u that are each connected to u by a single edge. Any

application of the reduction rule does not increase value of the function

µ for any vertex of G, and it decreases this value for the vertex v. Thus,

every application of the reduction rule strictly decreases the following

measure of the graph G:
∑

u∈V (G)

µ(u).

90 Expansion Lemma

Let GR be the graph obtained after applying Reduction Rule FVS.12.

We next prove the correctness of the rule.

Lemma 5.13. Reduction Rule FVS.12 is safe.

Proof. We first show that if GR has a feedback vertex set W of size at

most k, then the same feedback vertex set W also hits all the cycles in

G. Observe that either v ∈ W or S ⊆ W . First, suppose that v ∈ W .

Then, the graphs GR − v and G − v are identical. Therefore, the set

W \ {v}, which is a feedback vertex set of GR − v, is also a feedback

vertex set of G − v. This shows that W is a feedback vertex set of size

at most k of G. The case where S ⊆W is similar. In this case, the only

differences between GR and G are the lack of edges from v to Di for all

di ∈ T , and the presence of extra edges between v and S. However, by

the definition of a 2-expansion, every cycle in G passing through Di, for

any di ∈ T , should also pass through a vertex of S. Thus, the set W

indeed hits all the cycles in G.

Next, we prove that if (G, k) is a yes-instance, then (GR, k) is a yes-

instance. Let W be a feedback vertex set of size k in G. If v ∈ W

or S ⊆ W , then arguing as above, it is easy to show that W is also

a feedback vertex set in GR. In what follows, we prove that whenever

there is a feedback vertex set of size at most k in G, there also exists

a feedback vertex set of size at most k that contains either v or all the

vertices of S. This will complete the proof of the lemma.

Consider a feedback vertex set W that does not contain v as well as

at least one vertex from S. Note the |S| 2-stars in B[S ∪ T], along with

v, correspond to cycles centered at v in G that pairwise intersect only

at v. Thus, such a feedback vertex set the set W must pick at least

one vertex from each component Di such that di ∈ T . Let D be the

collection of components Di such that di ∈ T . Moreover, let X denote

the set of all vertices of W that appear in sets Di ∈ D. Consider the

feedback vertex set W ′ obtained from W by removing X and adding S,

that is, W ′ := (W \X) ∪ S.

We now argue that W ′ is also a feedback vertex set of size at most

k. Indeed, let S′ be the set of vertices in S that do not already belong

to W . Then, for every vertex in S′, there exists a distinct vertex in

D that the set W had to pick in order to hit the cycle formed by the

corresponding 2-star. Formally, there exists X ′ ⊆ X such that there is a

bijection between S′ and X ′, implying that |W ′| ≤ |W | ≤ k.

Finally, observe that W ′ must also hit all the cycles in G. If not, there

exists a cycle M that contains some vertex u ∈ X. Hence, u ∈ Di for

5.5 Feedback Vertex Set 91

some i. The vertices of Di induce a tree, so M should contain other

vertices of G. Since M contains no vertex of S, there should be at least

two edges of M between from v and Di. However, by the definition of

Hv, there is exactly one edge from v to Di, hence W ′ is a feedback vertex

set. This concludes the proof of the lemma.

Theorem 5.14. Feedback Vertex Set admits a kernel with O(k2)

vertices and edges.

Proof. Let (G, k) be an instance of Feedback Vertex Set, and let

(G′, k′), k′ ≤ k, be an instance of the problem obtained after an ex-

haustive application of Reduction Rules FVS.1, FVS.2, FVS.9, FVS.10,

FVS.11 and FVS.12. All these rules can be performed in polynomial

time, and we have shown that each of them is safe. Thus, (G′, k′) is a

yes-instance of Feedback Vertex Set if and only if (G, k) is a yes-

instance. Every vertex of G′ is of degree at least 3 and at most 11k.

Thus, by Lemma 5.11, the graph G′ has at most O(k′ · 11k′) = O(k2)

vertices and edges.

Exercises

Problem 5.1. Obtain a kernel with O(k3) vertices and O(k3) edges for Weighted
Feedback Vertex Set.

Problem 5.2. This problem concerns polynomial kernels for Component Order
Connectivity that do not build upon the Weighted Expansion Lemma.

(i) Obtain a kernel with O(`3k) vertices for Component Order Connectivity using
the unweighted version of the Expansion Lemma.

(ii) Obtain a kernel with O(k`2 log `) vertices for Component Order Connectivity
using the unweighted version of the Expansion Lemma.

Problem 5.3. Obtain a polynomial kernel for Independent Feedback Vertex
Set, where given a graph G and a parameter k, we seek a set S ⊆ V (G) of size at
most k that is both a feedback vertex set and an independent set.

Problem 5.4. Obtain a polynomial kernel for Even Cycle Transversal, where
given a graph G and a parameter k, we seek a set S ⊆ V (G) of size at most k that
intersects all even cycles of G.

Problem 5.5. Obtain a polynomial kernel for Block Deletion Set, where given
a graph G and a parameter k, we seek a set S ⊆ V (G) of size at most k such that
G−S is a block graph, that is, every biconnected component (block) of G−S should
be a clique.

Problem 5.6. Obtain a polynomial kernel for Simultaneous Feedback Vertex
Set, which is defined as follows. The input consists of an edge-colored graph G and a
parameter k, and the task is to remove at most k vertices from G so that the resulting
graph does not have any monochromatic cycle. Here, the parameter is k + α, where
α is the number of distinct colors of the edges of G.

92 Expansion Lemma

Problem 5.7. Obtain a polynomial kernel for Almost Induced Matching. In this
problem, given a graph G and a parameter k, the goal is to decide whether we can
delete at most k vertices from G so that the resulting graph will be an induced
matching.

Problem 5.8. Obtain a polynomial kernel for Vertex Cover (degree-2-modulator).
Recall (from Chapter 2) that this problem is the one of computing a vertex cover of
size at most ` parameterized by the size k of a minimum degree-2 modulator.

Bibliographic notes

The Expansion Lemma, in a form slightly different than the one pre-

sented here, appeared in the PhD thesis of Prieto (2005), see also (Thomassé,

2010, Theorem 2.3). Here, we follow the variant of this lemma as con-

sidered by Fomin et al. (2011c). A kernel with O(k
5
3) vertices for Clus-

ter Vertex Deletion was given by Le et al. (2018). The kernel for

Feedback Vertex Set given in this chapter is due to Thomassé

(2010). This result improves on the previous works of Bodlaender and

van Dijk (2010) and Burrage et al. (2006). We remark that the proof

of Thomassé (2010) relies on a classical theorem of Gallai (1961). The

use of a weighted variant of the Expansion Lemma to obtain a kernel for

Component Order Connectivity is due to Kumar and Lokshtanov

(2016), which improved upon a kernel given by Drange et al. (2016b).

Simultaneously, the use of a similar weighted variant to obtain a kernel

for this problem (with a larger number of vertices) was given by Xiao

(2017a).

Kernelization algorithms for problems involving the removal of k ver-

tices so that the resulting graph would not contain a fixed graph H as a

minor are discussed in (Fomin et al., 2011c). Note that Feedback Ver-

tex Set is a special case of this problem for H = K3. In the context of

the exercises given in this chapter, we remark that a kernel for Indepen-

dent Feedback Vertex Set, which relies on the Expansion Lemma,

was given by Misra et al. (2012a). Moreover, a polynomial kernel for

Even Cycle Transversal was given by Misra et al. (2012b), polyno-

mial kernels for Block Deletion Set were given by Kim and Kwon

(2017); Agrawal et al. (2016a), a polynomial kernel for Simultaneous

Feedback Vertex Set was give by Agrawal et al. (2016b), and a poly-

nomial kernel for Almost Induced Matching was given by Xiao and

Kou (2016). Finally, we remind that results related to Vertex Cover

(degree-2-modulator) were discussed in Chapter 2.

6

Linear Programming

In this chapter we give a kernel for Vertex Cover based on Linear Pro-

gramming. We then show how this approach can be extended to more general

problems, namely, Min-Ones-2-SAT and Min-Weight-2-IP. Afterwards, we

further consider the Component Order Connectivity problem, and present

a kernel of size O(`k), improving upon the one given in Chapter 5.4.

6.1 The Theorem of Nemhauser and Trotter

One of the classical results in algorithms is a polynomial-time algo-

rithm to solve Linear Programming (LP). Making use of LP has

been proved to be extremely useful in the design of approximation algo-

rithms. In particular, a common approach in approximation algorithms

for problems in NP is to formulate a problem as an Integer Linear Pro-

gramming (IP) problem, an LP with the additional restriction that the

variables must take integer values. Since IP is NP-complete, we do not

hope to solve it in polynomial time. Instead we settle for an approximate

solution by solving the corresponding linear programming relaxation of

the IP, which is just the IP without the integrality constraint on the

variables. A (not necessarily optimal) solution to the IP is obtained by

rounding the variables in an optimal solution to the LP relaxation in an

appropriate way. In this chapter, we show that LP can also be utilized

to obtain kernels.

We begin by showing how to obtain a kernel with at most 2k vertices

for Vertex Cover by applying LP. Given a graph G and integer k,

we construct an IP with n variables, one variable xv for each vertex

93

94 Linear Programming

v ∈ V (G). Setting the variable xv to 1 means that v goes into the vertex

cover, while setting xv to 0 means that v does not go into the vertex

cover. This yields the following IP formulation

Min
∑
v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G)

xv ∈ {0, 1} for every v ∈ V (G)

(VC)

Clearly, the optimal value of (VC) is at most k if and only if G has a

vertex cover of size at most k. We relax the IP by replacing the constraint

xv ∈ {0, 1} for every v ∈ V (G) with the constraint 0 ≤ xv ≤ 1 for

every v ∈ V (G). In other words, we obtain the following linear program

L(G).

Min
∑
v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G)

0 ≤ xv ≤ 1 for every v ∈ V (G)

(VC-LP)

Let us remark that the constraints xv ≤ 1 can be omitted because

every optimal solution of L(G) satisfies these constraints.

Let us fix some optimal solution of L(G). In this solution the vertices of

G obtain some fractional values from [0, 1]. We partition V (G) according

to these fractional values into three sets as follows.

• V0 is the set of vertices whose fractional values are smaller than 1
2 ;

• V1 is the set of vertices whose fractional values are larger than 1
2 ;

• V 1
2

is the set of vertices whose fractional values are 1
2 .

Theorem 6.1 (Nemhauser-Trotter’s Theorem). There is a minimum

vertex cover OPT of G such that

V1 ⊆ OPT ⊆ V1 ∪ V 1
2
.

Proof. Let OPT be a minimum vertex cover such that V0 ∩ OPT 6= ∅.
Every vertex of V0 can have a neighbor only in V1 and thus the set

OPT ′ = (OPT \ V0) ∪ V1

is also a vertex cover in G.

If

|V0 ∩OPT | ≥ |V1 \OPT |,

6.1 The Theorem of Nemhauser and Trotter 95

then the set OPT ′ is a vertex cover satisfying the conditions of the

theorem. We argue that

|V0 ∩OPT | < |V1 \OPT |

cannot occur. Targeting a contradiction, assume the converse. We define

ε = min{|xv −
1

2
| | v ∈ V0 ∪ V1}.

Now, decrease the fractional values of vertices from V1 \OPT by ε and

increase the values of vertices from V0 ∩ OPT by ε. In other words, we

define (yv)v∈V (G) as

yv =

xv − ε if v ∈ V1 \OPT,
xv + ε if v ∈ V0 ∩OPT,
xv otherwise.

Then,
∑

v∈V (G)

yv <
∑

v∈V (G)

xv.

To see that (yv)v∈V (G) satisfies the constraints of L(G), we have to check

that for every edge uv ∈ E(G), yu + yv ≥ 1. Since only the values of

variables corresponding to vertices from V1 \ OPT decreased, the only

interesting case to consider is when at least one endpoint of edge uv,

say u, is in V1 \ OPT . Because OPT is a vertex cover, we have that

v ∈ OPT . If v ∈ V0 ∩OPT , then

yu + yv = xu − ε+ xv + ε ≥ 1.

If v ∈ V 1
2
, then

yu + yv = xu − ε+ xv ≥
1

2
+

1

2
= 1.

Finally, if v ∈ V1, then

yu + yv ≥
1

2
+

1

2
= 1.

Thus (yv)v∈V (G) is a lower weight fractional solution of L(G), contra-

dicting the assumption that we started from an optimal LP solution.

Another property of L(G), which is not used in our kernelization, is

that it always has an optimal solution with fractional values in range

{0, 1
2 , 1}, i.e. a half-integral solution.

96 Linear Programming

Theorem 6.2. Vertex Cover admits a kernel with at most 2k ver-

tices.

Proof. Let (G, k) be an instance of Vertex Cover. Let L(G) be the

corresponding linear program. By solving L(G) in polynomial time, we

partition vertex set V (G) into sets V0, V 1
2
, and V1. Let us define G′ =

G[V 1
2
] and k′ = k − |V1|.

We claim that (G, k) is a yes-instance of Vertex Cover if and only

if (G′, k′) is. Let S be a vertex cover in G of size k. Then, S′ = S∩V 1
2

is a

vertex cover in G′. By Lemma 6.1, we can assume that V1 ⊆ S ⊆ V1∪V 1
2
.

Thus, the size of S′ is k − |V1| = k′.
For the opposite direction, let S′ be a vertex cover in G′. For every

solution of L(G), every edge with an endpoint from V0 should have an

endpoint in V1. Hence, S = S′ ∪ V1 is a vertex cover in G and the size

of this vertex cover is k′ + |V1| = k.

Finally, if (G, k) is a yes-instance, the weight of every fractional solu-

tion of L(G) is at most k. Since for every vertex v ∈ V 1
2

the value xv is
1
2 , we have that |V 1

2
| ≤ 2k. Hence, G′ corresponds to a kernel with at

most 2k vertices.

The proof above can also be viewed as an exhibition of a crown de-

composition. More precisely, if G has more than 2k vertices, then V0 6= ∅,
and (V0, V1, V 1

2
) is a crown decomposition. Indeed, V0 is an independent

set, and there is no edge with an endpoint in V0 and an endpoint in V 1
2
.

In addition, if there does not exist a matching of V1 into V0, then there

is U ⊆ V1 such that |N(U) ∩ V0| < |U |. In this case, raising the values

corresponding to the vertices in N(U) ∩ V0 while lowering those corre-

sponding to the vertices in U results in a contradiction to the optimality

of our solution of L(G).

Moreover, Nemhauser-Trotter’s Theorem (Theorem 6.1) also yields a

2-approximation algorithm for the vertex cover problem. Indeed, let k

be the size of a minimum vertex cover in G. On the one hand, the set

of vertices V 1
2
∪ V1 forms a vertex cover. On the other hand, the value

of any optimal solution of the linear program L(G) is always at most k.

Thus,

1

2
(|V 1

2
|+ |V1|) ≤ k.

Hence,

|V 1
2
|+ |V1|
k

≤ 2.

6.1 The Theorem of Nemhauser and Trotter 97

u

w

v

w1

v1

w2

v2

u2u1

Figure 6.1 Constructing the graph H from a graph G.

However, in general, kernelization reductions do not necessarily preserve

approximation ratio.

While it is possible to solve linear programs in polynomial time, usu-

ally such solutions are less efficient than combinatorial algorithms. The

specific structure of the LP-relaxation of the Vertex Cover problem

(VC-LP) allows to solve it by reducing to the problem of finding a match-

ing of maximum size in a bipartite graph. In the following lemma, we

use the fact that a maximum-size matching and minimum-size vertex

cover in a bipartite graph with n vertices and m edges can be found in

time O(m
√
n).

We also need the classical result about matchings in bipartite graphs

discussed in Chapter 4, namely, Theorem 4.1.

Now we are ready to give a faster kernelization for vertex cover.

Lemma 6.3. For a graph G with n vertices and m edges, the kernel of

Theorem 6.2 can be computed in time O(m
√
n).

Proof. We reduce the problem of solving LP (VC-LP) to a problem of

finding a minimum-size vertex cover in the following bipartite graph H.

Its vertex set consists of two copies V1 and V2 of the vertex set of G.

Thus every vertex v ∈ V (G) has two copies, v1 ∈ V1 and v2 ∈ V2, in

H. For every edge uv ∈ E(G), we have edges u1v2 and v1u2 in H. See

Fig. 6.1 for an example of the construction of H.

Let S be a minimum vertex cover in H. We can find the set S in time

O(m
√
n). We define a vector (xv)v∈V (G) as follows: if both vertices v1

and v2 are in S, then xv = 1; if exactly one of the vertices v1 and v2 is in

S, then xv = 1/2; if none of the vertices v1 and v2 is in S, then xv = 0.

98 Linear Programming

Thus,
∑

v∈V (G)

xv =
|S|
2
.

Since S is a vertex cover in H, we have that for every edge uv ∈ E(G) at

least two vertices from u1, u2, v1, and v2 should be in S. Thus, xu+xv ≥ 1

and the vector (xv)v∈V (G) satisfies the constraints of L(G).

To show that (xv)v∈V (G) is an optimal solution of L(G), we argue

as follows. Let (yv)v∈V (G) be an optimal solution of L(G). For every

vertex vi, i = 1, 2, of H, we assign the weight w(vi) = yv. This weight

assignment is a fractional vertex cover of H, i.e. for every edge v1u2 ∈
E(H), w(v1) + w(u2) ≥ 1. On the one hand, we have that

∑

v∈V (G)

yv =
1

2

∑

v∈V (G)

(w(v1) + w(v2)).

On the other hand, the value of any fractional solution is at least the

size of a maximum matching. By Kőnig’s Theorem (Theorem 4.1), the

size of maximum matching is at least |S|. Hence,

∑

v∈V (G)

yv =
1

2

∑

v∈V (G)

(w(v1) + w(v2)) ≥ |S|
2

=
∑

v∈V (G)

xv.

This means that (xv)v∈V (G) is an optimal solution of L(G).

Let us note that the solution of LP produced in Lemma 6.3 is half-

integral, i.e. all its values are within {0, 1/2, 1}.

6.2 2-SAT of minimum weight

Let us recall some fundamental notions. Let X = {x1, x2, . . . , xn} be

a set of Boolean variables. A variable or a negated variable is called a

literal. Let L = L(X) = {x1, x1, x2, x2, . . . , xn, xn} be the set of literals

over X. A disjunction c = (`1 ∨ `2 ∨ · · · ∨ `t) of literals `i ∈ L(X),

i ∈ {1, 2, . . . , t}, is called a clause over X. As usual we demand that

a literal appears at most once in a clause, and that a clause does not

contain both a variable xi and its negation xi. We represent a clause c by

the set {`1, `2, . . . , `t} of its literals. A conjunction F = (c1∧c2∧· · ·∧cr)
of clauses is called a Boolean formula in conjunctive normal form (CNF).

We represent F by the set {c1, c2, . . . , cm} of its clauses and call it a

CNF formula. If each clause of a CNF formula consists of at most k

6.2 2-SAT of minimum weight 99

literals then it is called a k-CNF formula. By ∅ we denote the empty

formula which is a tautology, and thus satisfiable by definition.

A truth assignment t from X to {0, 1} assigns Boolean values (0=false,

1=true) to the variables of X, and thus also to the literals of L(X). A

clause c is satisfied by an assignment t if it contains at least one true

literal within this assignment. A CNF formula F is satisfiable if there

is a truth assignment t such that the formula F evaluates to true, i.e.

every clause is satisfied. The weight of a satisfying assignment t is the

number of 1’s assigned to variables.

For example, consider the following 3-CNF formula:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3).

It is satisfied by the truth assignment x1 = true, x2 = false, and x3 =

false. The weight of this assignment is one.

It is well known that deciding if a given 2-CNF formula has a satisfying

assignment can be done in polynomial time. However, the version of the

problem where we seek for a satisfying assignment of minimum weight

is NP-complete. In this section, we consider the parameterized version

of the problem, defined as follows. Given a 2-CNF formula F and a non-

negative integer k, the Min-Ones-2-SAT problem asks to determine

whether F has a satisfying assignment of weight at most k.

Let us remark that Min-Ones-2-SAT is a generalization of Vertex

Cover. This is because Vertex Cover can be encoded as an instance

of Min-Ones-2-SAT, with edges corresponding to clauses and vertices

corresponding to variables. Moreover, in this formula all literals occur

only positively.

It is easy to show that if for a 2-CNF formula F , every literal occurs

only positively, then F has a satisfying assignment of weight k if and

only if the graph GF , whose vertex set is the set of variables of F and

two vertices are adjacent in GF if and only if they are in the same clause

in F , has a vertex cover of size k. What we show in this section, is that

Min-Ones-2-SAT in general form is also equivalent to Vertex Cover.

Let (F, k) be an instance of Min-Ones-2-SAT, and let C(F) be

the set of clauses in F with literals corresponding to variables among

x1, x2, . . . , xn. We define the implication digraph DF of F as follows. The

vertices of (the directed graph)DF correspond to the literals `1, `2, . . . , `2n
of F , i.e. V (DF) = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. For every clause

(`i∨`j), there are two arcs in D, (¯̀
i, `j) and (¯̀

j , `i). In this context, recall

that ¯̄x = x. See Fig. 6.2 with an example of an implication digraph.

100 Linear Programming

3.4. REDUCTION OF MIN ONES 2–SAT TO VC 25

H, more clauses are satisfied by t⇥ than by t. Hence t can not be an assigment
satisfying the maximum number of clauses.

The argument above shows that (F, k) is a YES instance to p-Max-SAT
if and only if (F \ (C ⌅H), k � |H|) is. This gives rise to a simple reduction
rule: remove (C ⌅ H) from F and decrease k by |H|. This completes the
proof of the theorem.

3.4 Reduction of min ones 2–sat to VC

It is well known that deciding if a given 2-CNF formula has a satisfying
assignment can be done in polynomial time. However, the version of the
problem, where we seek for a satisfying assignment of minimum weight is
NP-complete. In this section we consider the parameterized version of the
problem.

p-Min-Ones-2-SAT
Instance: A 2-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a satisfying assignment

of weight at most k.

Let us remark, that p-Min-Ones-2-SAT is a generalisation of p-Vertex
Cover. In particular, the problem of finding the satisfying assignment of
minimum weight can be written as the following general form of IP (3.4).

min
�

1�i�n xi

subject to
aixi + ajxi ⇥ bk

xi ⇤ {0, 1}
with coe�cients ai ⇤ {�1, 1},i ⇤ {1, . . . , n}, and constraints bi ⇤ {0, 1}, i ⇤
{1, . . . ,m}. For example, finding the optimum assignment for the following
2-CNF formula

(x1 ⌃ x2) ⇧ (x1 ⌃ x3) ⇧ (x1 ⌃ x2)

can be written as
min

�
1�i�3 xi

subject to
x1 � x2 ⇥ 0
x1 � x3 ⇥ 0
x1 + x2 ⇥ 1
xi ⇤ {0, 1}

3.4. REDUCTION OF MIN ONES 2–SAT TO VC 25

H, more clauses are satisfied by t⇥ than by t. Hence t can not be an assigment
satisfying the maximum number of clauses.

The argument above shows that (F, k) is a YES instance to p-Max-SAT
if and only if (F \ (C ⌅H), k � |H|) is. This gives rise to a simple reduction
rule: remove (C ⌅ H) from F and decrease k by |H|. This completes the
proof of the theorem.

3.4 Reduction of min ones 2–sat to VC

It is well known that deciding if a given 2-CNF formula has a satisfying
assignment can be done in polynomial time. However, the version of the
problem, where we seek for a satisfying assignment of minimum weight is
NP-complete. In this section we consider the parameterized version of the
problem.

p-Min-Ones-2-SAT
Instance: A 2-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a satisfying assignment

of weight at most k.

Let us remark, that p-Min-Ones-2-SAT is a generalisation of p-Vertex
Cover. In particular, the problem of finding the satisfying assignment of
minimum weight can be written as the following general form of IP (3.4).

min
�

1�i�n xi

subject to
aixi + ajxi ⇥ bk

xi ⇤ {0, 1}
with coe�cients ai ⇤ {�1, 1},i ⇤ {1, . . . , n}, and constraints bi ⇤ {0, 1}, i ⇤
{1, . . . ,m}. For example, finding the optimum assignment for the following
2-CNF formula

(x1 ⌃ x2) ⇧ (x1 ⌃ x3) ⇧ (x1 ⌃ x2)

can be written as
min

�
1�i�3 xi

subject to
x1 � x2 ⇥ 0
x1 � x3 ⇥ 0
x1 + x2 ⇥ 1
xi ⇤ {0, 1}

3.4. REDUCTION OF MIN ONES 2–SAT TO VC 25

H, more clauses are satisfied by t⇥ than by t. Hence t can not be an assigment
satisfying the maximum number of clauses.

The argument above shows that (F, k) is a YES instance to p-Max-SAT
if and only if (F \ (C ⌅H), k � |H|) is. This gives rise to a simple reduction
rule: remove (C ⌅ H) from F and decrease k by |H|. This completes the
proof of the theorem.

3.4 Reduction of min ones 2–sat to VC

It is well known that deciding if a given 2-CNF formula has a satisfying
assignment can be done in polynomial time. However, the version of the
problem, where we seek for a satisfying assignment of minimum weight is
NP-complete. In this section we consider the parameterized version of the
problem.

p-Min-Ones-2-SAT
Instance: A 2-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a satisfying assignment

of weight at most k.

Let us remark, that p-Min-Ones-2-SAT is a generalisation of p-Vertex
Cover. In particular, the problem of finding the satisfying assignment of
minimum weight can be written as the following general form of IP (3.4).

min
�

1�i�n xi

subject to
aixi + ajxi ⇥ bk

xi ⇤ {0, 1}
with coe�cients ai ⇤ {�1, 1},i ⇤ {1, . . . , n}, and constraints bi ⇤ {0, 1}, i ⇤
{1, . . . ,m}. For example, finding the optimum assignment for the following
2-CNF formula

(x1 ⌃ x2) ⇧ (x1 ⌃ x3) ⇧ (x1 ⌃ x2)

can be written as
min

�
1�i�3 xi

subject to
x1 � x2 ⇥ 0
x1 � x3 ⇥ 0
x1 + x2 ⇥ 1
xi ⇤ {0, 1}

x̄1

x̄2

x̄3

Figure 6.2 The implication digraph of (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2).

We need the following property of implication digraphs.

Lemma 6.4. If DF contains a path from `1 to `2, then for every satis-

fying truth assignment t, t(`1) = 1 implies that t(`2) = 1.

Proof. Observe that F contains a clause of the form x̄ ∨ y when DF

contains the arc (x, y). Further, every clause takes the value 1 under

every satisfying truth assignment. Thus, by the fact that t is a satisfying

truth assignment and by the definition of DF , we have that for every

arc (x, y) of DF , t(x) = 1 implies t(y) = 1. Now the claim follows easily

by induction on the length of a shortest (`1, `2)-path in DF .

The closure F ∗ of a formula F is the smallest formula that contains

all the clauses of F as well as all the clauses (`1 ∨ `2) such that `1 and

`2 are literals for which there is a directed path from ¯̀
1 to `2 in DF .

The closure of F is computable in polynomial time by computing the

transitive closure of the implication digraph DF .

Theorem 6.5. Given a 2-CNF formula F , let F ∗ be the closure of F ,

and F ∗+ be the set of all clauses of F ∗ where both literals occur positively.

Let G be the graph that has one vertex for every variable in F ∗+, and

uv ∈ E(G) if and only if (u ∨ v) ∈ C(F ∗+). Then, F has a satisfying

assignment of weight at most k if and only if G has a vertex cover of

size at most k.

Proof. Suppose that F has a satisfying assignment of weight at most k.

Then, the same satisfying assignment is a satisfying assignment of F ∗ as

well. Indeed, if c = (`1 ∨ `2) is in C(F ∗) \C(F), then there is a directed

path from ¯̀
1 to `2, by construction. Hence, if the satisfying assignment

of F sets `1 to false, then ¯̀
1 is set to true, and therefore by Lemma 6.4,

`2 is set to true, thus satisfying c. This implies that F ∗+, a subformula

of F ∗, has a satisfying assignment of weight at most k. But since every

literal in F ∗+ occurs only positively, for any satisfying assignment of F ∗+,

6.2 2-SAT of minimum weight 101

the variables assigned 1 correspond to a minimum vertex cover of G.

Thus, G has a vertex cover of size at most k.

Conversely, let S be a minimal vertex cover of size k. Let t be the

truth assignment corresponding to a minimum-sized vertex cover, say

S, of size at most k in G. More precisely, for every variable x, define

t(x) = 1 if x ∈ S, and t(x) = 0 otherwise. Then, t is a satisfying

assignment of F ∗+ of weight at most k. We now show that t is in fact

a satisfying assignment of F ∗. Targeting towards a contradiction, we

assume that there is a clause c in F ∗ that is not satisfied by t. Since c

is not a clause of F ∗+, we have only two possible cases: either c = (x∨ ȳ)

or c = (x̄ ∨ ȳ), for some variables x and y.

Case 1. If c = (x ∨ ȳ) is not satisfied by t, then we have that t(x) = 0, or

equivalently t(x̄) = 1, and t(y) = 1. This means that x /∈ S and

y ∈ S. The vertex cover S is minimal, and therefore there exists a

vertex z /∈ S that is adjacent to y. Because of the manner in which

the assignment t is obtained from S, we have that the clause (y ∨ z)
belongs to F ∗+ and that t(z) = 0. Notice that the implication graph

DF∗ of F ∗ has arcs from x̄ to ȳ and from ȳ to z, and therefore it has

a path from x̄ to z. This means that the clause (x∨ z) belongs to F ∗,
and in particular it belongs to F ∗+. Thus, xz is an edge in G. However,

since x, z /∈ S and S is a vertex cover, this is a contradiction.

Case 2. If c = (x̄ ∨ ȳ) is not satisfied by t, then t(x) = t(y) = 1. This means

that x, y ∈ S. The vertex cover S is minimal, and therefore there exist

vertices z1, z2 /∈ S such that z1 is adjacent to x and z2 is adjacent to

y. Because of the manner in which the assignment t is obtained from

S, we have that the clauses (x ∨ z1) and (y ∨ z2) belong to F ∗+, and

that t(z1) = t(z2) = 0. Now, notice that the implication graph DF∗

of F ∗ has an arc from z̄1 to x, an arc from x to ȳ, and an arc from

ȳ to z2, and therefore it has a path from z̄1 to z2. This means that

the clause (z1 ∨ z2) belongs to F ∗, and in particular it belongs to F ∗+.

Thus, z1z2 is an edge in G. However, since z1, z2 /∈ S and S is a vertex

cover, this is a contradiction.

In both cases, the assumption that t is not a satisfying assignment of

F ∗ brings us to a contradiction. Thus, F ∗ has a satisfying assignment

of weight at most k.

By Theorem 6.5, we have the following corollary.

Corollary 6.6. Min-Ones-2-SAT has a kernel with at most 2k literals.

102 Linear Programming

Proof. Let (F, k) be an instance of Min-Ones-2-SAT. We use Theo-

rem 6.5 to reduce the problem to an instance (G, k) of Vertex Cover.

Then, we use Theorem 6.2 to obtain a kernel with 2k vertices for the in-

stance of Vertex Cover. Let (G′, k′), where |V (G′)| ≤ 2k and k′ ≤ k,

be the result of this transformation. Finally, we translate (G′, k′) into

a 2-SAT CNF formula F ′ with every literal appearing positively. The

formula F ′ has at most 2k literals, and it has a satisfying assignment of

weight at most k′ if and only if G′ has a vertex cover of size at most k′.
Thus, F ′ has a satisfying assignment of weight at most k′ if and only if

G has a vertex cover of size at most k, which in turn occurs if and only

if F has a satisfying assignment of weight at most k′. This completes

the proof.

6.3 Reduction of Min-Weight-2-IP to
Min-Ones-2-SAT

Integer programming with two variables per inequality is defined as fol-

lows.

Min
∑n
i=1 xi

subject to a`ixi + a`jxj ≥ b`
0 ≤ xi ≤ ui
xi is an integer 1 ≤ i ≤ n, 1 ≤ ` ≤ m

(IP2)

Here, we assume without loss of generality that ui, 1 ≤ i ≤ n, is

an integer. Program (IP2) with aij = bi = ui = 1, i ∈ {1, . . . , n} is

precisely (VC), the program corresponding to Vertex Cover. With

values aij , bi ∈ {−1, 0, 1} and ui = 1, (IP2) captures the Min-Ones-2-

SAT problem. Indeed, every instance of the problem associated with

Min
∑n
i=1 xi

subject to a`ixi + a`jxj ≥ b`
a`i, b` ∈ {−1, 0, 1}
xi ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ ` ≤ m

(2SAT)

can be transformed into an instance of 2-SAT as follows. First, note that

we can assume that none of the inequalities xi+xj ≥ 0, xi+xj ≥ −1, and

xi−xj ≥ −1 occurs in (2SAT) just because these inequalities hold for all

values of xi, xj ∈ {0, 1} and thus are superfluous. Moreover, −xi−xj ≥ 1

can never occur. Each inequality from (2SAT) is transformed into one

or two clauses according to the following table.

6.3 Reduction of Min-Weight-2-IP to Min-Ones-2-SAT 103

inequality clause

xi + xj ≥ 1 (i ∨ j)
xi − xj ≥ 1 (i) ∧ (j̄)

xi − xj ≥ 0 (i ∨ j̄)
−xi − xj ≥ 0 (̄i) ∧ (j̄)

−xi − xj ≥ −1 (̄i ∨ j̄)

The resulting 2-CNF formula has n variables and it has weight at most

k if and only if the optimum value of the objective function in (2SAT) is

at most k. Similarly, every 2-CNF formula can be encoded in the form

(2SAT).

The following theorem shows the equivalence of (IP2) and (2SAT).

Theorem 6.7. Let P be an instance of (IP2) with n variables. Then,

there is an instance Q of (2SAT) with at most n ·max1≤i≤n ui variables

such that P has a feasible solution of value at most k if and only if Q

has a satisfying assignment of weight at most k.

Proof. The proof is constructive, resulting in an algorithmic transfor-

mation of P into Q. In Q, we represent every variable xi of P , 0 ≤ xi ≤
ui <∞, 1 ≤ i ≤ n, by ui binary variables xi,` ∈ {0, 1}, 1 ≤ ` ≤ ui. The

objective function to minimize in Q is

n∑

i=1

ui∑

`=1

xi,`.

We enforce the following constraints on variables in Q:

xi,` ≥ xi,`+1 for 1 ≤ ` ≤ ui. (6.1)

In what follows, we describe additional constraints such that the vector

(xi)1≤i≤n is a feasible solution of P if and only if the vector (xi,`)1≤i≤n,1≤`≤ui
defined by

xi,` = 1 if and only if xi ≥ ` (6.2)

is a feasible solution of Q. If we succeed in constructing such a system

of constraints, we also succeed in the proof of the theorem. Indeed, by

(6.1) and (6.2), there is a one-to-one correspondence between xi and

the ui-tuple (xi,1, xi,2, . . . , xi,ui) characterized by xi,` = 1 if and only if

xi ≥ `. Thus,

xi =

ui∑

`=1

xi,`,

104 Linear Programming

and system P has a feasible solution of value k if and only if Q does.

To obtain the system of constraints forcing (6.2), we perform the fol-

lowing transformation for every t ∈ {1, . . . ,m}. Take one of the equations

in P :

atixi + atjxj ≥ bt.

Depending on the values of the coefficients ati, atj , several cases are to be

distinguished. We consider only the case with both ati, atj being positive,

as the other cases can be handled in a similar way. In this case we can

assume that bt > 0 because with bt ≤ 0 this constraint is superfluous. If

atiui + atjuj = bt, then in every feasible solution of P , we should have

xi = ui and xj = uj , and thus the instance can be simplified by deleting

these variables. Thus without loss of generality, we can assume that

0 < bt < atiui + atjuj . (6.3)

For ` ∈ {0, 1, . . . , ui}, we put

αt` =

⌈
bt − `ati
atj

⌉
− 1.

Let us observe that for each ` ≥ 0, we cannot have both xi ≤ ` and

xj ≤ αt`. Indeed, if it were the case, then

atixi + atjxj ≤ ati`+ atjαt` < bt,

contradicting the inequality atixi + atjxj ≥ bt. Hence, for every `, we

have that

xi ≥ `+ 1, or xj ≥ αt` + 1. (6.4)

Moreover, if (6.4) holds for every `, then atixi + atjxj ≥ bt.
To express (6.4) in terms of constraints for the variables xi`, for every

`, we proceed as follows (exhaustiveness follows from (6.3)).

• If 0 ≤ ` ≤ ui − 1 and 0 ≤ αt` ≤ uj − 1, then (6.4) holds if and only if

xi,`+1 = 1 or xj,αt`+1 = 1. Equivalently, (6.4) holds if and only if

xi,`+1 + xj,αt`+1 ≥ 1.

• If 0 ≤ ` ≤ ui− 1 and αt` = uj , then by (6.4), we have that xi ≥ `+ 1.

Therefore,

xi,`+1 = 1.

6.4 Component Order Connectivity 105

• If ` = ui, then by (6.4), xj ≥ αt` + 1, in which case αt` ≤ uj − 1.

Hence, the new constraint is

xj,αt`+1 = 1.

The description of the system of constraints for Q is complete. To con-

clude, let vector (xi)1≤i≤n be a feasible solution of P . Then (6.4) holds.

Hence the vector (xi,`)1≤i≤n,1≤`≤ui defined by (6.2) is a feasible solution

of Q. In the opposite direction, if (xi,`)1≤i≤n,1≤`≤ui is a feasible solu-

tion for Q, then (xi)1≤i≤n defined by (6.2) satisfies (6.4), and thus is a

feasible solution for P .

In Section 6.2, we have shown the equivalence of Min-Ones-2-SAT

and Vertex Cover. Now we can use Theorem 6.7 to reduce the pa-

rameterized version of (IP2) to Min-Ones-2-SAT. The parameterized

version of (IP2), Min-Weight-2-IP, is defined as follows: Given an in-

stance I of (IP2) and a non-negative integer k, the task is to decide

whether I has a feasible solution of weight at most k.

Corollary 6.8. Min-Weight-2-IP with constraint values bounded by a

polynomial of the input length admits a kernel with at most 2k variables.

Proof. Let (I, k) be an instance of Min-Weight-2-IP. By making use of

Theorem 6.7, we construct an instance (I ′, k) of Min-Ones-2-SAT. This

construction is done in time polynomial in |I| and the maximum value of

the constraint bounds ui in (I, k), which is polynomial. By Corollary 6.6,

(I ′, k) has a kernel with at most 2k variables. As we discussed in the

beginning of this section, every instance of 2-SAT can be encoded as an

integer program of the form (2SAT), which is the special case of (IP2).

As this program has at most 2k variables, the proof is complete.

6.4 Component Order Connectivity

In the strategy we employed to solve Component Order Connec-

tivity in Section 5.4, we constructed a bipartite graph where one side

of the bipartition was an approximate solution A. As the size of A could

already be (`+ 1)k, and in addition we required the other side B to be

of size at least (2` − 1)|A| to be able to derive the desired expansion,

we obtained a kernel with O(`2k) vertices. If we were to replace A by

a solution of size k, we could have obtained a kernel with only O(`k)

vertices. However, if we had a solution of size k at hand, then we would

106 Linear Programming

have no problem to solve in the first place. Then, how can we devise

a reduction rule that is similar to Rule COC.2, but which concerns a

solution of size k rather than the approximate solution A? Here, the use

of LP comes into play.

For this purpose, we seek a pair (X,Y) of subsets of vertices where

we know it is safe to delete X using the arguments we considered in

the proof of the safeness of Rule COC.2. However, now we do not have

disjoint sets, A and B, so that X ⊆ A and Y ⊆ B. Formally, we seek a

pair defined as follows.

Definition 6.9. For a graph G, a pair (X,Y) of vertex-disjoint subsets

of V (G) is reducible if the following conditions are satisfied.

• N(Y) ⊆ X.

• Let C be the set of connected components of G[Y]. Then, the size of

every component in C is at most `.

• There exists a function f : C → X, such that

– for all C ∈ C, f(C) ∈ N(V (C)), and

– for all x ∈ X,
∑
C∈f−1(x) |V (C)| ≥ `.

In addition, if there exists x ∈ X such that
∑
C∈f−1(x) |V (C)| ≥ 2`,

then (X,Y) is strictly reducible.

The usefulness of the definition of strictness will become clear when we

discuss how to compute a reducible pair. Before we proceed to present

this computation, let us first see that if we had such a pair at hand, that

would indeed be useful.

Lemma 6.10. Let (X,Y) be a reducible pair. Then, if (G, k, `) is a

yes-instance of Component Order Connectivity, then there exists

a solution S such that X ⊆ S and S ∩ Y = ∅.

Proof. Let f be a function that witnesses that (X,Y) is a reducible

pair. Observe that for all C ∈ C, f(C) ∈ N(V (C)), and for all x ∈ X,∑
C∈f−1(x) |V (C)| ≥ `. Thus, for every solution S and for every x ∈ X,

we have that S ∩ ({x} ∪ V (f−1(x))) 6= ∅. (By V (f−1(x)) we refer to

the union of the vertex sets of the connected components in f−1(x).)

Furthermore, since N(Y) ⊆ X, we derive that for any solution S, we

have that (S \Y)∪X is a solution as well. This concludes the proof.

In what follows, we first argue that if n ≥ 2`k + 1 and we have a yes-

instance at hand, then there exists a strictly reducible pair. Afterwards,

we use LP to find such a pair.

6.4 Component Order Connectivity 107

6.4.1 Existence of a reducible pair

We would actually not always work directly with a reducible pair, but

with a slightly different notion that is defined as follows.

Definition 6.11. For a graph G, a pair (X,Y) of vertex-disjoint subsets

of V (G) is fractionally-reducible, or f-reducible for short, if the following

conditions are satisfied.

• N(Y) ⊆ X.

• Let C be the set of connected components of G[Y]. Then, the size of

every component in C is at most `.

• There exists a function g : C ×X → N ∪ {0}, such that

– for all C ∈ C and x ∈ X such that g(C, x) 6= 0, x ∈ N(V (C)),

– for all x ∈ X,
∑
C∈C g(C, x) ≥ 2`− 1, and

– for all C ∈ C, ∑x∈X g(C, x) = |V (C)|.
In addition, if there exists x ∈ X such that

∑
C∈C g(C, x) ≥ 2`, then

(X,Y) is strictly f-reducible.

We say that a (resp. strictly) f-reducible pair (X,Y) is minimal if there

does not exist a (resp. strictly) reducible pair (X ′, Y ′) such that X ′ (X

and Y ′ ⊆ Y . Let us first claim that if we had a partition (A,B) of V (G)

and we only looked for an f-reducible pair (X,Y) such that X ⊆ A and

Y ⊆ B, then this task is in fact easy. Later, we see how to deduce a

partition (A,B) of V (G) that will capture an f-reducible pair (if one

exists) in time nO(`) rather than 2n (the number of all partitions).

Lemma 6.12. Given a pair (A,B) of vertex-disjoint subsets of V (G),

there is a polynomial-time algorithm to compute an f-reducible pair (X,Y)

such that X ⊆ A and Y ⊆ B or decide that such a pair does not exist.

The proof of Lemma 6.12, based on the methods discussed in Chapter

5, is given as Exercise 6.1. The main tool in the proof of the existence

of a reducible pair is based on the Weighted Expansion Lemma (Lemma

5.6). Let us now highlight an appropriate stronger version of it that is

of independent interest. The statement of this variant is as follows.

Lemma 6.13. Let q be a positive integer, G be a bipartite graph with

vertex bipartition (A,B), and w : B → {1, . . . ,W} such that

(i) w(B) ≥ q|A| (resp. w(B) ≥ q|A|+ 1), and

(ii) there are no isolated vertices in B.

108 Linear Programming

Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B and a function

f : Y → X such that

• for all b ∈ Y , f(b) ∈ N(b),

• for all a ∈ X, w(f−1(a)) ≥ q − (W − 1),

• there exists a ∈ X such that w(f−1(a)) ≥ q (resp. w(f−1(a)) ≥ q+1),

and

• no vertex in Y has a neighbor outside X, i.e. N(Y) ⊆ X.

Furthermore, the sets X and Y and the function f can be found in time

O(mn1.5W 2.5).

The proof of this lemma follows the lines of the proof of Lemma 5.6,

and it is given as Exercises 6.2 and 6.3. Having Lemma 6.13 at hand, we

argue about the existence of f-reducible pairs and (standard) reducible

pairs. The proof of the first lemma is given as Exercise 6.4.

Lemma 6.14. Suppose that n ≥ 2`k (resp. n ≥ 2`k+1) and (G, k, `) is a

yes-instance of Component Order Connectivity to which Rule COC.1

is not applicable. Let S be a solution for (G, k, `). Then, there exists a

(resp. strictly) f -reducible pair (X,Y) such that X ⊆ S.

Let us now consider the existence and computation of standard re-

ducible pairs given f-reducible pairs.

Lemma 6.15. Let (A,B) be a (resp. strictly) f-reducible pair. Then,

there exists a (resp. strictly) reducible pair (X,Y) such that X ⊆ A and

Y ⊆ B, and such a pair can be found in polynomial time.

Proof. We construct a bipartite graph as in Section 5.4. More precisely,

we have a bipartite graph G′ with bipartition (A, B̃), which is defined

as follows. First, for every connected component C of G[B], we have a

vertex vc in B̃. Second, there is an edge between a vertex u ∈ A and

vc ∈ B̃ if and only if u has a neighbor in the connected component

C. Moreover, we define w : B̃ → {1, . . . , `} as follows: for every vertex

vc ∈ B̃, the weight of vc is |V (C)| ≤ `. Because (A,B) is a (resp. strictly)

f-reducible pair, we have that w(B̃) ≥ (2` − 1)|A| (resp. w(B̃) ≥ (2` −
1)|A|+1), and that there are no isolated vertices in B̃. Thus, by Lemma

6.13, there exist nonempty vertex sets X ⊆ A and Ỹ ⊆ B̃, and a function

f : Ỹ → X such that

• for all b ∈ Ỹ , f(b) ∈ N(b),

• for all a ∈ X, w(f−1(a)) ≥ (2`− 1)− (`− 1) = `,

6.4 Component Order Connectivity 109

• there exists a ∈ X such that w(f−1(a)) ≥ 2`− 1 (resp. w(f−1(a)) ≥
(2`− 1) + 1 = 2`), and

• no vertex in Ỹ has a neighbor outside X, i.e. N(Ỹ) ⊆ X.

Denote Y =
⋃
vc∈Ỹ V (C). Then, because N(B) ⊆ A, the properties

above immediately imply that (X,Y) is a (resp. strictly) reducible pair.

6.4.2 Computation of a reducible pair

In light of Lemmata 6.10, 6.14, and 6.15, it remains to show how to

compute a reducible pair efficiently. Here, we shall obtain a running

time nO(`), which means that we would have a kernel for any fixed `. We

remark that the running time can be sped-up to 2O(`)nO(1) by using a

method, called color coding, to design parameterized algorithms. By the

arguments we have so far, we deduce that to conclude our task, it would

be sufficient to find a pair (A,B) of vertex-disjoint subsets of V (G) that

capture an f-reducible pair (X,Y), that is, X ⊆ A and Y ⊆ B.

Towards the computation of a reducible pair, we encode our instance

(G, k, `) of Component Order Connectivity as an IP problem. We

introduce n = |V (G)| variables, one variable xv for each vertex v ∈
V (G). Setting the variable xv to 1 means that v is in S (the solution

we seek), while setting xv = 0 means that v is not in S. To ensure

that S contains a vertex from every connected set of size ` + 1, we can

introduce constraints
∑
v∈C xv ≥ 1 where C is a connected set of size

`+ 1. The size of S is given by
∑
v∈V (G) xv. This gives us the following

IP formulation:

Min
∑
v∈V (G) xv

subject to
∑
v∈C xv ≥ 1 for every connected set C of size `+ 1

xv ∈ {0, 1} for every v ∈ V (G)
(COC-IP)

Note that there are nO(`) connected sets of size at most ` in a graph on

n vertices. Hence, providing an explicit IP requires nO(`) time, which

forms the bottleneck for the running time of the kernelization algo-

rithm that follows. We denote by (COC-LP) the LP relaxation of (COC-

IP) obtained by replacing the constraint xv ∈ {0, 1} by the constraint

0 ≤ xv ≤ 1. By an optimal LP solution SL with weight L, we refer to

the set of values assigned to each variable whose total cost (given by∑
v∈V (G) xv) is L. For a set of vertices X ⊆ V (G), X = 1 (X = 0)

denotes that every variable corresponding to vertices in X is set to 1

110 Linear Programming

(0). In what follows, we show that for a strictly reducible pair (X,Y),

at least one vertex in X would correspond to a variable set to 1, and

that, in turn, would imply that all vertices in X would correspond to

variables set to 1 while all vertices in Y would correspond to variables

set to 0. Having these arguments at hand, we can then turn to compute

a reducible pair. To this end, we first need the following lemma.

Lemma 6.16. Let SL be an optimal LP solution for (COC-LP) such

that xv = 1 for some v ∈ V (G). Then, SL restricted to {xu | u ∈
V (G) \ {v}} is an optimal LP solution for G− v of value L− 1.

Proof. First, note that SL restricted to {xu | u ∈ V (G) \ {v}} is a

feasible solution forG−v of value L−1. Suppose, by way of contradiction,

thatG−v has a solution SL′ such that L′ < L−1. Then, by extending SL′

to assign 1 to xv, we obtain a solution for G of value smaller than L. This

contradicts the optimality of SL, and thus we conclude the proof.

As a corollary of this lemma, we have the following result.

Corollary 6.17. Let SL be an optimal LP solution for (COC-LP) such

that X = 1 for some X ⊆ V (G). Then, SL restricted to {xu | u ∈
V (G) \X} is an optimal LP solution for G−X of value L− |X|.

We now proceed to prove the two lemmata that would imply the

existence of an f -reducible pair (X,Y) where X is set to 1 and Y is set

to 0.

Lemma 6.18. Let (X,Y) be a strictly reducible pair. Then, every opti-

mal LP solution for (COC-LP) sets at least one variable corresponding

to a vertex in X to 1.

Proof. Let f be a function that witnesses that (X,Y) is a strictly re-

ducible pair, and let SL be an optimal solution for (COC-LP). Then,

there exists v ∈ X such that
∑
C∈f−1(v) |V (C)| ≥ 2`. We claim that

xv = 1, which would conclude the proof. Suppose, by way of contradic-

tion, that xv 6= 1, which implies that xv < 1 (because SL is optimal).

Since (X,Y) is a reducible pair, we have that every connected com-

ponent of G[Y] has size at most `. Because N(Y) ⊆ X, from any LP

solution SL, a feasible LP solution can be obtained by setting X = 1

and Y = 0. Since SL is optimal, we deduce that
∑
w∈X∪Y xw ≤ |X| is

satisfied by SL. Now, note that for all u ∈ X, we have that G[{u} ∪
V (f−1(u))] is a connected graph on at least `+ 1 vertices, which means

that
∑
w∈{u}∪V (f−1(w)) xw ≥ 1 is satisfied by SL. From this, we get that

6.4 Component Order Connectivity 111

for all u ∈ X,
∑
w∈{u}∪V (f−1(u)) xw = 1 is satisfied by SL. In particular,∑

w∈{v}∪V (f−1(v)) xw = 1 is satisfied by SL. Since xv < 1, there exists

C ′ ∈ f−1(v) such that
∑
w∈V (C′) xw > 0 is satisfied by SL. This means

that
∑
w∈{v}∪V (f−1(v))\V (C′) xw < 1 is satisfied by SL. However, every

connected component in G[Y] has at most ` vertices, and hence because∑
C∈f−1(v) |V (C)| ≥ 2`, we have that {v} ∪ V (f−1(v)) \ V (C ′) is a con-

nected set on at least ` + 1 vertices. This contradicts the feasibility of

SL.

By Lemma 6.15, we have the following corollary of Lemma 6.18.

Corollary 6.19. Let (X,Y) be a strictly f-reducible pair. Then, every

optimal LP solution for (COC-LP) sets at least one variable correspond-

ing to a vertex in X to 1.

Lemma 6.20. Suppose that (G, k, `) is an instance of Component Or-

der Connectivity to which Rule COC.1 is not applicable. Let (X,Y)

be a minimal strictly f-reducible pair, and let SL be an optimal LP so-

lution. If there exists a vertex v ∈ X such that SL sets xv = 1, then SL
also sets X = 1 and Y = 0.

Proof. Let v be a vertex in X such that SL sets xv to 1. Let X ′ ⊆ X

be the set of all vertices in X whose variables are set to 1 by SL. We

claim that X ′ = X, which would conclude the proof. Suppose, by way of

contradiction, that this claim is false. Let C denote the set of connected

components of G[Y], and let C′ denote the set of connected components

C ∈ C such that N(V (C)) ⊆ X ′. Moreover, denote Y ′ =
⋃
C∈C′ V (C).

Because (X,Y) is minimal and X ′ (X, we have that (X̂, Ŷ) is not a

strictly f-reducible pair for any X̂ ⊆ X ′ and Ŷ ⊆ Y . Note that X ′ is

a solution to the instance (G[X ′ ∪ Y ′], |X ′|, `) of Component Order

Connectivity, and hence G[Y ′] has no connected component on at

most ` vertices. By Lemma 6.14, if |Y ′| ≥ (2`− 1)|X ′|+ 1, then (G[X ′ ∪
Y ′], |X ′|, `) has a strictly f-reducible pair (X ′′, Y ′′) such that X ′′ ⊆ X ′.
Since N(Y ′′) ⊆ N(X ′), this means that (X ′′, Y ′′) is a strictly f-reducible

pair also with respect to G, which is a contradiction. This implies that

|Y ′| ≤ (2`−1)|X ′|. Because (X,Y) is a strictly f-reducible pair, we have

that |Y | ≥ (2`− 1)|X|+ 1. Therefore, |Y \ Y ′| ≥ (2`− 1)|X|+ 1− (2`−
1)|X ′| = (2`− 1)|X \X ′|+ 1.

In addition, let SL′ be defined as SL when restricted to the graph

G−X ′. By Corollary 6.17, we have that SL′ is an optimal LP solution

for G−X ′. By Corollary 6.19, because SL′ does not set any variable in

X \X ′ to 1, we have that (X̂, Ŷ) is not a strictly f-reducible pair with

112 Linear Programming

respect to G−X ′ for any X̂ ⊆ X \X ′ and Ŷ ⊆ V (G−X ′)\X̂. Now, note

that X \X ′ is a solution for G[(X \X ′)∪ (Y \Y ′)]. Moreover, as (X,Y)

is an f-reducible pair and every component in G[Y \Y ′] has a vertex that

is a neighbor of a vertex in X \X ′, we have that G[(X \X ′)∪ (Y \ Y ′)]
has no connected component on at most ` vertices. However, because

|Y \Y ′| ≥ (2`−1)|X \X ′|+ 1, this means that Lemma 6.15 implies that

G[(X \X ′)∪ (Y \ Y ′)] has a strictly f-reducible pair (X ′′, Y ′′) such that

X ′′ ⊆ X \X ′. Because N(Y ′′) ⊆ X, this in turn means that (X ′′, Y ′′)
is a strictly f-reducible pair also with respect to G−X ′. Thus, we have

reached a contradiction. From this we conclude that X = 1 is satisfied

by SL. In turn, since SL is optimal, we have that Y = 0 is also satisfied

by SL. Indeed, otherwise by modifying SL to set Y = 0 , we obtain a

feasible solution that contradicts the optimality of SL. This concludes

the proof.

We are now ready to show how to compute a reducible pair.

Lemma 6.21. There exists an nO(`)-time algorithm that, given an in-

stance (G, k, `) of Component Order Connectivity on at least 2`k+

1 vertices to which Rule COC.1 is not applicable, either finds a reducible

pair (X,Y) or concludes that (G, k, `) is a no-instance.

Proof. Our algorithm consists of three steps, defined as follows:

• Step 1. Solve (COC-LP) in time polynomial in the size of the pro-

gram, that is, nO(`). Let A and B be the sets of vertices that the LP

solution has set to 1 and 0, respectively.

• Step 2. Call the polynomial-time algorithm given by Lemma 6.12 to

compute an f-reducible pair (X,Y) such that X ⊆ A and Y ⊆ B or

decide that such a pair does not exist. In the former case, proceed

to the third step, and in the latter case, conclude that (G, k, `) is a

no-instance.

• Step 3. Call the polynomial-time algorithm given by Lemma 6.15 to

compute a reducible pair (X ′, Y ′) such that X ′ ⊆ X and Y ′ ⊆ Y .

Clearly, the algorithm runs in polynomial time. Due to Lemma 6.15,

to conclude the correctness of the algorithm, it remains to show that if

the algorithm concludes in Step 2 that (G, k, `) is a no-instance, then this

conclusion is correct. By Lemma 6.14, if (G, k, `) is a yes-instance, then

there exists a strictly f-reducible pair, and in particular this means that

there exists a minimal strictly f-reducible pair (P,Q). By Corollary 6.19

and Lemma 6.20, this means that if (G, k, `) is a yes-instance, in Step

6.4 Component Order Connectivity 113

1 we obtain a partition (A,B) such that P ⊆ A and Q ⊆ B. However,

this means that if (G, k, `) is a yes-instance, then the algorithm will not

wrongly conclude in Step 2 that it is a no-instance.

6.4.3 Putting it all together

The kernelization algorithm consists of the exhaustive application of

Rule COC.1 and the following rule.

Reduction COC.3. If n ≥ 2`k+1, then call the algorithm in Lemma

6.21 to compute an f-reducible pair (X,Y). Delete X and Y from G

and decrease k by |X|. The new instance is (G− (X ∪Y), k− |X|, `).

The safeness of this rule follows from Lemma 6.10. After exhaustively

applying this rule, we end up with a graph on at most 2k` vertices. Thus,

we have proved the following theorem.

Theorem 6.22. For any fixed `, Component Order Connectivity

admits a kernel with 2`k vertices.

Exercises

Problem 6.1. Prove Lemma 6.12.

Problem 6.2. Towards the proof of Lemma 6.13, prove the following results.

• Observe that the proof of Lemma 5.5 also shows that the following more general
statement holds:

Lemma 6.23. Let q be a positive integer, G be a bipartite graph with vertex
bipartition (A,B), and w : B → {1, . . . ,W} such that

(i) there are no isolated vertices in B, and
(ii) for every A′ ⊆ A, w(N(A′)) ≥ q|A′|.
Then, there exists a function f : B → A such that

– for every b ∈ B, f(b) ∈ N(b),
– for every a ∈ A, w(f−1(a)) ≥ q −W + 1, and
– there exists a ∈ A such that w(f−1(a)) ≥ q.
Furthermore, such a function f can be found in time O(qm

√
nW 1.5 +mn).

• Prove the following variant of Lemma 5.5.

Lemma 6.24. Let q be a positive integer, G be a bipartite graph with vertex
bipartition (A,B), and w : B → {1, . . . ,W} such that

(i) there are no isolated vertices in B,
(ii) for every A′ ⊆ A, w(N(A′)) ≥ q|A′|, and
(iii) w(B) ≥ q|A|+ 1.

114 Linear Programming

Then, there exists a function f : B → A such that

– for every b ∈ B, f(b) ∈ N(b),
– for every a ∈ A, w(f−1(a)) ≥ q −W + 1, and
– there exists a ∈ A such that w(f−1(a)) ≥ q + 1.

Furthermore, such a function f can be found in time O(qm
√
nW 1.5 +mn).

Problem 6.3. Prove Lemma 6.13.

Problem 6.4. Prove Lemma 6.14.

Bibliographic notes

Nemhauser-Trotter’s Theorem (Theorem 6.1) is a classical result from

Combinatorial Optimization by Nemhauser and Trotter (1974). Our

proof of this theorem mimics the proof from (Khuller, 2002). The appli-

cation of Nemhauser-Trotter’s Theorem to design a kernel for Vertex

Cover (Theorem 6.2) was observed by Chen et al. (2001). The rela-

tion between this result and a crown decomposition was addressed in

(Abu-Khzam et al., 2007; Chleb́ık and Chleb́ıková, 2008). It is an open

question if there is a kernel for Vertex Cover with (2 − ε)k vertices

for some ε > 0. Based on the work of Soleimanfallah and Yeo (2011),

Lampis (2011) obtained a kernel with 2k − c log k vertices, where c is

some constant. The kernelization based on Nemhauser-Trotter’s Theo-

rem can also be used to obtain a kernel for the weighted version of the

vertex cover problem. If we parameterize the problem by the weight W

of the solution, then Nemhauser-Trotter’s Theorem provides us a kernel

with 2W vertices. A generalization of Nemhauser-Trotter’s Theorem to

obtain polynomial kernels for vertex removal problems to graphs of con-

stant degree d is due to Fellows et al. (2011). This generalization was

extended in (Xiao, 2017b) to obtain linear kernels for any constant d.

Relations between (VC), (IP2), and (2SAT) are well known in com-

binatorial optimization, see e.g. Chapter 3 of Hochbaum (1997). The

parameterized reduction of Theorem 6.5 is from Misra et al. (2010).

Theorem 6.7 is attributed to Feder in Hochbaum (1997). The proof of

this theorem follows the proof from Chapter 3 of Hochbaum (1997). The

kernelization algorithm for Component Order Connectivity is due

to Kumar and Lokshtanov (2016).

7

Hypertrees

In this chapter we give two examples of kernelization algorithms based on a

deep min-max theorem about partition-connectedness of hypertrees. The exam-

ples we consider concern the Set Splitting and Max-Internal Spanning

Tree problems.

7.1 Hypertrees and partition-connectedness

Let H be a hypergraph with vertex set V (H) and hyperedge set E(H),

where a hyperedge e ∈ E(H) is a subset of V (H). With every hypergraph

H we associate a graphas follows: The primal graph (also called the

Gaifmann graph) of H, denoted by P (H), has the same vertices as

H, and two vertices u, v ∈ V (H) are adjacent in P (H) if there is a

hyperedge e ∈ E(H) such that u, v ∈ e. We say that H is connected or

has r components if the corresponding primal graph P (H) is connected

or has r components, respectively. Now, we define notions related to

forests in hypergraphs.

Definition 7.1. Let H be a hypergraph. A subset F ⊆ E(H) of hy-

peredges is a hyperforest if every hyperedge e ∈ F can be shrunk into

an edge e′ (that is, e′ ⊆ e contains exactly two vertices from e) in such

a way that the graph T with vertex set V (T) = V (H) and edge set

E(T) = F ′ = {e′ | e ∈ F} forms a forest (in the usual sense). A hyper-

forest with |V (H)| − 1 hyperedges is called a hypertree.

Observe that if F is a hypertree, then its set of shrunk edges F ′ forms a

spanning tree on V (T). In terms of graphs, the definition of a hyperforest

115

116 Hypertrees

e1e4

v1 v2
v3

v4

e2 e3

v1

v2

v3

v4

e2

e3

e1

e4

H:

GH :

e1

v1 v2
v3

v4

e2 e3

v1

v2

v3

v4

e2

e3

e1

e4

T:

T:

Figure 7.1 A hypergraph H with hyperedges e1 = {v1, v2, v3}, e2 =

{v1, v4}, e3 = {v3, v4}, and e4 = {v1, v2}. The subset of hyperedges

F = {e1, e2, e3} is a hypertree.

can be interpreted in the following way. With every hypergraph H, we

associate an incidence graph, which is a bipartite graph GH = (U, V,E)

with U = E(H) and V = V (H). Vertices e ∈ U and v ∈ V are adjacent

in GH if and only if v ∈ e in H. Then, a subset of hyperedges F is a

hyperforest if and only if GH contains a forest T such that the degree

of every vertex e ∈ F in T is 2. See Fig. 7.1.

A natural question that arises at this point asks how can we test

whether a hypergraph H contains a hypertree? Furthermore, if there

exists one, then how do we find it? In the context of these questions, we

need the following classical result of Lovász.

Theorem 7.2. Let F be a subset of hyperedges of a hypergraph H. The

following are equivalent

(i) F is a hyperforest;

(ii) For every subset X of F , | ∪X| ≥ |X|+ 1, where ∪X denotes the set

of all vertices belonging to at least one hyperedges in X.

Condition (ii) of Theorem 7.2 is strongly related to the condition of

Hall’s Theorem (Theorem 4.2). For the induced subgraph A = (U, V,E)

of the incidence graph GH with U = F and V = ∪F , condition (ii) says

that |N(X)| ≥ |X|+ 1 for all X ⊆ U . This is why this condition is also

7.1 Hypertrees and partition-connectedness 117

called the strong Hall’s condition, where strong stands for the extra plus

one added to the usual Hall’s condition.

Another notion of connectivity that is associated with hypergraphs is

called partition connectedness. To define this notion, let H be a hyper-

graph. The border of a partition P = {V1, . . . , Vp} of V (H) is the set

δ(P) of hyperedges of H such that each of the hyperedges from δ(P)

intersects at least two parts of P.

Definition 7.3. A hypergraph H is partition-connected if |δ(P)| ≥ |P|−
1 for every partition P of V (H).

For example, it is easy to show by induction on the number of parti-

tions, that a graph is connected if and only if it is partition-connected.

Since a graph is connected if and only if it contains a spanning tree, we

have that every graph is partition-connected if and only if it contains a

spanning tree.

The following theorem is due to Frank, Király, and Kriesell and it

generalizes our observation from graphs to hypergraphs.

Theorem 7.4. A hypergraph H contains a hypertree if and only if H

is partition-connected.

Next, we present an algorithm based on Theorem 7.4.

Theorem 7.5. Let H be a hypergraph. In polynomial time, one can find

either a hypertree T in H or a partition P = {V1, . . . , Vp} of V (H) such

that |δ(P)| ≤ |P| − 2.

Proof. The proof sketch relies on the notion of a matroid—readers un-

familiar with this notion are referred to Chapter 10. Lorea proved that

MH = (E,F), where F is the set of hyperforests of H, is a matroid

(see Frank et al. (2003) or Loréa (1975)), called the hypergraphic ma-

troid. Observe that when this definition is restricted to graphs, it simply

corresponds to a graphic matroid.

We first a polyomial-time algorithm that constructs a hypertree, if

one exists, greedily. We start with an empty hyperforest, and iteratively

try to grow our current hyperforest by adding new hyperedges. When

inspecting a new hyperedge, we either reject or accept its addition to our

current hyperforest, depending on whether or not by adding it we still

have a hyperforest. When we can no longer add hyperedges, we check

whether our current hyperforest is a hypertree; if it is not, then we turn

118 Hypertrees

to seek the desired partition as described below. Observe that if H has

a hypertree, then due to axiom (I3) (in Definition 10.1) satisfied by the

matroid MH = (E,F), it is guaranteed that our greedy process will

indeed find a hypertree (Exercise 7.1). The only question that remains

to be answered in this context asks us how to test efficiently if a given set

of hyperedges forms a hyperforest. In other words, by Theorem 7.2, we

have to determine if the strong Hall’s condition holds. However, this can

be easily done in polynomial time as follows. For every subhypergraph

H \v of H, where v ∈ V (H) and H \v is the hypergraph consisting of all

the hyperedges e \ v for e ∈ E(H), we test whether the standard Hall’s

condition is satisfied (Theorem 4.2)).

Given a hypertree, we can also find a way to shrunk its hyperedges in

order to obtain a spanning tree in polynomial time. For this, consider any

hyperedge e of the hypertree with more than two vertices (if none exists,

we already have our tree). Observe that one of the vertices v ∈ e can

be deleted from e in such a way that we still have a hypertree (Exercise

7.2). We find such a vertex by checking the strong Hall’s condition for

every choice of e \ v where v ∈ e. This implies that we need to apply the

algorithm to test the strong Hall condition at most |V | times to obtain

the desired spanning tree. Consequently, there exists a polynomial time

algorithm that can find a contracted spanning tree out of a partition-

connected hypergraph.

We now turn to the co-NP certificate, that is, we want to exhibit a

partition P of V (H) such that |δ(P)| < |P|−1 when H is not partition-

connected. The algorithm simply tries to contract every pair of ver-

tices in H = (V,E) and checks if the resulting hypergraph is partition-

connected. When it is not, we contract the two vertices, and recurse.

We stop when the resulting hypergraph H ′ is not partition-connected,

and every contraction results in a partition-connected hypergraph. Ob-

serve then that if a partition P of H ′ is such that |δ(P)| < |P| − 1 and

P has a part which is not a singleton, then contracting two vertices of

this part results in a non partition-connected hypergraph. Hence, when

we stop, we have a singleton partition at hand. This singleton partition

corresponds to the partition of H which gives our co-NP certificate.

7.2 Set Splitting

Let f be a function from the vertex set of a hypergraph H to {0, 1}. We

say that f splits a hyperedge e if there exist two vertices u, v ∈ e such

7.2 Set Splitting 119

that f(u) = 0 and f(v) = 1. If the function f splits all of the hyperedges

of H, then it is often referred to as a 2-coloring of H. Let us remind that

a (proper) coloring of a graph is an assignment of colors to its vertices

so that no edge is monochromatic. Similarly, note that a 2-coloring of

a hypergraph is also an assignment of colors to its vertices so that no

hyperedge is monochromatic.

The problem of coloring a hypergraph in two colors is mostly known

as the Set Splitting problem. Formally, the input for this problem

consists of a hypergraph H and a positive integer k. The objective is

to decide where there exists a function f : V (H) → {0, 1} that splits

at least k hyperedges in H. A special case of Set Splitting, where

the input hypergraph H is a graph, is a parameterized version of the

well-known MaxCut problem.

We will obtain a kernel for Set Splitting with at most k vertices

and 2k hyperedges using the hypergraph machinery developed in the

previous section. To obtain our kernel, we implement the following plan.

• With simple reduction rules, we eliminate all hyperedges of size one,

bound the number of hyperedges by 2k and show that the primal

graph is connected.

• Using the hypergraph machinery we show that the reduced hyper-

graph has at most k+ 1 vertices. This is the most difficult part of the

proof, and it is based on the following idea.

• If a hypergraph contains no hypertree, then in polynomial time we can

identify a non-empty subset of hyperedges that can always be split.

This allows us to reduce the instance.

• Otherwise, the hypergraph contains a hypertree. In this case, we show

that a hypergraph with more than k vertices is always a yes-instance.

We start with the following simple reduction rule.

Reduction SS.1. Let (H, k) be an instance of Set Splitting with

an edge e ∈ E(H) such that |V (e)| = 1. Then, output the new in-

stance (H \ {e}, k).

Next, we present a lemma that allows us to bound the number of

hyperedges in any no-instance.

120 Hypertrees

Lemma 7.6. Let H be a hypergraph with vertex set V (H) and edge set

E(H) = {e1, . . . , em}, such that for all i ∈ {1, . . . ,m}, ri = |V (ei)| ≥ 2.

Then, there exists f : V (H)→ {0, 1} splitting at least m
2 hyperedges.

Proof. Let f : V (H) → {0, 1} be a function assigning each vertex in

V (H) either 0 or 1, each with probability 1
2 . Then, a hyperedge ei is not

split only if all the elements in the set V (ei) are mapped to the same

value, which happens with probability 2
2ri = 1

2ri−1 . Let Xi be a {0, 1}
random variable that takes the value 1 if ei gets split, and 0 otherwise.

Let X =
∑m
i=1Xi. By the linearity of expectation, the expected value

of the random variable X is given by

E[X] =

m∑

i=1

E[Xi] =

m∑

i=1

(
2ri − 2

2ri

)
=

m∑

i=1

(
1− 1

2ri−1

)
.

Since ri ≥ 2, we have that E[X] ≥ m
2 . Hence, there is a function f

splitting at least m/2 hyperedges. This concludes the proof of lemma.

We apply Rule SS.1 to (H, k) as long as it is possible. Let (H ′, k) be

the resulting instance of Set Splitting. Then, (H, k) is a yes-instance

if and only if (H ′, k) is. Without loss of generality we will denote the

resulting instance also by (H, k). By Lemma 7.6, we have that if an

instance (H, k) of Set Splitting without hyperedges of size 1 has more

than 2k hyperegdes, then (H, k) is a yes-instance. Thus in this case, we

can replace (H, k) by a trivial yes-instance, say by the instance (C4, 4),

i.e. a graph consisting of a cycle of length 4 and k = 4.

We formalize these arguments with the following reduction rule.

Reduction SS.2. Let (H, k) be an instance of Set Splitting with-

out hyperedges of size 1. If |E(H)| ≥ 2k, then replace (H, k) by a

trivial yes-instance.

At this point we have already obtained a kernel with at most 2k

hyperedges. By adding the following reduction rule, it is possible to

bound the number of vertices in the kernel by O(k2). We leave the proof

of this claim as an exercise (Exercise 7.3).

Reduction SS.3. Let (H, k) be an instance of Set Splitting. If H

contain a hyperedge e with at least k vertices, then output the new

instance (H \ {e}, k − 1).

7.2 Set Splitting 121

Next, we present a reduction rule that applies when the hypergraph

H is disconnected, that is, when its primal graph P (H) is disconnected.

Reduction SS.4. Let (H, k) be an instance of Set Splitting such

that P (H) has connected components C1, . . . , Ct. Let v1, . . . , vt be

vertices such that vi ∈ Ci. Construct a hypergraph H ′ from H by

unifying the vertices v1, . . . , vt. Thus, V (H ′) = V (H) \ {v2, . . . , vt},
and for every hyperedge e ∈ E(H), we have an hyperedge edge e′ ∈
E(H ′) such that e′ = e if vi /∈ e for every i, and e′ = e\{v2, . . . , vt}∪
{v1} otherwise. The new instance is (H ′, k).

We leave the proof of the correctness of this rule as an exercise (Ex-

ercise 7.4).

Lemma 7.7. Let (H, k) be an instance of Set Splitting. If H is

connected and does not contain a hypertree, then there is a polynomial

time algorithm finding a non-empty subset of hyperedges X such that

(H, k) is a yes-instance if and only if (H \X, k− |X|) is a yes-instance.

Here, H \X is obtained from H by deleting the hyperedges in X.

Proof. If H has no hypertree, then by Theorem 7.4, it is not partition-

connected. This means that there is a partition P = {V1, . . . , Vp} of

V (H) such that |δ(P)| ≤ p− 2. Moreover, such a partition can be found

in polynomial time.

We proceed by induction on |δ(P)| to prove the following claim.

Claim 7.8. There is a non-empty subset X ⊆ E(H) such that for every

function f : V (H) → {0, 1}, there is a function g : V (H) → {0, 1} such

that

• every hyperedge split by f is also split by g, and

• all hyperedges from X are split by g.

If we also show how to find such a set X in polynomial time, then

the proof of the lemma will follow from the claim. Indeed, (H, k) is a

yes-instance if and only if (H \X, k − |X|) is a yes-instance.

When |δ(P)| = 1, because H is connected, we have that there is a

unique hyperedge e such that e ∩ Vi 6= ∅ for all i ∈ {1, . . . , p}. Let

f : V (H) → {0, 1} be a 2-coloring of H. We claim that it is possible to

select {e} as the desired set X. If f splits e, then there is nothing to

show. Thus, we next assume that this is not the case. Then, from every

122 Hypertrees

set Vi, the hyperedge e contains vertices colored with the same color.

Thus, by flipping colors in V1, i.e. by taking function

g(v) =

{
f(v), if v 6∈ V1,

1− f(v), if v ∈ V1,

we split e. Since no hyperedge except e belongs to δ(P), g(v) splits every

edge which was split by f . This proves the base of induction.

To prove the inductive step, let P = {V1, . . . , Vp} be a partition of

V (H) with δ(P) = {e1, e2, . . . , et}, t ≤ p− 2.

We construct an auxiliary bipartite graph GP = (VP , VE , EG). One

set of the bipartition is VP = {V1, V2, . . . , Vp} and the other side is

VE = {e1, e2, . . . , et}. There is an edge between ei ∈ VE and Vj ∈ VP in

GP if and only if ei ∩ Vj 6= ∅ in H.

We have to consider two cases:

(a) there is no matching in GP that saturates VE ;

(b) there is a matching in GP that saturates VE .

In the first case, by Hall’s Theorem, there is a nonempty subset A ⊂
VE such that |NG(A)| < |A|. Moreover, such a set A can be found

in polynomial time. We take Y = δ(P) \ {e | e ∈ A}. Clearly, 1 ≤
|Y | < t. Without loss of generality, we can assume that the sets of H

corresponding to NG(A) have indices from ` + 1 to p for some ` < p.

Consider the following partition of H, P ′ = {V1, . . . , V`, V
′}, where V ′ =⋃

`+1≤i≤p Vi. Then, Y = δ(P ′). Because

|Y | = |VE | − |A| ≤ (p− 2)− |A| < (p− 2)− |NG(A)| = `− 2 ≤ |P ′| − 1,

we have that |δ(P ′)| ≤ |P ′| − 2, which means that we can resolve this

case by using the inductive assumption.

For the second case, suppose there is a matching M = {m1, . . . ,mt}
in GP that saturates VE . Without loss of generality, let us assume that

every edge mi of M is of the form eiVi, 1 ≤ i ≤ t. Let Vt+1, . . . , Vp be

the sets corresponding to the vertices of VP unsaturated by M . We want

to order the pairs eiVi in such a way that for every i ∈ {1, . . . , t}, vertex

ei is adjacent to Vj for some j > i. An example of such an ordering is

illustrated in the left half of Fig. 7.2.

We construct this ordering in a greedy way, starting from the last

pair etVt. For i = t, . . . , 1, we seek a vertex e`, 1 ≤ ` ≤ t, such that e` is

adjacent to Vj for some j > i, and if it is found, we swap the positions

of e` and ei in the ordering. When i = t, we necessarily succeed in

7.2 Set Splitting 123

V1 V2 V3 V4

e2 e3e1 e4

V5 V6 V1 V2 V3 V4

e2 e3e1 e4

V5 V6

Figure 7.2 In the left graph, for every i ∈ {1, 2, 3, 4}, ei has at least one

neighbour among Vi+1, . . . , V6. In the right graph, there is no edge connect-

ing vertices e1 and e2 with V3, . . . , V6. In this case we apply the inductive

assumption for Y = {e3, e4}.

making a swap because H is connected, and hence there exists a vertex e`
adjacent to Vj for some j > t. If we got stuck while constructing such an

ordering, this means that for some ` < t, we found a subset of hyperedges

A = {e1, . . . , e`} such that none of these hyperedges contains vertices

from any of the sets V`+1, V`+2, . . . , Vp. (See, for example, Fig. 7.2.) In

this situation, we take the partition P ′ = (V`+1, V`+2, . . . , Vp, V
′), where

V ′ = V1∪V2∪· · ·∪V`. Then, the set Y = δ(P)\A = δ(P ′) is a set of size

at most p− 2− |A| = p− 2− ` = |P ′| − 3. Because ` < t, we have that

|Y | < |δ(P)|, and we can apply the inductive assumption. Thus, in what

follows, we assume that we succeed to construct the desired ordering.

Let f be a 2-coloring of H. As in the base case, we observe that flipping

colors in the sets Vi, 1 ≤ i ≤ p, does not which hyperedges outside δ(P)

are split. We now describe a t-step procedure of flopping colors of sets

Vi. At the i-th step, the procedure tries to flip colors (if necessary) of

the set Vt+1−i such that after flipping, the following condition holds:

Hyperedges et+1−i, . . . , et are not monochromatic. Moreover, for every j ≥
t+ 1− i, there are two differently colored vertices in ej ∩ (Vj ∪Vj+1∪ · · ·∪Vp).

Let us remark that at the t-th step of the procedure, all hyperedges of

δ(P) will be split.

The procedure starts with the set Vt and then proceeds to flip the

colorings of the sets Vi in decreasing order. By our choice of the ordering,

the hyperedge et has a vertex from a set Vi, i > t. In addition, it also has

a vertex from the set Vt. If all the vertices from Vt, Vt+1, . . . , Vp which

are in et are monochromatic according to the coloring f , we flip the

124 Hypertrees

colors of Vt. The new coloring splits et. Moreover, we did not change

which hyperedges outside δ(P) are split. At the i-th step, if the desired

condition does not hold, we flip the coloring of Vt+1−i, thus splitting

et+1−i. This flipping does not change which hyperedges ej ∈ δ(P) such

that j > t+ 1− i are split, as well as which hyperedges outside δ(P) are

split.

We set X = δ(P), and this completes the inductive proof of the claim.

It remains to observe that by Theorem 7.5, in polynomial time it can

either be deduced that H is a hypertree, or a partition P = {V1, . . . , Vp}
of V (H) such that |δ(P)| ≤ p− 2 can be found. Since in both cases the

set X is constructed in polynomial time from P, this concludes the proof

of the lemma.

Lemma 7.7 naturally gives rise to a reduction rule for the Set Split-

ting problem.

Reduction SS.5. Let (H, k) be an instance of Set Splitting such

that H is connected and contains no hypertree. Use Lemma 7.7 to

identify a setX ⊆ E(H), and output the new instance (H\X, k−|X|).

We are now ready to prove the main result of this section.

Theorem 7.9. Set Splitting admits a kernel with 2k sets and k

elements.

Proof. Given an instance (H, k) of Set Splitting, we first obtain an

equivalent instance with at most 2k hyperedges and at most 2k2 vertices,

see Exercise 7.3. We then apply Reduction Rules SS.1, SS.4 and SS.5

exhaustively. Let (H ′, k′) be the reduced instance. Since all our rules can

only reduce k, we have that k′ ≤ k. Let H ′ have n vertices and m ≤ 2k

hyperedges. We show that if n > k′ then (H ′, k′) is a yes-instance. In

particular, since Reduction Rule SS.5 cannot be applied, H ′ contains a

hypertree.

By Theorem 7.5, we can find in polynomial time a hypertree with a

set of hyperedges F of H ′. Let us remark that |F | = n−1. The incidence

graph of the hypertree is a tree with all vertices corresponding to F of

degree 2 (see Fig. 7.1). If we contract these vertices of degree 2, the result

is a tree on n vertices. A tree is also a bipartite graph and it admits a

(proper) graph coloring in two colors. Exactly the same coloring of the

vertices of H splits all hyperedges of F , whose number is n− 1. Thus if

n > k′, then (H ′, k′) is a yes-instance. This concludes the proof.

7.3 Max-Internal Spanning Tree 125

7.3 Max-Internal Spanning Tree

A vertex of a tree is an internal vertex if its degree is at least 2. In other

words, every non-leaf vertex of a tree is internal. Here, we study the

Max-Internal Spanning Tree (IST) problem, where given an undi-

rected graph G and a non-negative integer k, the objective it to decide

whether there exist a spanning tree T of G having at least k internal

vertices. This problem is a natural generalization of the Hamiltonian

Path problem—every n-vertex graph has a Hamiltonian path if and

only if it has a spanning tree with n− 2 internal vertices.

In this section we give a linear-vertex kernel for IST. This result is

also interesting because, as we shall see later in Part THREE, the pa-

rameterized version of Hamiltonian Path—find a path of length at

least k—is unlikely to have a polynomial kernel.

Let (G, k) be an instance of IST. We assume that G is connected

because otherwise (G, k) is trivially a no-instance. We show that ISThas

a 3k-vertex kernel.

The algorithm is based on the following combinatorial lemma, which is

interesting on its own. The proof of this lemma is based on Theorem 7.4,

and it is postponed to Section 7.3.1. For two disjoint sets X,Y ⊆ V (G),

we denote by B(X,Y) the bipartite graph obtained from G[X ∪ Y] by

removing all edges with both endpoints in X or in Y .

Lemma 7.10. If n ≥ 3, and I is an independent set of G of cardinality

at least 2n/3, then there are nonempty subsets S ⊆ V (G) \ I and L ⊆ I
such that

(i) N(L) = S, and
(ii) B(S,L) has a spanning tree such that all vertices of S and |S| − 1

vertices of L are internal.

Moreover, given such a set I, such subsets S and L can be found in time

polynomial in the size of G.

Now, we give the description of the kernelization algorithm and use

Lemma 7.10 to prove its correctness. The algorithm consists of the fol-

lowing reduction rules.

Reduction IST.1. If n ≤ 3k, then output (G, k) as the kernel.

In this case, (G, k) is a 3k-vertex kernel. Otherwise, proceed to

Rule IST.3.

126 Hypertrees

Reduction IST.2. Choose an arbitrary vertex v ∈ V and run DFS

(depth first search) from v. If the DFS tree T has at least k internal

vertices, then the algorithm has found a solution. Otherwise, as n >

3k, T has at least 2n/3 + 2 leaves, and since all leaves but the root

of the DFS tree are pairwise nonadjacent, the algorithm found an

independent set of G of cardinality at least 2n/3; then, proceed to

Rule IST.3.

Reduction IST.3. Find nonempty subsets of vertices S,L ⊆ V as

in Lemma 7.10. If |S| = 1, then go to Rule IST.1 with (G \L, k− 1).

Otherwise, add a new vertex vS and make it adjacent to every vertex

in N(S)\L, add a new vertex vL and make it adjacent to vS , remove

all vertices of S ∪L, and denote the new graph by GR Now, consider

the following cases.

(i) If S ∪L = V (G), then go to Rule IST.1 with (GR,max{k− 2|S|+
1, 0}).

(ii) Otherwise, go to Rule IST.1 with (GR,max{k − 2|S|+ 2, 0}).

To prove the safeness of Rule IST.3, we need the following lemma.

Here, S and L are as in Lemma 7.10. If T is a tree and X a vertex set,

we denote by iT (X) the number of vertices of X that are internal in T .

Lemma 7.11. If G has a spanning tree with at least k internal vertices,

then G has a spanning tree with at least k internal vertices where all the

vertices of S and exactly |S| − 1 vertices of L are internal.

Proof. Let T be a spanning tree of G with k internal vertices. Denote by

F the forest obtained from T by removing all edges incident to L. Then,

as long as there exist two vertices of S that are in the same connected

component of F , remove an edge from F incident to one of these two

vertices. Now, obtain the spanning tree T ′ by adding the edges of a

spanning tree of B(S,L) to F in which all vertices of S and |S| − 1

vertices of L are internal (see Lemma 7.10). Clearly, all vertices of S and

|S| − 1 vertices of L are internal in T ′. It remains to show that T ′ has

at least as many internal vertices as T .

Let U := V (G)\(S∪L). Then, we have that iT (L) ≤∑u∈L dT (u)−|L|
as every vertex in a tree has degree at least 1 and internal vertices

have degree at least 2. We also have iT ′(U) ≥ iT (U) − (|L| + |S| − 1 −∑
u∈L dT (u)) as at most |S| − 1− (

∑
u∈L dT (u)− |L|) edges incident to

7.3 Max-Internal Spanning Tree 127

S are removed from F to separate F \L into |S| connected components,

one for each vertex of S. Thus,

iT ′(V) = iT ′(U) + iT ′(S ∪ L)

≥ iT (U)− (|L|+ |S| − 1−
∑

u∈L
dT (u)) + iT ′(S ∪ L)

= iT (U) + (
∑

u∈L
dT (u)− |L|)− |S|+ 1 + iT ′(S ∪ L)

≥ iT (U) + iT (L)− |S|+ 1 + iT ′(S ∪ L)

= iT (U) + iT (L)− (|S| − 1) + (|S|+ |S| − 1)

= iT (U) + iT (L) + |S|
≥ iT (U) + iT (L) + iT (S)

= iT (V).

This finishes the proof of the lemma.

Lemma 7.12. Rule IST.3 is safe, |VR| < |V |, and k′ ≤ k.

Proof. We only consider the more difficult case where |S| > 1 and

V (G) 6= S∪L, and leave the other two cases as an exercise (Exercise 7.6

We claim first that the resulting graph GR = (VR, ER) has a spanning

tree with at least k′ = k − 2|S| + 2 internal vertices if and only if the

original graph G has a spanning tree with at least k internal vertices.

Indeed, assume G has a spanning tree with ` ≥ k internal vertices. Then,

let B(S,L) be as in Lemma 7.10 and T be a spanning tree of G with `

internal vertices such that all vertices of S and |S| − 1 vertices of L are

internal (which exists by Lemma 7.11). Because T [S ∪ L] is connected,

every two distinct vertices u, v ∈ NT (S) \ L are in different connected

components of T \ (L ∪ S). But this means that the graph T ′ obtained

from T \ (L∪ S) by connecting vS to all neighbors of S in T \ (S ∪L) is

also a tree in which the degree of every vertex in NG(S)\L is unchanged.

The graph T ′′ obtained from T ′ by adding vL and connecting vL to vS
is also a tree. Then T ′′ has exactly `− 2|S|+ 2 internal vertices.

In the opposite direction, if GR has a tree T ′′ with `−2|S|+2 internal

vertices, then all neighbors of vS in T ′′ are in different components of

T ′′ \ {vS}. By Lemma 7.10 we know that B(S,L) has a spanning tree

TSL such that all the vertices of S and |S| − 1 vertices of L are internal.

We obtain a spanning tree T of G by considering the forest T ∗ = (T ′′ \
{vS , vL})∪TSL, and adding edges between different components to make

it connected as follows. For each vertex u ∈ NT ′′(vS)\{vL}, add an edge

128 Hypertrees

uv to T ∗ for some uv ∈ E(G) such that v ∈ S. By construction we know

that such an edge always exists. Moreover, the degrees of the vertices in

NG(S) \ L are the same in T as in T ′′. Thus T is a spanning tree with

` internal vertices.

Finally, as |S| ≥ 2 L is not empty, |L∪S| ≥ 3 and therefore |VR| < |V |
and k′ ≤ k.

As Rule IST.3 compresses the graph, we conclude with the following

theorem.

Theorem 7.13. ISTadmits a 3k-vertex kernel.

7.3.1 Proof of Lemma 7.10

In this section we provide the postponed proof of Lemma 7.10. Let G

be a connected graph on n vertices, I be an independent set of G of

cardinality at least 2n/3, and C := V (G)\ I. We can assume that in the

bipartite graph B(I, C), no vertex of C is isolated because otherwise we

would have been able to add this vertex to I. nonempty sets of vertices

S′ ⊆ C and L′ ⊆ I such that N(L′) = S′ and S′ has a 2-expansion in

L′.
The proof of the following lemma is based on Theorem 7.4.

Lemma 7.14. There exist nonempty sets S ⊆ C and L ⊆ I such that

• B(S,L) has a spanning tree in which all the vertices of L have degree

at most 2,
• S has 2-expansion in L, and
• N(L) = S.

Moreover, such sets S and L can be found in time polynomial in the size

of G.

Proof. As |I| ≥ 2n/3, by Expansion Lemma (Lemma 5.2), we can find in

polynomial time nonempty sets S′ ⊆ C and L′ ⊆ I such that N(L′) = S′

and S′ has a 2-expansion into L′. We prove that there exist nonempty

sets S ⊆ S′ and L ⊆ L′ satisfying the conditions of the lemma.

The proof is by induction on |S′|. If |S′| = 1, the lemma holds with

S := S′ and L := L′.
Now, we prove the inductive step. Let H = (S′, E′) be the hypergraph

with edge set E′ = {N(v) | v ∈ L′}. First, consider the case where H

contains a hypertree. Then, it has |S′| − 1 hyperedges, and we obtain a

tree TS′ on S′ by shrinking these edges (as in Theorem 7.5). We use TS′

7.3 Max-Internal Spanning Tree 129

to find a subtree T ′ of B(S′, L′) spanning S′ as follows: for every edge

e = uv of TS′ , there exists a hyperedge corresponding to it and hence

a unique vertex, say w, in L′; we delete the edge e = uv from TS′ and

add the edges wu and wv to TS′ . Observe that the resulting subtree T ′

of B(S′, L′) has the property that every vertex of L′ that belongs to T ′

has degree 2 in T ′. Finally, we extend T ′ to a spanning tree of B(S′, L′)
by adding the remaining vertices of L′ as pendant vertices. All of these

steps can be clearly performed in time polynomial in the size of G. Thus,

S′ and L′ are the sets of vertices we are looking for.

Second, consider the case where H does not contain a hypertree. Then,

H is not partition-connected by Theorem 7.4. Then, we use Theorem 7.5

to find in polynomial time a partition P = {P1, P2, . . . , P`} of S′ such

that its border δ(P) contains at most ` − 2 hyperedges of H. Let bi be

the number of hyperedges completely contained in Pi, where 1 ≤ i ≤ `.

Then there is j, 1 ≤ j ≤ `, such that bj ≥ 2|Pj |. Indeed, otherwise

|L′| ≤ (`− 2) +
∑`
i=1(2|Pi| − 1) < 2|S′|, which contradicts the choice of

L′ and S′ as S′ has an 2-expansion in L′. Let X := Pj and Y := {w ∈
L′| N(w) ⊆ Pj}. We know that |Y | ≥ 2|X| and hence by Expansion

Lemma there exist S∗ ⊆ X and L∗ ⊆ Y such that S∗ has a 2-expansion

into L∗ and N(L∗) = S∗. Thus, by the inductive assumption, there exist

S ⊆ S∗ and L ⊆ L∗ with the desired properties.

Let S and L be as in Lemma 7.14. In what follows, we will prove that

there exists a spanning tree of B(S,L) such that all the vertices of S

and exactly |S| − 1 vertices of L are internal. Note that there cannot

be more than 2|S| − 1 internal vertices in a spanning tree of B(S,L),

as then cycles are created. By Lemma 7.14, we know that there exists

a spanning tree of B(S,L) in which |S| − 1 vertices of L have degree

exactly 2. Moreover, since S has a 2-expansion into L in B(S,L), there

exist two edge-disjoint matchings M1 and M2 in B(S,L) such that both

matchings saturate S. We refer to the edges in M1∪M2 as favorite edges.

Lemma 7.15. B(S,L) has a spanning tree T such that all the vertices

of S and |S| − 1 vertices of L are internal in T .

Proof. Let T be a spanning tree of B(S,L) in which all vertices of L have

degree at most 2, obtained using Lemma 7.14. As T is a tree, exactly

|S| − 1 vertices of L have degree 2 in T . As long as a vertex v ∈ S is not

internal in T , add a favorite edge uv to T which is not yet in T (u ∈ L),

and remove an appropriate edge from the tree which is incident to u

so that T remains a spanning tree. The vertex v thus becomes internal,

130 Hypertrees

and the degree of u in T remains unchanged. As u is only incident to

one favorite edge, this rule increases the number of favorite edges in T

even though it is possible that some other vertex in S has become a leaf.

We apply this rule until it is no longer possible, and note that this rule

can only be applied at most |S| times. In the end, all the vertices of S

are internal and |S| − 1 vertices among L are internal as their degrees

remained the same.

To conclude the proof of Lemma 7.10, we observe that S ⊆ C, L ⊆
I and N(L) = S (by the construction of S and L). Moreover, by

Lemma 7.15, B(S,L) has a spanning tree in which all the vertices of

S and |S| − 1 vertices of L are internal.

Exercises

Problem 7.1 (l). Prove that the greedy procedure of 7.5 is guaranteed to find a
hypertree if one exists.

Problem 7.2 (l). Prove that given a hypertree T of a hypergraph H along with
a hyperedge of more than two vertices, one of the vertices of e can be deleted from
e so that the T remains a hypertree.

Problem 7.3 (l). Show that Reduction Rule SS.3 is safe, and obtain a kernel with
O(k2) vertices and 2k hyperedges for Set Splitting.

Problem 7.4. Prove that Reduction Rule SS.4 is safe.

Problem 7.5. Prove that by using a 2-expansion (see Chapter 5), it can be shown
that Set Splitting admits a kernel with 2k vertices and 4k hyperedges.

Problem 7.6. Prove Lemma 7.12 for the cases where |S| = 1 or V (G) = S ∪ L.

Bibliographic notes

Theorem 7.2 (in a more general form) was proved by Lovász (1970) and

Theorem 7.4 is due to Frank et al. (2003).

Our presentation of a kernelization algorithm for Set Splitting fol-

lows (Lokshtanov and Saurabh, 2009). Several previous results were

given in (Chen and Lu, 2009; Dehne et al., 2003, 2004; Lokshtanov and

Sloper, 2005). For Max-Internal Spanning Tree, Prieto and Sloper

(2003) provided an O(k3)-vertex kernel and then improved it to O(k2)

in (Prieto and Sloper, 2005). Our presentation is based on (Fomin et al.,

2013). A kernel with 2k vertices was announced by Li et al. (2017).

8

Sunflower Lemma

In this chapter we show how a fundamental tool from extremal combinatorics

can be used to design kernelization algorithm. Extremal combinatorics is a

an area of combinatorial mathematics dealing with problems of the following

nature—for a specific property of finite objects (graphs, sets, vectors, etc.),

how many objects with this property can there be? We will focus on a tool a

tool called Sunflower lemma, which a classical result of Erdős and Rado from

1960.

8.1 Sunflower lemma

In this section we introduce a classical result of Erdős and Rado, and

present some of its applications to kernelization. In the literature, this

result is known as the Sunflower lemma or as the Erdős-Rado lemma.

We first define the terminology used in the statement of the lemma. A

sunflower with k petals and a core Y is a collection of sets S1, . . . , Sk
such that Si ∩ Sj = Y for all i 6= j; the sets Si \ Y are called petals

and we require none of them to be empty. Note that a family of pairwise

disjoint sets is a sunflower (with an empty core).

Lemma 8.1. Let F be a family of sets (without duplicates) over a uni-

verse U , such that each set in F has cardinality d. If |F| > d!(k − 1)d,

then F contains a sunflower with k petals and such a sunflower can be

computed in time polynomial in |F|, |U | and k.

Proof. We prove the lemma by induction on d. For d = 1, i.e., for a

131

132 Sunflower Lemma

family of singletons, the statement trivially holds. Next, suppose that

d ≥ 2.

Let G = {S1, . . . , S`} ⊆ F be an inclusion-wise maximal family of

pairwise disjoint sets in F . If ` ≥ k, then G is a sunflower with at

least k petals. Thus we assume that ` < k. Let S =
⋃`
i=1 Si. Then,

|S| ≤ d(k−1). Because G is maximal, every set A ∈ F intersects at least

one set from G, i.e., A ∩ S 6= ∅. Therefore, there is an element u ∈ U
contained in at least

|F|
|S| >

d!(k − 1)d

d(k − 1)
= (d− 1)!(k − 1)d−1

sets from F . We take all sets of F containing this element u, and con-

struct a family F ′ of sets of cardinality d − 1 by removing from each

set the element u. Because |F ′| > (d − 1)!(k − 1)d−1, by the induction

hypothesis, F ′ contains a sunflower {S′1, . . . , S′k} with k petals. Then,

{S′1 ∪ {u}, . . . , S′k ∪ {u}} is a sunflower in F with k petals.

The proof can be easily transformed into a polynomial-time algorithm,

as follows. Greedily select a maximal set of pairwise disjoint sets. If the

size of this set is at least k, then return this set. Otherwise, find an

element u contained in the maximum number of sets in F , and call the

algorithm recursively on sets of cardinality d−1, obtained from deleting

u from the sets containing it.

Theorem 8.2 (Sunflower lemma). Let F be a family of sets (without

duplicates) over a universe U , such that each set in F has cardinality at

most d. If |F| > d ·d!(k− 1)d, then F contains a sunflower with k petals

and such a sunflower can be computed in time polynomial in |F|, |U |,
and k.

Proof. We prove the theorem by applying Lemma 8.1. Let F`, ` ≤ d, be

the subfamily of F such that each set in F` has size exactly `. Since |F| >
d · d!(k − 1)d, there exists an integer ` ≤ d such that |F`| > d!(k − 1)d.

By applying Lemma 8.1 to F`, we get the desired result.

8.2 d-Hitting Set

As a first application of the sunflower lemma, we give a kernel for d-

Hitting Set. In this problem, we are given a family A of sets over a

universe U , where each set in A has cardinality at most d, and a non-

negative integer k. The objective is to decide whether there is a subset

8.3 d-Set Packing 133

H ⊆ U of size at most k such that H contains at least one element from

each set in A.

Theorem 8.3. d-Hitting Set admits a kernel with at most d · d!kd

sets and at most d2 · d!kd elements.

Proof. The heart of the proof is the observation that if A contains a

sunflower

S = {S1, . . . , Sk+1}
of cardinality k+ 1, then every hitting set H of A of cardinality at most

k intersects the core Y of the sunflower S. Indeed, if H does not intersect

Y , it should intersect each of the k+ 1 disjoint petals Si \ Y . This leads

to the following reduction rule.

Reduction HS.1. Let (U,A, k) be an instance of d-Hitting Set

such that A contains a sunflower S = {S1, . . . , Sk+1} of cardinality

k+1 with core Y . Then, return (U ′,A′, k), where A′ = (A\S)∪{Y }
and U ′ =

⋃
X∈A′ X.

Note that when we delete sets, we do not delete the elements contained

in these sets but only those which do not belong to any of the remaining

sets. Then, the instances (U,A, k) and (U ′,A′, k) are equivalent, i.e.

(U,A) contains a hitting set of size k if and only if (U,A′) does.

The kernelization algorithm is as follows. If the number of sets in

A is larger than d · d!kd, then the kernelization algorithm applies the

Sunflower lemma (Theorem 8.2) to find a sunflower of size k + 1, and

applies Reduction HS.1 to this sunflower.

It applies this procedure exhaustively, and obtains a new family of

sets A′ of size at most d · d!kd. If ∅ ∈ A′ (that is, at some point a

sunflower with an empty core has been discovered), then the algorithm

concludes that there is no hitting set of size at most k and returns that

the given instance is a no-instance. Otherwise, every set contains at most

d elements, and thus the number of elements in the kernel is at most

d!kd · d2.

8.3 d-Set Packing

In the last section, as an application of the Sunflower lemma, we gave a

kernel for d-Hitting Set. In this section, we demonstrate the versatility

134 Sunflower Lemma

of the Sunflower lemma by applying it to design polynomial kernel for

a packing problem, namely, d-Set Packing. In this problem we are

given a family A of sets over a universe U , where each set in A has

cardinality at most d, and a non-negative integer k. The objective is to

decide whether there is a subfamily P ⊆ A of size at least k such that

the sets in P are pairwise disjoint.

Theorem 8.4. d-Set Packing admits a kernel with at most d ·d!((k−
1)d+ 1)d sets and at most d2 · d! · ((k − 1)d+ 1)d elements.

Proof. Set ` = (k−1)d. Here, the crucial observation is that if A contains

a sunflower

S = {S1, . . . , S`+2}
of cardinality `+2, then we can arbitrarily delete any of the petals from

the sunflower and obtain an equivalent instance. In particular, we have

the following reduction rule.

Reduction SP.1. Let (U,A, k) be an instance of d-Set Packing

and assume that A contains a sunflower S = {S1, . . . , S`+2} of cardi-

nality `+2 with core Y . Then return (U ′,A′, k), where A′ = A\{S1}
and U ′ =

⋃
X∈A′ X.

We next show that Reduction SP.1 is safe. First observe that if (U ′,A′,
k) has a subfamily P ⊆ A′ of size at least k such that sets in P are pair-

wise disjoint, then so does (U,A, k). Now we show the forward direction

of the proof. Let P ⊆ A be a subfamily of size exactly k such that sets

in P are pairwise disjoint. For the proof we will modify P and obtain a

subfamily P ′ ⊆ A′ of size k such that sets in P ′ are pairwise disjoint.

If S1 /∈ P then P is also a solution for (U ′,A′, k), and thus in this case

we take P as P ′. Thus, from now onwards we assume that S1 ∈ P. Let

W =
⋃
X∈P\{S1}X. Observe that |W | ≤ (k − 1)d. This together with

the fact that the sets in P are pairwise disjoint implies that the num-

ber of sets in S \ {S1} that contain elements from W is upper bounded

by (k − 1)d. Thus, as |S \ {S1}| ≥ ` + 1, there is a set X ∈ S \ {S1}
that does not contain any element from W . This in turn implies that

P ′ = (P \ {S1}) ∪X is a subfamily of A′ of size k such that sets in P ′
are pairwise disjoint.

The kernelization algorithm is as follows. If the number of sets in A
is larger than d · d! · (` + 1)d, then the kernelization algorithm uses the

Sunflower lemma (Theorem 8.2) to find a sunflower of size ` + 2, and

8.4 Domination in degenerate graphs 135

applies Reduction Rule 8.4 to this sunflower. It applies this procedure

exhaustively, and thus eventually obtains a new family of sets A′ of size

at most d · d! · (`+ 1)d. Since every set contains at most d elements, the

number of elements in the kernel is at most d2 · d! · ((k− 1)d+ 1)d. This

concludes the proof.

8.4 Domination in degenerate graphs

In Section 2.4 we discussed a kernelization for Dominating Set on

graphs with girth at least 5. In this section we give a kernel for Dom-

inating Set on another class of graphs, namely, d-degenerate graphs.

Let d ≥ 1 be an integer. A graph G is d-degenerate if every subgraph

of G has a vertex of degree at most d. For example, every forest is

1-degenerate because every subgraph of a forest, which is also a forest,

contains a vertex of degree at most 1. More generally, graphs of treewidth

at most d are d-degenerate. Moreover, every d-regular graph is trivially

d-degenerate, and every planar graph has a vertex of degree at most 5,

and thus any planar graph is 5-degenerate.

Graphs of bounded degeneracy are sparse—the number of edges in

a d-degenerate n-vertex graph is at most dn. We show that for every

d, Dominating Set on d-degenerate graphs admits a compression to

Dominating Set on (d + 1)-degenerate graphs with kO(d2) vertices.

Towards this we define an auxiliary problem called Red-Blue Dom-

inating Set. In the Red-Blue Dominating Set problem, we are

given a bipartite graph G with V (G) being bipartitioned into (B,R)

and a non-negative integer k. The goal is to decide whether there exists

a subset D ⊆ R such that N(D) = B. We refer to vertices from B as

blue, vertices of R as red, and to the graph itself as a red-blue graph. A

subset D ⊆ R is a red-blue dominating set if N(D) = B. In other words,

every blue vertex is adjacent to at least one vertex in D.

It is easy to establish an equivalence of the two dominating problems.

For a d-degenerate graph G, we construct a (d+ 1)-degenerate bipartite

red-blue graph G′ by taking two disjoint copies of V (G), one for B and

one for R, and making every blue vertex v ∈ B adjacent to all the copies

of the vertices of NG[v] in R. See Fig. 8.1. We leave it as an exercise

to show that G has a dominating set of size k if and only if G′ has a

red-blue dominating set of size k (Exercise 8.1).

136 Sunflower Lemma

u

w

v

w1

v1

w2

v2

u2u1

G: G':

Figure 8.1 Constructing a red-blue graph G′ from a graph G.

b

c

e

f

da

G':G: b

c

e

f

da

uw

R B

Figure 8.2 Constructing a graph G′ from a red-blue graph G.

For a given bipartite d-degenerate red-blue graph G, we construct a

(d + 1)-degenerate graph G′ by adding two new vertices u and w. We

make u adjacent to all red vertices and w adjacent only to u. See Fig. 8.2.

Again, we leave it to the reader as an exercise to show that G′ is (d+1)-

degenerate and that G has a red-blue dominating set of size k if and

only if G′ has a dominating set of size k + 1 (Exercise 8.2).

We are now ready to prove the following theorem.

Theorem 8.5. For every d ≥ 0, Dominating Set on d-degenerate

graphs admits a compression to Dominating Set on (d+2)-degenerate

graphs with kO(d2) vertices.

Proof. We prove that Red-Blue Dominating Set admits a kernel

with kO(d2) vertices on d-degenerate graphs. By the discussion preceding

the theorem statement, this will proof the theorem.

Let G be a d-degenerate red-blue graph whose vertex set is partitioned

into R (red vertices) and B (blue vertices). Let Rs be the set of vertices

8.4 Domination in degenerate graphs 137

of R of degree at most 2d and let R` = R \ Rs. Thus, every vertex of

Rs is of “small” degree (at most 2d) and every vertex of R` is of “large”

degree (larger than 2d). Let H = G[R` ∪B]. We claim that the average

degree of the vertices from B in H is at most 2d. Specifically,
∑

v∈B
dH(v) ≤ 2d · |B|. (8.1)

Indeed, because degeneracy is a hereditary property, we have that the

graph H is d-degenerate. Thus,

|E(H)| ≤ d · |V (H)| = d(|R`|+ |B|).

We observe that |B| ≥ |R`|, or else,

|E(H)| =
∑

v∈R`
dH(v) ≥ 2d · |R`| > d(|R`|+ |B|), (8.2)

which is a contradiction. Hence, |R`|+ |B| ≤ 2|B|, and
∑

v∈B
dH(v) = |E(H)| ≤ d(|R`|+ |B|) ≤ 2d · |B|.

This concludes the proof of (8.1).

Now we claim that at least |B|/2 vertices of B have degree at most

4d in H. Indeed, if it was not the case, then
∑

v∈B
dH(v) > 4d · |B|/2 = 2d · |B|,

contradicting (8.1).

To use the Sunflower lemma (Theorem 8.2), we construct a family

of sets F over a universe U : The vertices of R` form the universe U

(i.e. R` = U), and for every vertex b ∈ B, there is a corresponding set

Fb ∈ F that consists of the neighbors of b in H (i.e. Fb = NH(b)).

As we have already shown, at least half of the vertices of B are of

degree at most 4d in H. Thus if |B| > 2 ·4d · (4d)!(2dk+k)4d, then there

are more than 4d · (4d)!(2dk + k)4d sets of size at most 4d in F . In this

case, by the Sunflower lemma, F contains a sunflower with (2dk+k+1)

petals. Moreover, each of the sets of this sunflower is of size at most 4d.

Let Y ⊆ R`, |Y | ≤ 4d, be the core of the sunflower.

We observe that every red-blue dominating set D in G of size at most

k contains a vertex from Y . Indeed, every vertex of Rs can dominate at

most 2d vertices of B, and thus at least k + 1 petals of the sunflower

(and thus the corresponding vertices of B) are not hit by D∩Rs. Thus if

D does not intersect Y , it should intersect at least k+ 1 disjoint petals,

138 Sunflower Lemma

which is a contradiction. Hence D ∩ Y 6= ∅. This leads to the following

reduction rule.

Reduction DS.3. If F contains a sunflower with (2dk + k + 1)

petals, we construct a new graph G′ by deleting all the vertices of B

corresponding to these petals, and adding to B a new blue vertex y

and making it adjacent to all the vertices of Y .

To prove that Reduction Rule DS.3 is safe, we show that G has a

red-blue dominating set of size k if and only if G′ does. Let D be a

dominating set in G of size k. Because D ∩ Y 6= ∅, we have that D also

dominates y in G′, and thus D is a dominating set in G′. In the opposite

direction, if D is a dominating set in G′, then it should contain a vertex

from Y in order to dominate y. However, then D dominates all vertices

of B as well.

We will view G′ as a subgraph of G. Towards this observe that we

could obtain G′ from G as follows: delete all but one of the vertices of

B corresponding to petals, and for the remaining vertex, delete all the

edges incident to it but not incident to any vertex in Y . Since G′ is a

subgraph of G, it is also d-degenerate, and thus we can apply Reduction

Rule DS.3 to the new graph until we obtain a graph with blue set of

size at most 8d · (4d)!(2dk + k)4d. By Equation 8.2, we also know that

the number of vertices of large degree, R`, is at most |B|. To bound the

number of small degree vertices in R, we need another reduction rule.

Reduction DS.4. If there are u, v ∈ Rs, u 6= v, such that NG(u) ⊆
NG(v), then delete u.

Rule DS.4 is trivially safe and can be implemented in polynomial time.

Since the vertices in Rs are of degree at most 2d, there are at most

2d∑

i=0

(|B|
i

)

vertices remaining in Rs after the exhaustive application of Rule DS.4.

Thus, the number of vertices in an irreducible red-blue graph for which

8.5 Domination in Ki,j-free graphs 139

none of the Rules DS.3 and DS.4 can be applied, is at most

|B|+ |R`|+ |Rs| ≤ 2|B|+
2d∑

i=0

(|B|
i

)

≤ |B|O(d)

≤ (8d · (4d)!(2dk + k)4d)O(d)

≤ = kO(d2).

This completes the proof.

8.5 Domination in Ki,j-free graphs

In this section we give a polynomial compression for Red-Blue Dom-

inating Set when the input graph excludes Ki,j as a subgraph. Here,

Ki,j is the complete bipartite graph with one side of the bipartition of

size i and and the other of size j. Let us note that since every Kd,d-free

graph is also d-degenerate, Theorem 8.7 addresses a class of graphs that

is more general than the one considered by Theorem 8.5. The general

strategy of both theorems is similar—we want to identify the set of ver-

tices in R intersecting every red-blue dominating set of size at most k,

and then use this set to apply a reduction rule.

We start with an auxiliary counting lemma that will be a critical

component of the kernelization algorithm for Red-Blue Dominating

Set, and which will also be useful in the context of other kernelization

algorithms. Here, a bipartite graph G with V (G) being partitioned into

R and B is said to be B-twinless if there do not exist distinct vertices

u, v ∈ B such that N(u) = N(v).

Lemma 8.6. Let G be a bipartite graph with V (G) being partitioned

into R and B. If G is B-twinless and excludes Ki,j as a subgraph, then

|B| ≤
∑

q<i

(|R|
q

)
+ (j − 1)

(|R|
i

)
.

Proof. For every X ∈
(
R
i

)
, let F (X) denote the set of vertices w ∈ B

such that X ⊆ N(w). And for every q < i and Y ∈
(
R
q

)
let F (Y) denote

the set of vertices w ∈ B such that Y = N(w). Let P denote
⋃
q<i

(
R
q

)
.

Since G is a B-twinless bipartite graph, we have that for every Y ∈ P,

|F (Y)| ≤ 1. Furthermore, G excludes Ki,j as a subgraph and thus for

every X ∈
(
R
i

)
, |F (X)| ≤ j. Note that every vertex in B either belongs

140 Sunflower Lemma

to F (Y) for some Y ∈ P, or to F (X) for some X ∈
(
R
i

)
. This implies

that

|B| ≤
∑

Y ∈P
|F (Y)|+

∑

X∈(Ri)

|F (X)| ≤
∑

q<i

(|R|
q

)
+ (j − 1)

(|R|
i

)
.

This concludes the proof of the lemma.

Compression Algorithm. As in the previous section, the main com-

ponent of our compression algorithm is a kernel for Red-Blue Domi-

nating Set. In the design of this kernelization algorithm, the goal is to

devise reduction rules so that one can bound the size of R. This together

with Lemma 8.6 will imply the desired kernel.

Theorem 8.7. For every 1 ≤ i ≤ j, Dominating Set on graphs

excluding Ki,j as a subgraph admits a compression to Dominating Set

on graphs excluding Ki+1,i+j+1 as a subgraph with kO(ij) vertices and

edges.

Proof. As in the proof of Theorem 8.5 from the previous section, to prove

the theorem it is sufficient to give a kernel for Red-Blue Dominating

Set (see also Exercises 8.1 and 8.2).

Let G = (B,R,E) be a bipartite graph with |B| = m and |R| = n.

Our main reduction rule is based on the following claim.

Claim 8.8. If there exists a vertex u ∈ R such that |N(u)| ≥ ikj−1,

then in polynomial time we can find a set S ⊆ R of size at most j − 1

that intersects every red-blue dominating set of size at most k of G.

Proof. Suppose that there exists u ∈ R such that |N(u)| ≥ ikj−1. Let

S = {u1, u2, . . . , up} ⊆ R be a maximal set such that for all ` ≤ p we

have that

⋂̀

x=1

N(ux) ≥ ikj−`.

Such a set S can be found in polynomial time by greedily selecting

vertices. Observe that p ≤ j− 1, else it would imply an existence of Ki,j

in G.

We claim that every red-blue dominating set D of size at most k of G

intersects S. Let I =
⋂p
x=1N(ux), and note that |I| ≥ ikj−p. Moreover,

for every vertex w ∈ R \ S, we have that |N(w) ∩ I| < iki−p−1. Thus

if D ∩ S = ∅, then k vertices cannot dominate the vertices in I. This

implies that D ∩ S 6= ∅.

8.5 Domination in Ki,j-free graphs 141

Reduction DS.5. Let S = {u1, . . . , up} be the output of the algo-

rithm of Claim 8.8, and denote I = N(S).

(i) If |S| = 1, then return (G′, k − 1), where G′ is the subgraph of G

induced by (B \N(u1), R \ u1).

(ii) If |S| > 1, then pick a vertex w ∈ I and construct the graph G′

from G as follows. Remove all the vertices of I from B with the

exception of w, and remove all edges incident to w apart from the

incident to both w and a vertex in S. Return (G′, k).

Claim 8.9. Reduction Rule DS.5 is safe.

Proof. We first give a proof for the case where |S| = 1. By Claim 8.8

we know that u1 is part of every red-blue dominating set of size at most

k. Thus, one the one hand, if W is a red-blue dominating set of size at

most k of G, then clearly W \ {u1} is a red-blue dominating set of size

at most k − 1 of G′. On the other hand, given any red-blue dominating

set of size at most k − 1 of G′, we can obtain a red-blue dominating set

of size at most k of G by adding u1 to it.

Next we prove the case where |S| ≥ 2. Let B′ = (B \ I) ∪ {w} and

W be a red-blue dominating set of size at most k of G. We will show

that W is also a red-blue dominating set of size at most k for G′. By

Claim 8.8 we know that W ∩ S 6= ∅. This implies that w is dominated

by a vertex in W ∩ S. The adjacencies of vertices in B′ (other than w)

in G′ are the same as in G and thus they are also dominated by W in

G′. For the reverse direction observe that NG′(w) = S and thus any

red-blue dominating set of size at most k of G′ must contain a vertex

of S. Together with the fact that I =
⋂
x∈S N(ux), we have that every

red-blue dominating set W of size at most k of G′ is also a red-blue

dominating set of G. This completes the proof of safeness.

We apply Reduction Rule DS.4 to the vertices of R and Reduction

Rule DS.5 to G exhaustively. Clearly, this can be done in polynomial

time. Let (G, k) be an irreducible instance, i.e. none of the two reduction

rules can be applied to (G, k). The irreducible instance has the following

properties.

(a) G is an R-twinless bipartite graph. That is, there are no vertices

u, v ∈ R such that N(u) = N(v).

(b) Every vertex in R has degree at most ikj−1.

142 Sunflower Lemma

If k = 0 and B 6= ∅, then return that (G, k) is a no-instance, and else if

k = 0, then return that (G, k) is a yes-instance. Next assume that k ≥ 1.

Since every vertex in R has degree at most ikj−1, every k vertices of

R can dominate at most ikj vertices. Thus, if |B| > ikj we can return

that (G, k) is a no-instance. Else, we have that |B| ≤ ikj and thus by

Theorem 8.6 (with the roles of R and B swapped), we have that

|R| ≤ 2(j − 1) ·
(|B|e

i

)2i

≤ 2(j − 1)e2ik2ij .

This implies that |V (G)| = |R| + |B| ≤ 2(j − 1)e2ik2ij + ikj and

|E(G)| ≤ ikj−1|R| ≤ ikj−12(j − 1)e2ik2ij ≤ 2ije2ik2ij+j−1. Hence after

an exhaustive application of the reduction rules, the obtained graph is

of size kO(ij). This concludes the proof of the theorem.

Exercises

Problem 8.1 (l). Given a graph G, construct a bipartite red-blue graph G′ by
taking two disjoint copies of V (G), one for B and one for R, and making every blue
vertex v ∈ B adjacent to all the copies of the vertices of NG[v] in R. Show that G
has a dominating set of size k if and only if G′ has a red-blue dominating set of size
k.

Furthermore, prove that if G is d-degenerate, then G′ is (d+ 1)-degenerate, and if
G excludes Ki,j as a subgraph, then G′ excludes Ki,i+j as a subgraph.

Problem 8.2 (l). Given a bipartite d-degenerate red-blue graph G, construct a
(d + 1)-degenerate graph G′ by adding two new vertices u and w. Make u adjacent
to all red vertices and w adjacent only to u. Show that G′ is (d+ 1)-degenerate and
that G has a red-blue dominating set of size k if and only if G′ has a dominating set
of size k + 1.

Furthermore, prove that if G is d-degenerate, then G′ is (d+ 1)-degenerate, and if
G excludes Ki,j as a subgraph, then G′ excludes Ki+1,j+1 as a subgraph.

Problem 8.3. Consider the following counting version of d-Hitting Set. The input
consists of a family A of sets over a universe U , where each set in A has cardinality
at most d, and non-negative integers k and t. The objective is to decide whether A
has at least t minimal hitting set of size at most k. Can the kernelization algorithm
for d-Hitting Set, given in Section 8.2, be adapted to solve this counting version of
Hitting Set?

Problem 8.4. Consider the question addressed by Exercise 8.3 also in the context
of d-Set Packing and Dominating Set.

Bibliographic notes

For a nice introduction to extremal combinatorics, we refer to the book

of Jukna (2011). Sunflower lemma is due to Erdős and Rado (1960). The

8.5 Domination in Ki,j-free graphs 143

proof of Theorem 8.2 and the kernelization for d-Hitting Set follow

the lines of Flum and Grohe (2006). Abu-Khzam (2010b) showed that a

better kernel for d-Hitting Set with at most (2d−1)kd−1 +k elements

can be obtained by making use of crown decompositions. Our presenta-

tion of the kernelization algorithm for d-degenerate graphs follows the

work of Cygan et al. (2017) who also have shown that the problem has

no kernel of size k(d−1)(d−3)−ε for any ε > 0 unless coNP⊆NP/poly. See

also (Philip et al., 2012) and (Telle and Villanger, 2012) for kernels for

Dominating Set on Ki,j-free graphs.

9

Modules

In this chapter we discuss the notion of modules, which forms the basis of tech-

niques to design polynomial time algorithms for various problems on several

graph classes. Here, we show its utility in the context of kernelization algo-

rithms. Specifically, we use modular partitions to obtain kernels for Cluster

Editing, Cograph Completion, and FAST.

We begin with a brief introduction to modules and modular partitions.

Afterwards, we show how these notions can be exploited to design ker-

nelization algorithms for Cluster Editing, Cograph Completion,

and FAST.

9.1 Modular partition

Modular partition is a partition of a (directed or undirected) graph into

subsets of vertices called modules. Let us start by giving the definition

of a module in the context of undirected graphs. We will extend this

notion to directed graphs later.

Definition 9.1. Given an undirected graph G, a subset M ⊆ V (G) is

called a module if for every u, v ∈ M , we have N(u) \M = N(v) \M .

In other words, for every x ∈ V (G) \M x is adjacent to either all the

vertices of M or none of the vertices of M .

Thus, all vertices of a module have exactly the same neighbors outside

the module. A simple example of a module is a connected component of

a graph: every vertex of the same connected component has the same

(empty) set of neighbors outside the component. A few other simple

144

9.1 Modular partition 145

examples of modules M of a graph G are M = V (G), M = ∅, and

M = {v} for any v ∈ V (G). If M is a module of any of these three types

(empty, all vertices or single vertex), then it is called trivial. Moreover,

graph G is prime if all its modules are trivial.

Before we turn to discuss several interesting properties of module, we

need to introduce a few more definitions.

Definition 9.2. Given a graph G, a module M of G is a strong module

if it does not overlap with any other module of G. In other words, for

every module M ′ of G, one of the following holds: M ′∩M = ∅; M ′ ⊆M ;

M ⊆M ′.

While connected components of graphs are modules, it is not true

that a module is necessarily a connected component or a set of con-

nected components. In particular, a module can be a proper subset of a

connected component. Note that the set of modules of a graph G and

the set of modules of the complement G of G are identical—if M is a

module in G, then it remains a module in G.

Let us remind that we use A ⊂ B to state that A is a proper subset of

B. A module M is maximal with respect to a set S ⊆ V (G) of vertices

if M ⊂ S and there is no module M ′ such that M ⊂ M ′ ⊂ S. If the

set S is not specified, it is assumed that S = V (G). Let us note that by

definition, a maximal module is always a proper subset of the vertex set

of G. Moreover, observe that every two distinct maximal strong modules

are disjoint, see Exercise 9.4.

Definition 9.3. Let P = {M1, . . . ,Mk} be a partition of the vertex set

of a graph G. If for every i, 1 6 i 6 k, Mi is a module of G, then P is a

modular partition (or congruence partition) of G.

The partitions P = {V (G)} and P = {{x} | x ∈ V (G)} are said to

be the trivial modular partitions of G. Any other modular partition is

called a non-trivial modular partition. A modular partition P containing

only maximal modules is a maximal modular partition. For a graph G,

we denote by M(G) the set of all maximal modules of G. Recall that

by definition, every maximal module is a proper subset of V (G). The

following result shows that when both G and G are connected, then

M(G) partitions V (G).

Lemma 9.4. If both the graphs G and G are connected, then M(G)

partitions V (G). In fact,M(G) is the unique maximal modular partition

of G.

146 Modules

Proof. Let M1,M2 ∈ M(G). Suppose, by way of contradiction, that

I = M1 ∩M2 6= ∅. First, suppose that M1 ∪M2 ⊂ V (G). However, as

M1 and M2 are modules, the neighborhood of every vertex in M1 ∪M2

outside M1 ∪M2 is the same as the neighborhood of any vertex in I.

Thus, M1 ∪M2 is a non-trivial module properly containing M1 and M2,

contradicting the maximality of both M1 and M2.

Second, suppose that M1∪M2 = V (G). Because G is connected, there

is an edge uv with u ∈M1 \ I and v ∈M2. Thus, since M2 is a module,

we have that u is adjacent to all the vertices of M2, including those in I.

However, as M1 is also a module, every vertex in M1 is adjacent to every

vertex in M2 \ I. This means that in G, M1 and M2 \ I do not belong

to a single connected component, and therefore G is not connected. As

we have reached a contradiction, this completes the proof.

The unique partition defined in Lemma 9.4 depends on the fact that

both G and G are connected. However, this may not be the case in

general. For the general case, given a graph G, we define the following

specific modular partition of G.

SP(G) =

⋃
Ci
SP(Ci) if G is disconnected,

⋃
Ci
SP(Ci) if G is disconnected,

M(G) if G and G are connected.

Here, the Ci’s and Ci’s are connected components of G and G, respec-

tively.

Lemma 9.5. Let G be a graph, then SP(G) can be computed in poly-

nomial time.

Proof. If G or G are disconnected, we proceed by recursively handling

the connected components of G or G, respectively. Else, when both G

and G are connected, then by Lemma 9.4,M(G) is the unique maximal

modular partition of G. We next show how to compute in polynomial

time all maximal modules of G, which will imply the correctness of the

lemma.

Let u and v be a pair of vertices of G. The crucial observation is that if

u and v belong to the same non-trivial module M , then all vertices from

the symmetric difference N(u)4N(v) = (N(u) \N(v)) ∪ (N(v) \N(u))

should also belong to M . For a vertex set X ⊂ V (G), we define a

procedure called modular-closure(X), which outputs a module contain-

ing X. The procedure performs the following operation until it con-

structs a module: If X contains a pair of vertices u and v such that

9.1 Modular partition 147

N(u) \X 6= N(v) \X, then X := X ∪ (N(u)4N(v)). Let us note that

for every X ⊂ V (G),

• if modular-closure(X) = V (G), then there is no maximal module con-

taining X, and

• if modular-closure(X) ⊂ V (G), then modular-closure(X) is a non-

trivial module.

For every vertex v, there is a unique maximal module M containing

v. Algorithm ComputeMaximalModule, presented in Fig. 9.1, computes

this module.

Algorithm ComputeMaximalModule(G, v).

Input: A graph G such that G and G are connected and vertex
v ∈ V (G).

Output: The maximal module M containing v.

M ← {v};
forall u 6∈M do

Compute Mu = modular-closure(M ∪ {u});
if Mu ⊂ V (G) then

M ←Mu;

Figure 9.1 Algorithm ComputeMaximalModule

The correctness of the algorithm is due to the following observa-

tion. Let M∗ be the maximal module containing v, and let M ′ be a

module such that M ′ ⊂ M∗. For any vertex u ∈ M∗ \ M ′, because

M∗ is the unique maximal module containing M ′ ∪ {u}, we have that

modular-closure(M ′ ∪ {u}) ⊆ M∗. On the other hand, if u 6∈ M∗, then

again as M∗ is unique, modular-closure(M ′ ∪ {u}) = V (G). Thus, if

when the algorithm examines a vertex u, modular-closure(M ′ ∪ {u})
returns V (G), then u 6∈ M∗. Otherwise, if modular-closure(M ′ ∪ {u})
returns a non-trivial module, then modular-closure(M ′ ∪ {u}) ⊆ M∗.
Since with each correct guess of u ∈ M∗ we increase the size of the set

M , the algorithm terminates in at most n steps, outputting the unique

maximal module containing v.

Now, we proceed to analyze the running time. As usual, let n be the

number of vertices in G and m be the number of edges in G. Here, we do

not attempt to optimize the running time, but only seek to prove that it

is polynomial. To compute modular-closure(X), we examine all pairs of

vertices from X, whose number is O(n2). For each such pair u, v, we need

148 Modules

to find a vertex from N(u)4N(v)\X or to conclude that N(u)4N(v)\
X = ∅. Both can be easily performed in time O(n+m). At every step, we

either finish the computation of modular-closure(X) or increase the size

of the set X by at least one. Thus, the total number of steps to compute

modular-closure(X) isO(n4m). Algorithm ComputeMaximalModule calls

the procedure modular-closure at most n times, and thus runs in time

O(n5m). By running the algorithm for each vertex v, we compute the

set of all maximal modules in time O(n6m).

Let us remark that while the construction of SP(G) in the proof

Lemma 9.5 is performed in time O(n6m), there are several involved

algorithms computing modular partitions in linear time O(n+m). See

the Notes section for the references.

If M1 and M2 are disjoint modules, then either every vertex of M1

is a neighbor of every vertex of M2, or no vertex of M1 is adjacent to

any vertex of M2, see Exercise 9.3. Thus, the relationship between two

disjoint modules is either “adjacent” or “nonadjacent”. By making use

of this observation, we can define a quotient graph. The vertices of the

quotient graph are the parts (or modules) belonging to the modular

partition P.

Definition 9.6. With a modular partition P = {M1, . . . ,Mk} of graph

G, we associate a k-vertex quotient graph G/P , whose vertices are in

one-to-one correspondence with the parts of P. Two vertices vi and vj
of G/P are adjacent if and only if the corresponding modules Mi and

Mj are adjacent in G.

In the left part of Fig. 9.2 we have a graph G, where the grey sets

specify the non-trivial modules of G. The partition

Q = {{1}, {2, 3}, {4}, {5}, {6, 7}, {9}, {8, 10, 11}}

is a modular partition of G. The quotient graph G/Q, depicted on the

right with a representative vertex for each module of Q, has two non-

trivial modules (the sets {3, 4} and {9, 10}). The maximal modular par-

tition of G is P = {{1}, {2, 3, 4}, {5}, {6, 7}, {8, 9, 10, 11}}.
In the case where P = {V (G)}, the quotient graph G/P is just the one-

vertex graph, while when P = {{x}|x ∈ V (G)}, we have that G/P = G.

Let M be a non-trivial module. Then, M and the one-element subsets

of V (G) \M form a non-trivial modular partition of V (G). Thus the

existence of a non-trivial module implies the existence of a non-trivial

modular partition. In general, many (or all) members of P can be non-

9.1 Modular partition 149

1 4

2

6

7

3

5
8

10

9

11

1 4

6

3

5

10

9

Figure 9.2 A modular partition and the corresponding quotient graph.

trivial modules. If P is a non-trivial modular partition, then G/P is a

compact representation of all the edges that have endpoints in different

partition classes of P. For each module M ∈ P, the subgraph G[M]

induced by M is called a factor , and it displays all edges with both

endpoints in M . Therefore, the edges of G can be reconstructed given

only the quotient graph G/P and its factors.

When G[M] is a factor of a modular quotient G/P , it is possible that

G[M] can be recursively decomposed into factors and quotients. Each

level of the recursion gives rise to a quotient. As a base case, the graph

has only one vertex. The graph G can be reconstructed inductively by

reconstructing the factors in a bottom up fashion, inverting the steps

of the decomposition by combining the current factors and quotient at

each level.

For the purpose of this chapter, we only need the notions of the spe-

cific partition SP(G) defined above and its quotient graph. However, we

remark that there are several kernelization algorithms in the literature

which are based on the more general notion of modular decomposition.

Modules having desirable properties. In the following sections we

will be interested in modules with some specific structure. For example,

we could demand that a module M is a clique, a cograph or an acyclic

digraph (when we discuss to directed graphs). More generally, let G be

a hereditary graph class. Then, we define the notions of G-module, G-

modular partition and G-modular decomposition as follows.

Definition 9.7. A module M is a G-module if the induced subgraph

G[M] belongs to G. A modular partition P = {M1, . . . ,M`} is a G-

150 Modules

modular partition if each Mi is a G-module. For a graph G, by G-M(G)

we denote the set of all maximal G-modules of G.

We extend the notion of a special partition of a graph to a special

partition of a graph with respect to G-modules as follows.

G-SP(G) =

⋃
Ci
G-SP(Ci) if G is disconnected,

⋃
Ci
G-SP(Ci) if G is disconnected,

G-M(G) if G and G are connected.

Here, the Ci’s and Ci’s are the connected components of G and G,

respectively.

The proof of the following lemma is almost identical to the proof of

Lemma 9.5; we leave it as Exercise 9.6.

Lemma 9.8. Let G be either the set of all cliques or the set of all

independent sets, and G be an undirected graph. Then, G-SP(G) can be

computed in polynomial time.

Let us note that by making using of Lemma 9.8, we are able to find

in polynomial time a maximal clique-module in G-M(G), as well as to

construct the quotient graph corresponding to G-SP(G).

9.2 Cluster Editing

Our first example of kernelization algorithms based on the structure of

modules is for Cluster Editing. A graph is a cluster graph if each of

its connected components is a complete graph (clique). Thus, a cluster

graph is a disjoint union of complete graphs. We will be refer to the con-

nected components of a cluster graph as clusters. We study the following

problem: For a given graph G, can we transform G into a cluster graph

by “editing” at most k adjacencies, i.e. by adding or deleting at most k

edges?

More formally, let G be a graph. Then, F ⊆ V (G)× V (G) is called a

cluster editing set forG if the graphG4F , which is the graph with vertex

set V (G) and edge set E(G)4F , is a cluster graph. Here, E(G)4F is the

symmetric difference between E(G) and F . In Cluster Editing, we

are given a graph G and an integer k, and the task is to decide whether

there is a cluster editing set for G of size at most k. Cluster Editing

is known to be NP-complete. We will show how to obtain a kernel for

this problem when the parameter is the size of the editing set k.

9.2 Cluster Editing 151

Let C be the class of graphs consisting of all complete graphs. This is

a hereditary graph class, and every maximal C-module of a graph G is

a maximal clique-module.

Definition 9.9. A critical clique of a graph G is a maximal C-module.

In other words, a critical clique of G is a clique C such that all the

vertices of C have the same set of neighbors in V (G) \ C, and C is

inclusion maximal under this property. Let us highlight the most crucial

properties of critical cliques first, and show how these properties almost

immediately bring us a O(k2)-vertex kernel for Cluster Editing.

• Out first observation is that if we have a connected component C in

G which is a clique, then we can safely remove C from G as this does

not change the answer.

• Suppose that G can be transformed into a cluster graph by modifying

at most k adjacencies. This means that at most 2k vertices of G are

affected by the modification, i.e. incident to edges which are removed

from G or added to G. Since we deleted isolated cliques, this also

means that in the resulting cluster graph each cluster contains at

least one affected vertex.

• How do unaffected vertices look like? First, it does not make any sense

to “split” critical cliques. In other words, it is possible to prove that

there is an optimal solution, such that in the resulting cluster graph,

every critical clique K of G is contained in some cluster of the resulting

graph. Thus, every maximal C-module of G is also a C-module in this

solution. Another observation is that one cluster cannot contain more

than one unaffected clique. Thus, every cluster consists of at most one

unaffected clique and some affected vertices. To bound the maximum

number of vertices contained in an unaffected critical clique, we need

another reduction rule.

• The reduction rule is based on the observation that if at least one

vertex of a critical clique K is unaffected, then all vertices of K should

be unaffected. Therefore ,if we have a critical clique K with at least

2k+1 vertices, this clique should be unaffected. Thus, if K has strictly

more than 2k+1 vertices, we can safely remove a vertex from it. Hence,

after this reduction rule, we can assume that each critical clique has

at most 2k + 1 vertices.

• To conclude, every cluster graph G′ obtained from the reduced graph

152 Modules

G has the following structure. Each of its clusters contains at least

one affected and at most 2k + 1 unaffected vertices. Since the total

number of affected vertices is at most 2k, we have that the number of

vertices in G′, and hence in G, is O(k2).

In what follows, we prove the claimed properties of critical cliques and

also show how a more careful estimation of the number of unaffected

vertices results in vertex-linear kernel for the problem.

We denote the set of all critical cliques by C-M(G). The proof of the

following lemma is very similar to the proof of Lemma 9.4.

Lemma 9.10. If G is not a complete graph, then C-M(G) partitions

V (G). Moreover, C-M(G) is the unique maximal C-modular partition

of G.

Proof. Let M1,M2 ∈ C-M(G) be distinct critical cliques. To prove the

lemma, we need to show that M1 and M2 are disjoint. Suppose, by way

of contradiction, that I = M1∩M2 6= ∅. Then, M1∪M2 is a module (see

Exercise 9.2). Because M2 is a clique, each vertex of I is adjacent to all

vertices of M2 \ I. Then, because M1 is a module, each vertex of M1 is

adjacent to all vertices of M2 \ I. Since M1 is a clique, we overall derive

that M1 ∪M2 is a clique, and hence it is a clique-module. Because M1

and M2 are maximal clique-modules, M1 ∪M2 cannot be a non-trivial

module, and thus M1 ∪M2 = V (G). However, this means that G is a

complete graph, which is a contradiction.

A cluster editing set F ⊆ V × V of minimum size is referred to as

a minimum cluster editing set, or just as a minimum editing set. The

following lemma explains the relations between critical cliques and min-

imum editing sets.

Lemma 9.11. Let F be a minimum editing set of a graph G. For ev-

ery critical clique K of G, there is a clique in the cluster graph G4F
containing K.

Proof. Targeting towards a contradiction, let us assume that for some

critical clique K there are two distinct maximal cliques C1 and C2 in

G4F such that both K1 = K∩C1 and K2 = K∩C2 are nonempty. Fur-

thermore, we define C1
1 as the set of vertices of C1 \K1 having neighbors

(in G) in K, and we define C2
1 = C1 \ (K1 ∪C1

1). Similarly, the set C1
2 is

the set of vertices of C2\K2 with neighbors in K and C2
2 = C2\(K2∪C1

2).

9.2 Cluster Editing 153

C1
1

C1 = C1
1 [C2

1 [K1

C1
2

C2 = C1
2 [C2

2 [K2

K2

C2
2C2

1

K1

Figure 9.3 The dashed lines indicate edge deletions and the thick lines

indicate edge additions, both incident to K1 and K2.

See Fig. 9.3. Let us note that because K is a module, every vertex of C1
1

and of C1
2 is adjacent to all vertices of K.

On the one hand, note that all the edges of G between K1 and K2

should be deleted by F . Moreover, all edges between K1 and C1
2 as well

as between K2 and C1
1 have to be deleted. On the other hand, all edges

between K1 and C2
1 and between K2 and C2

2 should be added.

Let us assume first that |C1
1 |+ |C2

2 | ≤ |C2
1 |+ |C1

2 |. Then, we construct

another cluster graph from G4F by moving K1 from C1 to C2. By doing

this, we no longer need to delete edges between K1 and K2 and between

K1 and C1
2 . We also do not need to add edges between K1 and C2

1 . Thus,

by moving K1 to C2 we “gain”

|K1| · |K2|+ |K1| · (|C2
1 |+ |C1

2 |)
edits. On the other hand, now we have to delete edges between K1 and

C1
1 and add edges between K1 and C2

2 . Hence, we “loose”

|K1| · (|C1
1 |+ |C2

2 |)
edits. However,

|K1| ·(|C1
1 |+ |C2

2 |) ≤ |K1| ·(|C2
1 |+ |C1

2 |) < |K1| · |K2|+ |K1| ·(|C2
1 |+ |C1

2 |).
This means that F is a not a minimum editing set, which is a con-

tradiction. Thus, |C1
1 | + |C2

2 | ≤ |C2
1 | + |C1

2 | cannot occur, and hence

|C1
1 |+ |C2

2 | > |C2
1 |+ |C1

2 |.
Now, having |C1

1 | + |C2
2 | > |C2

1 | + |C1
2 |, we construct another cluster

graph from G4F by moving K2 from C2 to C1. However, in this case

we “gain”

|K1| · |K2|+ |K2| · (|C1
1 |+ |C2

2 |)

154 Modules

edits, while we “lose” only

|K2| · (|C2
1 |+ |C1

2 |).

edits. This again contradicts the minimum choice of F , excluding the

option |C1
1 | + |C2

2 | > |C2
1 | + |C1

2 | as well. As at least one of the cases

should have held, our assumption that K is contained in two different

clusters is wrong. This completes the proof.

Let P = C-M(G) be a partition of G into critical cliques. Let us

remind that by Observation 9.3, for every distinct M1,M2 ∈ P, either

every vertex of M1 is a neighbor of every vertex of M2, or no vertex

of M1 is adjacent to any vertex of M2. We denote the corresponding

quotient graph by G/P . We refer to the vertices of G/P as nodes in

order to distinguish them and the vertices of G. Thus, the nodes of

G/P are critical cliques, and two nodes are adjacent if and only if the

corresponding modules are.

Let K be a critical clique of G and NK be the set of critical cliques

corresponding to the nodes of quotient graph G/P that are adjacent to

K. By Lemma 9.11, we know that for every minimum editing set F of

G, K should be contained in some clique C of G4F . The next lemma

provides more information on the structure of C.

Lemma 9.12. Let K be a critical clique of G such that

|K| ≥ |
⋃

K′∈NK
K ′|.

Then, there exists a minimum editing set F of G such that the maximal

clique C of G4F containing K is a subset of
⋃

K′∈NK
K ′ ∪K.

Proof. Let F be a minimum editing set of G. By Lemma 9.11, we

have that K ⊆ C for some maximal clique C of G4F . We set X =⋃
K′∈NK K

′ ∪K and define D = C \ X. Suppose that D 6= ∅, else the

proof is complete. Then, we transform G4F into cluster graph G4F ′
by deleting D from C and making a new cluster D. Because no vertex

from D is adjacent to a vertex from K in G, we have that F should

contain |D| · |K| edges between D and K. On the other hand, in F ′, one

has to delete the edges of G between C ∩X, which by the condition of

the lemma, is at most |⋃K′∈NK K ′| · |D| ≤ |K| · |D|. Thus, |F ′| ≤ |F |,
and the clique of G4F ′ containing K is a subset of X.

9.2 Cluster Editing 155

The next lemma refines Lemma 9.12. It provides conditions under

which it is possible to characterize the maximal clique C of a cluster

graph containing a critical clique K of G. For a critical clique K, we

denote by N2
K the set of critical cliques corresponding to the nodes of

the quotient graph G/P at distance exactly two in G/P from the node K.

Lemma 9.13. Let K be a critical clique of G such that

|K| ≥ |
⋃

K′∈NK
K ′|+ |

⋃

K′∈N2
K

K ′|.

Then, there exists a minimum editing set F of G such that the maximal

clique C of G4F containing K is

C =
⋃

K′∈NK
K ′ ∪K.

Proof. Let X =
⋃
K′∈NK K

′∪K and Y =
⋃
K′∈N2

K
K ′. By Lemmata 9.11

and 9.12, there is a minimum editing set F of G and a maximal clique C

of G4F such that K ⊆ C ⊆ X. Let us assume that X ′ = X \C 6= ∅, else

we are done. Then by Lemma 9.11, there is a critical clique K ′ ∈ NK
such that K ′ ⊆ X ′. Also by the same lemma, there is a maximal clique

C ′ of G4F containing K ′.
We construct a new cluster graph G4F ′ from G4F by moving K ′

from C ′ to C. The critical cliques of G corresponding to the neighbors of

the node K ′ in the quotient graph form a subset of N2
K ∪{K}. Then by

Lemma 9.12, we have that C ′ ⊆ Y and by moving K ′ to C we “loose”

at most |K ′| · |Y | deleted edges and at most |K ′| · |X| added edges. On

the other hand, we “gain” |K ′| · |K| edges which have to be deleted from

G in F . Because |K| ≥ |X|+ |Y |, we obtain that the size of the editing

set F ′ is at most |F |. As we can repeat this procedure until X ′ = ∅, this

completes the proof.

We are now ready to state two reduction rules. The first reduction

rule is very natural—if there is an isolated clique in G, it is already a

cluster, so there is no need to edit it.

Reduction CE.1. Compute a partition P = C-M(G) of G into

critical cliques. If the quotient graph G/P contains an isolated node,

remove the corresponding critical clique K from G. The new instance

is (G−K, k).

156 Modules

Lemma 9.14. Reduction Rule CE.1 is safe and can be implemented in

polynomial time.

Proof. The rule is safe because isolated critical cliques are connected

components of G and require no modifications. By Lemma 9.8, the rule

can be implemented in polynomial time.

The second reduction rule is based on Lemma 9.13.

Reduction CE.2. If there is critical clique K such that

|K| ≥ |
⋃

K′∈NK
K ′|+ |

⋃

K′∈N2
K

K ′|,

then delete from G the set of vertices

C =
⋃

K′∈NK
K ′ ∪K.

Let p be the number of edges in G between G−C and C, and let q be

the number of non-edges (i.e. the number of edges in the complement)

in G[C]. The new instance is (G− C, k − p− q).

Let us remark that if our reduction rule outputs an instance with a

negative parameter, we conclude that we have a no-instance.

Lemma 9.15. Reduction Rule CE.2 is safe and can be implemented in

polynomial time.

Proof. The rule is safe by Lemma 9.13. It can be implemented in poly-

nomial time by Lemma 9.8.

We are ready to proof the main result of this section.

Theorem 9.16. Cluster Editing admits a 6k-vertex kernel.

Proof. We apply Reduction Rules CE.1 and CE.2 exhaustively. By Lem-

mata 9.14 and 9.15, these rules are safe and can be implemented in

polynomial time.

LetG be a graph irreducible subject to Reduction Rules CE.1 and CE.2.

If (G, k) is a yes-instance, then there is an editing set F of size at most

k such that G4F is a cluster graph. If a vertex of G is an endpoint of

some edge or non-edge from F , we call such a vertex affected. All other

vertices of G are called unaffected. The number of affected vertices is at

most 2k. We want to bound the number of unaffected vertices of G.

9.2 Cluster Editing 157

Let us note that due to Reduction Rule CE.1, every maximal clique

C of G4F contains affected vertices. Let U(C) be the set of unaffected

vertices of C and let v ∈ U(C). By Lemma 9.11, C should contain a

critical clique K containing v. Because K is a module in G and v ∈ K is

unaffected, all vertices of K are unaffected and thus K ⊆ U(C). More-

over, K = U(C). Indeed, if there was another unaffected critical clique

K ′ ⊆ U(C), then K ′ ∪K also forms a clique-module in G contradicting

the maximality of the critical clique K. Thus if C contains unaffected

vertices, all these vertices belong to one critical clique K. Then all ver-

tices of the critical cliques from NK are affected and belong to C. Also

because vertices of K are unaffected, all vertices of cliques from N2
K

cannot be in C and hence are affected. Thus each critical clique consists

entirely of either affected or unaffected vertices. We denote the family of

critical cliques containing unaffected vertices by U . To bound the num-

ber of vertices contained in unaffected critical cliques, we observe that

by Reduction Rule CE.2, for every K ∈ U ,

|K| < |
⋃

K′∈NK
K ′|+ |

⋃

K′∈N2
K

K ′|.

Thus the total number of unaffected vertices is

∑

K∈U
|K| <

∑

K∈U

|

⋃

K′∈NK
K ′|+ |

⋃

K′∈N2
K

K ′|

 .

For every unaffected critical clique K all its neighbours are in the same

cluster, and since K is the only unaffected critical clique in this clus-

ter, we have that every affected vertex is counted at most once in the

summand
⋃
K′∈NK |K ′|. Thus

∑

K∈U
|
⋃

K′∈NK
K ′| ≤ 2k.

The vertices of cliques from N2
K cannot be in the same cluster as K,

and therefore they are affected. It can occur that an affected vertex x

is counted in |⋃K′∈N2
K
K ′| several times. Let C1, . . . , C` be the clusters

of the resulting cluster graph and Ki be the corresponding unaffected

critical cliques contained in these clusters, see Fig. 9.4. If an affected

vertex from some cluster is adjacent to affected vertices from other clus-

ters, then this vertex can occur in N2
K for several unaffected critical

cliques K. For example, in Fig. 9.4, affected vertex y from cluster C2 is

adjacent in G to affected vertices x ∈ C1 and z ∈ C` and is counted in

158 Modules

C2 C`
C1

K1
K`K2

· · ·

x y z

Figure 9.4 Clusters C1, . . . , C`. Each of the clusters Ci contains a unique

unaffected critical clique Ki. The dashed lines indicate edges of G between

clusters that have to be deleted.

|⋃K′∈N2
K
K ′| at least twice (for K = K1 and K = K`). However, the

number of times an affected vertex v is counted in
⋃
K′∈N2

K
|K ′| does

not exceed the number of edges in G going from v to other clusters, and

thus does not exceed the number of editing edges of F incident to v.

Hence ∑

K∈U
|
⋃

K′∈N2
K

K ′| ≤ 2|F | ≤ 2k.

We have that the number of unaffected vertices does not exceed 4k.

Since the number of affected vertices is at most 2k, we have that the

total number of vertices in a reduced graph G is at most 6k.

Let us finally remark that the kernelization algorithm of Theorem 9.16

can be implemented in time O(n3), see Exercise 9.7.

9.3 Cograph Completion

Cluster graphs, studied in the previous section, can be characterized as

graphs having no induced path on three vertices, or P3-free graphs. Let

P4 be a path on four vertices. A graph G is called a cograph if it does not

contain P4 as an induced subgraph. In other words, no four vertices of

G induce a P4. In this section, we would like to analyze such graphs. Let

us note that the complement of P4 is again P4, and thus the complement

G of a cograph G is also a cograph.

Let G be a graph. A set F ⊆ V (G) × V (G) is called a cograph com-

9.3 Cograph Completion 159

pletion set for G if the graph G+ F with vertex set V (G) and edge set

E(G)∪F is a cograph. In other words, F is a set of non-edges of G such

that adding F to G turns it into a cograph. Since a complete graph is

a cograph, a cograph completion set always exists. However, identify-

ing the minimum size cograph completion set is NP-hard optimization

problem. We define Cograph Completion as follows. For a graph G

and a non-negative integer k, the task is to decide whether there is a

cograph completion set for G of cardinality at most k.

A useful property of cographs is that they can be decomposed by

making use of two operations, namely disjoint union ∪̇ and join ⊗. We

begin by defining these operations.

Let G and H be disjoint graphs, i.e. V (G) ∩ V (H) = ∅. The disjoint

union (parallel composition) of G and H is the graph G∪̇H with the

vertex set V (G) ∪ V (H) and the edge set E(G) ∪E(H). We use G⊗H
to denote the join (serial composition) of disjoint graphs G and H:

G ⊗H is the graph with the vertex set V (G) ∪ V (G) and the edge set

E(G) ∪ E(H) ∪ {uv : u ∈ V (G),∈ V (H)}).
If we have two cographs G1 and G2, then clearly their disjoint union

G1∪̇G2 is also a cograph. Moreover, if a graph G is a join G1⊗G2, then

every P4 in G entirely belongs to either G1 or G2. Therefore, if G1 and

G2 are cographs, then so is G1 ⊗G2. It is interesting that the opposite

is also true, as formally stated below.

Definition 9.17. We say that a graph G is {∪̇,⊗}-decomposable if one

of the following conditions is fulfilled:

• |V (G)| = 1;

• There are {∪̇,⊗}-decomposable graphs G1, . . . , Gk such that G =

G1∪̇G2∪̇ · · · ∪̇Gk;

• There are {∪̇,⊗}-decomposable graphs G1, . . . , Gk such that G =

G1 ⊗G2 ⊗ · · · ⊗Gk.

We leave the proof of the following lemma as an exercise (Exercise 9.8)

Lemma 9.18. A graph G is a cograph if and only if it is {∪̇,⊗}-
decomposable.

By Lemma 9.18, with each cograph G one can associate a labeled tree

called the cotree TG. Cotree TG has the following properties:

(i) Each internal vertex v of TG has label(v)∈ {∪̇,⊗}.
(ii) There is a bijection τ between the set of leaves of TG and V (G).

(iii) To each vertex v ∈ (TG) we assign the subgraph Gv of G as follows:

160 Modules

2

4

1

6

7

3

5

8

9

1 3

2 6 7 4 5

89

[̇

[̇

[̇

⌦ ⌦ ⌦

⌦

Figure 9.5 An example of a cograph and its cotree.

(a) If v is a leaf then Gv = ({τ(v)}, ∅).
(b) If v is an internal vertex and label(v)= ∪̇ then Gv = Gu∪̇Gw,

where u,w are the children of v.

(c) If v is an internal vertex and label(v)= ⊗ then Gv = Gu × Gw,

where u,w are the children of v.

Notice that if r is the root of TG then Gr = G. It is always possible to

construct TG such that no pair of adjacent nodes of TG have the same

label. In other words, for every node labeled by ∪̇, all its children are

either leaves or labeled by ⊗ and for every node labeled by ⊗, all its

children are either leaves or labeled by ∪̇. We will always assume that

we have a cotree with this property. Moreover, it is possible to show that

such a tree can be constructed in time O(n+m). (Such a construction

will not be given here.) See Fig. 9.5 with an example of a cograph and

its cotree.

9.3.1 Minimum completions and properties of modules

A cograph completion set F ⊆ V (G)×V (G) of minimum size is referred

to as a minimum cograph completion set, or just as a minimum comple-

tion set. Let C be the class of cographs. Our reduction rules are based

on properties of C-modules and minimum completion sets.

If an input graph G has a connected component G1 which is a cograph,

then a cograph H with minimum number of edges containing G, can

be obtained from a disjoint union of a minimum cograph supergraph

containing G − V (G1) and G1. Similarly, if G has a universal cograph

9.3 Cograph Completion 161

G1, i.e. every vertex of G1 is adjacent to all vertices of V (G) \ V (G1),

then a cograph H with minimum number of edges containing G can

be obtained from a join of a minimum cograph supergraph containing

G − V (G1) and G1. We summarize these observations in the following

lemma.

Lemma 9.19. Let G be graph and G1 be a cograph such that either

G = G1∪̇G2 or G = G1 ⊗G2. Then F is a minimum completion set of

G if and only if F is a minimum completion set of G− V (G1).

Our next goal is to show that for each module there is a minimum

completion set “preserving” this module. To this end, we need the fol-

lowing lemma.

Lemma 9.20. If M is a module of G, then for every set of vertices X

inducing a P4 in G, either X ⊆M , or |X ∩M | ≤ 1.

Proof. We want to prove that if a P4, say P , intersects a module M , then

the intersection consists of exactly four vertices or exactly one vertex.

If P intersects M and is not contained in M , then there is an edge xy

of P such that x 6∈ M and y ∈ M . If P contains three vertices from

M , then all these vertices (M is a module) are also adjacent to x, which

cannot occur in a P4. Thus, next suppose by way of contradiction that P

contains exactly two vertices y, z ∈ M and exactly two vertices outside

w, x /∈ M , else the proof is complete. Because M is module, y and z

are both adjacent to x. Then the only way to construct P from these

vertices is to make w adjacent to z but not to y, or to y but not to z.

However, in both cases we obtain a contradiction to the assumption that

M is a module.

We now turn to consider the preservation of modules.

Lemma 9.21. Let G be a graph and M be a module of G. There is a

minimum completion set F of G such that M is a module in the graph

G+ F .

Proof. Let F be a minimum completion set of G and let M be a module

in G. Suppose that M is not a module in G + F . Then, in the graph

G+F we select a vertex v of M with the minimum number of neighbors

in V (G) \M . Let Nv be the set of neighbors of v outside M , i.e.

Nv = {u | u ∈ V (G) \M and uv ∈ E(G) ∪ F}.

We construct a new set F ′ from F . The only difference between F and

162 Modules

F ′ lies in edges between M and V (G) \M . For every vertex u ∈M , we

delete all edges of F incident to u and a vertex of V (G) \M , and make

u adjacent to Nv. Then, |F ′| ≤ |F | (due to our specific choice of v), and

in thegraph G+ F ′, the set M is a module—the neighborhood of every

vertex of M outside M is exactly Nv.

It remains to show is that F ′ is a completion set. Assume that it is

not. Then there is an induced P4 in G+ F ′. Let VP be the vertex set of

this P4. Because all edges of F4F ′ are between M and V (G)\M , the set

VP can be entirely contained neither in M nor in V (G) \M . Moreover,

by Lemma 9.20 and because M is a module in G+F ′, we have that VP
cannot contain two or three vertices of M . The only possibility left then

is that VP contains exactly one vertex w ∈ M . Because M is a module

in G+ F ′, we have that set VP \ {w} ∪ {v} also induces a P4 in G+ F ′,
and hence in G + F . However, this is a contradiction. Therefore, F ′ is

a completion set, and because |F ′| ≤ |F |, F ′ is a minimum completion

set.

The following lemma exhibits a useful behavior of modules under min-

imum completions. If M is a module of a graph G, then computing a

minimum completion set of G can be separated into two independent

tasks: Finding a minimum completion set of G[M] and finding a mini-

mum completion set of the remaining part of the graph. In particular,

for the reduction rules discussed later, this argument will allow us to

transform M into a simple clique-module and then to deal with a new

graph and G[M] separately. Specifically, we need the following lemma.

Lemma 9.22. Let G be graph and M be a module of G. Let G1 be

the graph obtained from G by turning M into a clique and G2 be a

graph isomorphic to G[M]. Then (G, k) is a yes-instance of Cograph

Completion if and only if (G′ := G1∪̇G2, k) is.

Proof. Let F be a minimum completion set of graph G such that M is a

module in G+F (the existence of such F is guaranteed by Lemma 9.21).

Now, let FM be the set of edges of F with both endpoints in M . In the

graph G + F , module M induces a cograph, and thus G2 can be com-

pleted into a cograph by adding at most |FM | edges. We claim that

G1 + (F \ FM) is a cograph. Indeed, if this is not the case, this graph

should contain a set of vertices X inducing a P4. Let us note that M

should contain more than one vertex from X because otherwise X in-

duces P4 in G+F as well. Because M is a module in G+F , and hence

in G1 + (F \ FM), by Lemma 9.20, M should contain X. However, in

9.3 Cograph Completion 163

G1 the vertices of M form a clique, and thus X cannot induce P4 in

G1 + (F \ FM). We have thus reached is a contradiction, and therefore

there is a completion of G′ into a cograph with at most |F | edges.

The proof of the opposite direction, which states that there is a mini-

mum completion of G′ which can be transformed into a minimum com-

pletion of G is similar. This proof is given as Exercise 9.9.

The next lemma will be used to reduce the sizes of clique-modules.

Lemma 9.23. Let G be graph and M be a clique-module of G such

that |M | > k + 1. Let G′ be the graph obtained from G by removing all

but k + 1 vertices from M . Then, (G, k) is a yes-instance of Cograph

Completion if and only if (G′, k) is.

Proof. If (G, k) is a yes-instance, then by Lemma 9.21, there is a mini-

mum completion F , |F | ≤ k, of G such that M is a module in G + F .

Thus either no edge or at least |M | edges of F cross from M to V (G)\M .

This yields that if the size of M is more than k, no edge of F is incident

to M . In this situation, G′ has a cograph completion set of size k if and

only if G does.

9.3.2 Reduction rules

Having established several properties of modules, we are ready to state

our reduction rules. The safeness of the first two reduction rules follows

from Lemma 9.19. Both rules are clearly implementable in polynomial

time.

Reduction CC.1. If G contains a connected component C that is

a cograph, then delete C from G. The new instance is (G− C, k).

Reduction CC.2. If G contains a vertex subset V1 ⊆ V (G) inducing

a universal cograph, i.e. such that G1 = G[V1] is a cograph and G =

G1⊗(G−V1), then delete V1 from G. The new instance is (G−V1, k).

The safeness of the following reduction rule follows from Lemma 9.22.

Recall that by Lemma 9.5, we can compute the graph SP(G), which

provides complete information about maximal modules, in polynomial

time. This allows to implement the rule in polynomial time.

164 Modules

x y x y

Figure 9.6 An example of an application of Reduction Rule CC.5 for k = 3.

Reduction CC.3. If G contains a module M that is not a clique-

module and such that G[M] is not a connected component of G, then

construct the following graphs. Let G1 be the graph obtained from G

by turning M into a clique, G2 be a graph isomorphic to G[M], and

G′ := G1∪̇G2. The new instance is (G′, k).

The next rule is safe by Lemma 9.23. It also can be implemented in

polynomial time since a maximal clique-module can be found in poly-

nomial time by Lemma 9.13.

Reduction CC.4. If G contains a clique-module M such that |M | >
k + 1, then construct G′ from G by removing all but k + 1 vertices

from M . The new instance is (G′, k).

We will need one more reduction rule which will be used to handle a

scenario, occurring in the proof of Theorem 9.29, where a cotree of the

resulting cograph can contain a long path with unaffected vertices.

Reduction CC.5. Let x and y be non-adjacent vertices of G, such

that there is a set P of k+1 induced P4’s of the form form v−y−u−x,

such that every pair of distinct P4’s from P has exactly x and y in

common. Then, construct G′ from G by adding the edge xy. The new

instance is (G′, k − 1). See Fig. 9.6

Lemma 9.24. Reduction Rule CC.5 is safe and can be implemented in

polynomial time.

Proof. The edge xy has to be added because otherwise we need at least

k + 1 edges to eliminate all P4’s from P.

9.3 Cograph Completion 165

To decide in polynomial time if a pair of nonadjacent vertices x and

y satisfies conditions of the rule, we do the following. For every pair of

nonadjacent vertices x, y, define X = NG(x) ∩NG(y) and Y = NG(y) \
NG(x), and construct a bipartite graph Gxy with bipartition (X,Y) such

that u ∈ X is adjacent to v ∈ Y if and only if uv is not an edge of G.

It is easy to check that a vertex set {x, y, u, v} induces a P4 in G of the

form form v−y−u−x if and only of u is not adjacent to v in Gxy. Thus,

checking the conditions of the reduction rule is reduced to checking if

the constructed bipartite graph Gxy has a matching of size k+ 1, which

can be done in polynomial time.

9.3.3 Least common ancestor closure

Before completing the polynomial kernel for Cograph Completion,

we take a short detour and discuss an operation on vertex sets in rooted

trees. This operation turns out to be useful in many different settings.

Let T be a rooted tree and u and v be vertices in V (T). We allow u and

v to be the same vertex. We define the least common ancestor LCA(u, v)

of u and v to be the lowermost node x which is an ancestor both of u

and of v. We are now ready to define the least common ancestor closure

of a vertex set.

Definition 9.25. Let T be a rooted tree and S be a set of vertices in

T . We define the least common ancestor closure of S to be the set

LCA-Closure(S) = {LCA(u, v) : u, v ∈ S}.

Here u and v are not necessarily distinct.

Next we show that for any set S, the set LCA-Closure(S) is actually

closed under the least common ancestor operation. Thus, LCA-Closure(S)

is the smallest superset of S which is closed under taking least common

ancestors, explaining the name “least common ancestor closure”.

Lemma 9.26. Let T be a rooted tree, S ⊂ V (T) and M = LCA-Closure(S).

Then, LCA-Closure(M) = M .

Proof. First observe that M ⊆ LCA-Closure(M) since every vertex v

satisfies v = LCA(v, v). We now show that LCA-Closure(M) ⊆ M . To-

wards a contradiction, suppose this claim is false, and let x ∈ LCA-Closure(M)\
M . Then, x = LCA(u, v) where u and v are both in M . Because x is

not in M , it follows that u and v belong to different subtrees below x.

Since u belongs to LCA-Closure(S), it follows that u ∈ S or u has a

166 Modules

descendant u′ ∈ S. If u ∈ S, then we set u′ = u. Similarly, either v ∈ S,

in which case we set v′ = v, or v has a descendant v′ ∈ S. Thus, u′

and v′ are both in S, and x is the least common ancestor of u′ and v′,
contradicting that x /∈M .

The properties of M = LCA-Closure(S) that make this operation

useful are that each connected component of T −M has at most two

neighbors, and that the size of M is bounded linearly in the size of S.

We now prove these two properties.

Lemma 9.27. Let T be a rooted tree, S ⊆ V (T) and M = LCA-Closure(S).

Then, each connected component C of T −M satisfies |N(C)| ≤ 2.

Proof. Let C be some connected component of T − M . Let r be the

unique vertex in C that is closest to the root of T . Note that each vertex

in C is a descendant of r. Thus, all neighbors of C, except for the parent

of r, are descendants of r. It follows that if |N(C)| ≥ 3 then there are

two distinct vertices u, v ∈ N(C) that both are descendants of r. Since

C is a component of T −M , it follows that u and v are both in M . Let

x = LCA(u, v), by Lemma 9.26, we have that x ∈ M . However, both u

and v are descendants of r, and therefore x must be a descendant of r

as well. But then x ∈ C, contradicting that C ∩M = ∅.

Lemma 9.28. Let T be a rooted tree, S ⊆ V (T) and M = LCA-Closure(S).

Then, |M | ≤ 2|S| − 1.

Proof. It suffices to show that |M \ S| ≤ |S| − 1. Consider a vertex u

in M \ S. We have that u is the least common ancestor of two different

nodes of S. Thus, there are at least two different subtrees of T rooted

at u containing vertices from S. Let now T ′ be the tree obtained from T

by repeatedly contracting edges that do not have both endpoints in M .

Since there are at least two different subtrees of T rooted at u containing

vertices from S, u must have at least two children in T ′. Thus the degree

of u in T ′ is at least 3, unless u is the root of T ′, in which case u

has degree at least 2. It follows that the sum of the degrees of all the

vertices in T ′ is at least |S|+ 3|M \S|−1. Since T ′ has |M | vertices and

|M | − 1 = |S|+ |M \ S| − 1 edges, it follows that

2|S|+ 2|M \ S| − 2 ≥ |S|+ 3|M \ S| − 1.

Rearranging the terms of this inequality completes the proof the lemma.

9.3 Cograph Completion 167

9.3.4 Putting things together: kernel for Cograph

Completion

We are ready to proceed to the main theorem of this section. However,

before we present the proof, let us outline the main ideas.

• For a reduced connected graphG, we consider its minimum completion

set F of size at most k. Thus, G + F is a cograph. In the cotree

T of G + F the leaves of T correspond to vertices of G, and other

nodes of T (we call them nodes to distinguish them from vertices of

G) correspond to join and union operations. There are at most 2k

vertices of G adjacent to edges of F . We say that the nodes in the

LCA-Closure of these vertices in T are affected nodes. Thus, there are

at most 4k affected nodes. To bound the size of G, we want to bound

the number of nodes of T .

• The crucial observation is that if we take an unaffected node a such

that the subtree Ta rooted at a has no affected nodes as well, then the

set of leaves of Ta is a module in G. But then by Reduction Rule CC.3,

the leaves of Ta form a clique in G, while by Reduction Rule CC.4,

the size of this clique is at most k + 1.

• Thus to bound the number of vertices in T it is sufficient to bound

the maximum number of unaffected nodes that can occur on a path

between two affected nodes. Here it is possible to show that the length

of such a path cannot be larger than 3k + 5, because otherwise it

is possible to show that G contains k + 1 disjoint P4’s on the same

endpoints, and thus Reduction Rule CC.5 should have come into play.

• Finally, if G is not connected, then by Reduction Rule CC.1, every

connected component of G is not a cograph. Thus G cannot have more

than k connected components, and we can apply kernelization for each

connected component individually.

Theorem 9.29. Cograph Completion admits a kernel with O(k3)

vertices.

Proof. Let G be a graph such that none of the above reduction rules can

be applied to it. Let us assume first that G is connected and consider the

case where G is non connected later. Let F be a minimum completion

set of size at most k. Thus G + F is a cograph. Let T be a cotree of

168 Modules

G+F . We bound the number of vertices in G by bounding the number

of nodes in T .

The leaves of T correspond to the vertices of G + F , and slightly

abusing the notation, we will not distinguish between leaves of T and

vertices of G. We call a node of tree T affected if it is either a leaf incident

to an edge of F , or is a least common ancestor of two affected nodes. In

other words, the set of affected nodes of T is the least ancestor closure

of leaves incident to edges of F . Because there are at most 2|F | vertices

incident to edges of F , by Lemma 9.28, the total number of affected

nodes is at most 4|F |.
Let a be a node of T . The subtree Ta of T rooted at a has the following

property, crucial for our analysis:

Claim 9.30. If there is no edge of F with one endpoint being a leaf

of Ta and the other endpoint outside Ta, then the leaves of Ta form a

module in G. In this case, by Reduction Rules CC.3 and CC.4, the leaves

of Ta form (in G) a clique of size at most k + 1.

Let us note that the root r of T is affected and labelled by ⊗. Indeed,

if r was labelled by ∪̇, then G+F , and hence G, is not connected. Thus,

r is labelled by ⊗. If r was unaffected, then it should have contained

a child a such that the subtree Ta rooted at a has no affected nodes.

But then the leaves of Ta induce a cograph which is universal in G. By

Reduction Rule CC.2, such vertices have to be removed from G.

We claim now that

Claim 9.31. No path in T from the root to a leaf can contain more

that 3k + 5 consecutive unaffected nodes.

Proof of the claim. Suppose that there is a path P in T from the root

r to a leaf containing at least 3k + 5 consecutive unaffected nodes. We

select a subpath of P of unaffected nodes of the form x1x2 · · ·x3k+5 with

x1 being the closest node to r. We claim that there is an affected leaf x

such that

• x is a descendant of node x2k+3, and

• there is a leaf y which is not in the subtree rooted at x1 and xy ∈ F .

See Fig. 9.7.

Indeed, by Claim 9.30, if there is no edge of F from Tx2k+3
to some node

y outside Tx2k+3
, then the leaves of Tx2k+3

form a module M in G. In this

case, by Reduction Rules CC.4 and CC.3, the size of M is at most k+1.

However, Tx2k+3
contains at least k + 2 leaves, which is a contradiction.

9.3 Cograph Completion 169

[̇

[̇

[̇

⇥

⇥

⇥

u1

uk+1

sk+1

s1

x

y

a1

b1

bk+1

ak+1

xy 2 F

· · ·

Figure 9.7 Path P ′ in T .

Because all nodes xi are unaffected, we conclude that the node y should

be outside not only Tx2k+3
, but Tx1

as well.

By the arguments above, we can select a subpath

P ′ = u1s1u2s2 · · ·uk+1sk+1

of P rooted at u1 with the following properties. In path P ′ all vertices

are unaffected, si is the child of ui and u1 is the end of P ′ closest to

r. Every node ui is labeled by the union label ∪̇, and every node si is

labeled by the serial composition label ⊗. Moreover, there is an affected

leaf x which is a descendant of node sk+1 and this leaf is adjacent in F

to a leaf y which is not in the subtree rooted at u1. See Fig. 9.7.

Because xy ∈ F , we know that x and y are nonadjacent in G. For

every node ui and si, all branches rooted at these nodes, except the

one containing leaf x, consist only of unaffected nodes. Thus for every

i ∈ {1, . . . , k + 1}, we can select non-affected leaf-descendants ai of ui
and bi of si. Because ai is unaffected and ui is a union node, we have

that aix /∈ E(G). Similarly, we have that bix ∈ E(G). Since xy ∈ F

and because vertices ai and bi are unaffected for i ∈ {1, . . . , k + 1}, we

conclude that y is adjacent to all vertices ai and bi. Thus each quadruple

{x, y, ai, bi} induces a P4 in G of the form ai − y − bi − x, see Fig. 9.8.

170 Modules

xy

bk+1

ak+1

b1

a1

Figure 9.8 Constructing k + 1 P4s in G.

Then, by Reduction Rule CC.5, x and y should be adjacent in G. This

is a contradiction, and the claim follows.

We continue with the proof of the theorem.

Let T ′ be a minimal subtree of T spanning all affected nodes. Because

the number of affected nodes is at most 4|F |, by Claim 9.31, the number

of nodes in T ′ is at most 4|F | · (3k + 5). By Claim 9.30, the union of

unaffected branches of T rooted at one vertex of T ′ is a module, and thus

of size at most k + 1. Hence the total number of nodes in T , and thus

also the vertices in G, is in O(|F | ·k2). Thus if G is a reduced connected

graph, then it has O(|F | · k2) vertices.

If G is not connected, it has at most k connected components. In-

deed, by Reduction Rule CC.1, every connected component of G is not

a cograph. Thus an irreducible graph with more than k connected com-

ponents is trivially a no-instance. Let G1, G2, . . . , G`, ` ≤ k, be the

connected components of G, and let Fi be a minimum completion set

for Gi. Then by applying kernelization arguments for each connected

component, we obtain a kernel with
∑

1≤i≤`O(|Fi| · k2) vertices. Be-

cause
∑

1≤i≤` |Fi| ≤ k, we obtain a kernel with O(k3) vertices and the

theorem follows.

9.4 FAST revisited

In the beginning of the book (Section 2.3) we gave an example of a

simple O(k2)-vertex kernel for the problem of reverting at most k arcs

in a tournament to obtain an acyclic graph, the FAST problem. Now

we use modules to present a better kernel. To this end, we first need to

extend the notion of module to directed graphs.

9.4 FAST revisited 171

Definition 9.32. A module of a digraph D is a subset M ⊆ V (D), such

that for every u, v ∈M , we have N+(u) \M = N+(v) \M and N−(u) \
M = N−(v) \M , where N−(v), N+(v) are the sets of in-neighbors and

out-neighbors of v, respectively.

As in undirected graphs, we can define strong and non-trivial modules.

In tournaments we will be interested in a special type of modules, namely

maximal transitive-modules. A module M is a maximal transitive-module

if M 6= V (T), M induces an acyclic tournament, and there is no non-

trivial transitive module properly containing M .

In a manner similar to the case of undirected graphs, we have the

following result about modules in tournaments. We leave the proof of

the theorem as Exercise 9.11.

Theorem 9.33. Let T be a tournament. Then, the maximal transitive-

modules of T form a partition of V (T). Moreover, such a partition can

be found in polynomial time.

Before we proceed, ket us recall the following useful observation (Ex-

ercise 2.6) about FAST: instead of deleting the arcs of a feedback arc

set F , one can obtain an acyclic graph also by reversing the arcs of F .

As we discussed in Section 2.3, a combination of Reduction Rules FAST.1

and FAST.2 brings us to a kernel for FAST with a quadratic number of

vertices. We now add a new reduction rule. This rule allows us to obtain

a kernel with a subquadratic number of vertices.

Reduction FAST.3. Let M be a maximal transitive-module and I

and O be the sets of in-neighbors and out-neighbors of the vertices

of M in tournament T , respectively. Let Z be the set of arcs uv such

that u ∈ O and v ∈ I. See Fig. 9.9. If |M | ≥ |Z|, then construct the

new tournament T ′ from T by reversing all arcs from Z. The new

instance is (T ′, k − |Z|).

Lemma 9.34. Reduction Rule FAST.3 is safe and can be applied in

polynomial time.

Proof. Let kI be the size of a minimum feedback arc set for T [I], and

kO be the size of a minimum feedback arc set for T [O]. The crucial

observation is that because M is a module and |M | ≥ |Z|, we have that

the union of Z and the set of arcs from I to M and from M to O contains

at least |Z| arc-disjoint triangles. Thus, the size of every feedback arc

172 Modules

Z

MI O

Figure 9.9 An illustration for Reduction Rule FAST.3.

set of T is at least kI + kO + |Z|. On the other hand, a feedback vertex

set of size kI + kO + |Z| can be obtained by reversing kI arcs in T [I],

kO arcs in T [O] and the arcs of Z. To see that the resulting tournament

is transitive, one can take the following transitive ordering. First we

position the vertices of I, then we take a transitive ordering of M , and

then of O.

Thus, the minimum size of a feedback arc set for T is kI+kO+|Z|, and

by reversing arcs of Z, we obtain a tournament with a feedback arc set

of size kI +kO. This implies that the rule is safe. Since by Theorem 9.33,

we can find a partition of T into maximal transitive-modules in polyno-

mial time, it follows that the reduction rule can be also implemented in

polynomial time.

We are ready to estimate the size of the kernel obtained from Reduc-

tion Rules FAST.2, FAST.1 and FAST.3.

Theorem 9.35. FAST admits a kernel with O(k
√
k) vertices.

Proof. Let (T, k) be a yes-instance of FAST which has been reduced

according to Reduction Rules FAST.2, FAST.1, and FAST.3. We claim

that T has O(k
√
k) vertices.

Let F be a feedback arc set of T of size at most k and let T ′ be

the tournament obtained from T by reversing all the arcs from F . By

Lemma 2.5, T ′ admits a transitive ordering σ = v1, v2, . . . , vn. We order

the vertices of T according to σ. Then each arc of F in this ordering is a

backward arc, i.e. each of the arcs of F is of the form vjvi, where i < j.

For a backward arc e = vjvi, the span of e is the set S(e) = {vi, . . . , vj}.
The number of vertices in S(e) is called the length of e and is denoted

by `(e). Thus, for every arc e = vivj , `(e) = |i− j|+ 1. For every vertex

v ∈ S(e), we say that e is above v.

We say that a vertex is affected if it is incident with some arc in F . The

number of affected vertices is at most 2|F | ≤ 2k. Reduction Rule FAST.2

9.4 FAST revisited 173

ensures that vertices v1 and vn are affected. Indeed, if v1 is not affected

then it is a source vertex in T (vertex with in-degree 0), hence it is not

part of any triangle and Reduction Rule FAST.2 would have applied.

We can similarly argue for the last vertex vn.

Next, we argue that there is no backward arc e of length greater than

2k + 2. Assume to the contrary that e = uv is a backward arc with

`(e) > 2k + 2 and let S(e) = {v, x1, x2, . . . , x2k+1, . . . , u}. Consider the

collection of triples T = {vxiu | 1 ≤ i ≤ 2k} and observe that at most

k of these triples can contain an arc from F \ {e}; hence, there exist

at least k + 1 triplets in T which correspond to distinct triangles all

containing e. However, then e would have been reversed by an application

of Reduction Rule FAST.1. Thus, there is no backward arc e of length

greater than 2k + 2 in T according to the ordering σ, and therefore∑
e∈F `(e) ≤ k(2k + 2).

Note between two consecutive affected vertices we can have only one

maximal transitive-module of T . We denote by ti the number of ver-

tices in these modules, where i ∈ {1, . . . , 2k − 1}. Thus the number

of unaffected vertices does not exceed
∑2k−1
i=1 ti. Thanks to Reduction

Rule FAST.3, there are at least ti backward arcs above every module

with ti vertices, each of length at least ti. This implies that

2k−1∑

i=1

t2i ≤
∑

e∈F
`(e) ≤ 2k2 + 2k.

By making use of the Cauchy-Schwarz inequality, we derive that

2k−1∑

i=1

ti =

2k−1∑

i=1

ti · 1 ≤

√√√√
2k−1∑

i=1

t2i ·
2k−1∑

i=1

1 ≤
√

(2k2 + 2k) · (2k − 1)

=
√

4k3 + 2k2 − 2k.

Thus, every reduced yes-instance has at most
√

4k3 + 2k2 − 2k + 2k =

O(k
√
k) vertices.

Exercises

Problem 9.1 (l). If M is a module in G, then it is also a module in G.

Problem 9.2 (l). Let M1 and M2 be two modules of G whose intersection is
nonempty. Show that the following vertex sets are modules:

(i) M1 ∪M2;
(ii) M1 ∩M2,

174 Modules

(iii) M14M2 = (M1 ∪M2) \ (M1 ∩M2);
(iv) M1 \M2.

Problem 9.3 (l). If M1 and M2 are disjoint modules, then either every vertex of
M1 is a neighbor of every vertex of M2, or no vertex of M1 is adjacent to any vertex
of M2.

Problem 9.4. Every two distinct maximal strong modules M1 and M2 are disjoint.

Problem 9.5. If X is a module of G and Y is a subset of X, then Y is a module of
G if and only if it is a module of G[X].

Problem 9.6. Let G be either the set of all cliques or the set of all independent sets,
and G be an undirected graph. Show that G-SP(G) can be computed in polynomial
time.

Problem 9.7. Show that Reduction Rules CE.1 and CE.2 can be implemented in
O(n3) time.

Problem 9.8. Prove Lemma 9.18: A graph G is a cograph if and only if it is {∪̇,⊗}-
decomposable.

Problem 9.9. Prove the reverse direction of Lemma 9.22.

Problem 9.10. Show the following:

• A cograph is a graph all of whose induced subgraphs have the property that every
maximal clique intersects every maximal independent set in a single vertex.

• A cograph is a graph G in which every non-trivial induced subgraph F has at least
two vertices with the same neighborhood in F .

• A cograph is a graph in which the complement of every connected induced sub-
graph is disconnected.

Problem 9.11. Prove Theorem 9.33.

Bibliographic notes

Modular partitions is a classical subject in Graph Theory and Algo-

rithms. Modules and their decompositions were introduced by Gallai

(1967) in his study of the structure of comparability graphs. We refer to

the surveys (Möhring and Radermacher, 1984), and (Habib and Paul,

2010) for detailed discussions on different generalizations and applica-

tions of modules. The first linear time algorithm to compute the modular

decomposition tree of a graph is due to McConnell and Spinrad (1999),

see the survey (Habib and Paul, 2010) for additional references to differ-

ent types of algorithms for modular decompositions. For a simple time

O(n + m) algorithm finding strong modules in a tournament, see the

work of McConnell and de Montgolfier (2005). Corneil et al. (1985) gave

an O(n + m) algorithm for determining whether a given graph G is a

cograph and, if so, for constructing the corresponding cotree.

The first polynomial kernel for Cluster Editing was given by Gramm

9.4 FAST revisited 175

et al. (2005). Our presentation of the 6k-vertex kernel for Cluster

Editing follows (Guo, 2009), which also gave a 4k-vertex kernel. Later,

Cao and Chen (2012) and Chen and Meng (2012) gave a 2k-vertex ker-

nel. The Cluster Editing was proven to be NP-hard independently

by Shamir et al. (2004), Chen et al. (2003) and Bansal et al. (2004). Our

presentation of the kernel for Cograph Completion follows (Guille-

mot et al., 2013), who also gave a kernel for the editing version of the

problem.

Cograph Completion is a special case of a more general problem,

F-Completion, where for a family of graphs F , the task is to decide

whether there exists a supergraph G + FS of G, such that |F | ≤ k

and G + F contains no graph from F as an induced subgraph. Co-

graph Completion is F-Completion for F = {P4}. Even for the

case of finite families F , we do not know when F-Completion admits

a polynomial kernel. Guo (2007) initiated the study of kernelization al-

gorithms for F-Completion in the case when the forbidden set F con-

tains the graph C4 and some other classes of C4-free graphs. Kratsch

and Wahlström (2009) have shown that there exists a set F consist-

ing of one graph on seven vertices for which F-Completion does not

admit a polynomial kernel. Guillemot et al. (2013) showed that when

F = {P 13}, where P 13 is the complement of a path on 13 vertices, F-
Completion has no polynomial kernel. These results were significantly

improved by Cai and Cai (2015): For F = {P`} or F = {C`}, the prob-

lems F-Completion and F-Deletion admit a polynomial kernel if

and only if the forbidden graph has at most three edges. Much less is

known for F-Editing.

The first polynomial kernel for FAST with O(k2) vertices is due to

Dom et al. (2010). The kernel with O(k1.5) vertices presented in this

chapter is from the work of Bessy et al. (2011), who also gave a kernel

with (2 + ε)k vertices. For bipartite tournaments, polynomials kernels

of sizes O(k3) and O(k3), which are based on the use of modules, were

given by Misra et al. (2013) and Xiao and Guo (2015), respectively. For

Feedback Vertex Set in Tournaments, the best known kernel has

O(k1.5) vertices due to (Le et al., 2018).

10

Matroids

Matroids generalize several fundamental notions from graph theory and linear

algebra, and they are employed as a powerful tool in combinatorial optimiza-

tion. In this chapter, as well as the next one, we describe techniques based

on matroids that are used to design kernelization algorithms. To make these

chapters self-contained, we start by providing all necessary basic definitions.

For a broader overview on matroids, we refer to the bibliography provided at

the end of this chapter.

In this chapter, we introduce the notion of a matroid. We will see

that matroids, particularly linear matroids, can represent information

compactly. Here, we will see the Cut-Flow data structure as an exam-

ple of such representation. In turn, we will utilize this data structure

to obtain a (randomized) polynomial compression for the Odd Cycle

Transversal problem. Apart from the possibility of representing in-

formation compactly, matroids also give rise to the application of the

irrelevant vertex technique, as we will see in the next chapter.

10.1 Matroid basics

Let us begin by defining the notion of a matroid.

Definition 10.1. A pair M = (E, I), where E is a ground set and I
is a family of subsets (called independent sets) of E, is a matroid if it

satisfies the following conditions, called matroid axioms:

(I1) φ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

176

10.1 Matroid basics 177

(I3) If A,B ∈ I and |A| < |B|, then there is e ∈ (B \ A) such that

A ∪ {e} ∈ I.

Axiom (I2) is also called an hereditary property, and a pair (E, I)

satisfying only axiom (I2) is called a hereditary family. An inclusion-

wise maximal set in I is a basis of the matroid M . Using axiom (I3) it

is easy to show that all the bases of a matroid are of the same size. This

size is called the rank of the matroid M , and it is denoted by rank(M).

The rank of a subset A ⊆ E is the maximum size of an independent set

contained in A.

Let us give several examples of well-known matroids. The first example

comes from linear algebra. Let us take a look at any finite subset E of

a vector space. Every subset of a linearly independent subset of E is

also linearly independent. By the basic theorem of linear algebra known

as Steinitz exchange lemma, for every linearly independent sets A and

B such that |A| < |B|, there is e ∈ B such that A ∪ {e} is linearly

independent. Thus, the following defines a matroid.

Linear and representable matroids. Let A be a matrix over an

arbitrary field F, and let E be the set of columns of A. We associate

a matroid M = (E, I) with A as follows. A set X ⊆ E is independent

(that is, X ∈ I) if the columns in X are linearly independent over F.

The matroids that can be defined by such a construction are called linear

matroids, and if a matroid can be defined by a matrix A over a field F,

then we say that the matroid is representable over F. That is, a matroid

M = (E, I) of rank d is representable over a field F if there exist vectors

in Fd corresponding to the elements in E such that linearly independent

sets of vectors correspond to independent sets of the matroid. Then, a

matroid M = (E, I) is called representable or linear if it is representable

over some field F.

We will use the following product defined on matroids. Let M1 =

(E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be linear matroids with

Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt is the

matroid M = (E, I) with E :=
⋃t
i=1Ei, where X ⊆ E is independent

if and only if X ∩ Ei ∈ Ii for all 1 ≤ i ≤ t. Let A1, A2, . . . , At be

representation matrices of M1 = (E1, I1), M2 = (E2, I2), . . ., Mt =

(Et, It), respectively, such that all of these representations are over the

178 Matroids

same field. Then,

AM =

A1 0 0 · · · 0

0 A2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · At

is a representation matrix of M1⊕· · ·⊕Mt over the same field. We thus

obtain the following.

Proposition 10.2. Given representations of matroids M1, . . . ,Mt over

the same field F, a representation of their direct sum can be found in

polynomial time.

Uniform and partition matroids. A pair M = (E, I) over an n-

element ground set E is called a uniform matroid if the family of in-

dependent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some

non-negative integer. This matroid is also denoted by Un,k. Every uni-

form matroid is linear, and it can be represented over any finite field F
with at least n nonzero elements by a k × n matrix AM as follows. Let

x1, . . . , xn be n distinct nonzero elements of F. Then, AM [i, j] is defined

to be xi−1
j . That is,

AM =

1 1 1 · · · 1

x1 x2 x3 · · · xn
x2

1 x2
2 x2

3 · · · x2
n

...
...

...
. . .

...

xk−1
1 xk−1

2 xk−1
3 · · · xk−1

n

This matrix AM is known as the Vandermonde matrix. Observe that for

Un,k to be representable by AM over F, we need that the determinant

of each k × k submatrix of AM must not vanish over F. Any set of k

columns, corresponding to xi1 , . . . , xik , by itself forms a Vandermonde

matrix, whose determinant is given by
∏

1≤j<l≤k
(xij − xil).

Combining this with the fact that x1, . . . , xn are n distinct nonzero ele-

ments of F, we conclude that every subset of size at most k of the ground

set is independent, while clearly each larger subset is dependent. Note

that this means that a representation of the uniform matroid Un,k can

be stored using O(nk log n) bits.

10.1 Matroid basics 179

A partition matroid M = (E, I) is defined by a ground set E being

partitioned into (disjoint) sets E1, . . . , E` and by ` non-negative integers

k1, . . . , k`. A set X ⊆ E is independent if and only if |X ∩ Ei| ≤ ki for

all i ∈ {1, . . . , `}. Observe that a partition matroid is a direct sum of

uniform matroids U|E1|,k1 , · · · , U|E`|,k` . Thus, by Proposition 10.2 and

the fact that a uniform matroid Un,k is representable over any field F
with at least n nonzero elements, we have the following.

Proposition 10.3. A representation over any field of size larger than n

of a partition matroid with an n-element ground set can be constructed

in polynomial time.

Graphic matroids. Given a graph G, a graphic matroid M = (E, I)

is defined by setting the elements in E to be the edges of G (that is,

E = E(G)), where F ⊆ E(G) is in I if it forms a spanning forest in

G. The graphic matroid is representable over any field of size at least 2.

Indeed, consider the incidence matrix AM of G with a row for each vertex

i ∈ V (G) and a column for each edge e = ij ∈ E(G). In the column

corresponding to e = ij, all entries are 0, except for the entries i and

j, where one of them contains 1 and the other contains −1 (the choice

of which entry contains the 1 is arbitrary). This is a representation over

reals. To obtain a representation over a field F, one simply needs to take

the representation given above (over the reals) and replace every −1 by

the additive inverse of 1. Thus, we obtain the following proposition.

Proposition 10.4. Graphic matroids are representable over any field

of size at least 2.

Dual Matroids. The dual of a matroid M = (E, I) is the matroid

M? = (E, I?) where a subset A ⊆ E belongs to I? if and only if M has

a basis disjoint from A. Equivalently, the dual of a matroid M is the

matroid M? whose basis sets are the complements of the basis sets of

M . Note that duality is an involution, that is, (M?)? = M . For a simple

example of duality, observe that the dual of the uniform matroid Un,k is

the uniform matroid Un,n−k. For another example of duality, let us con-

sider a graphG. The co-graphic matroid corresponding toG, which is the

dual of the graphic matroid corresponding to G, is defined as the matroid

M = (E, I) where E = E(G) and I = {F ⊆ E | G− F is connected}
(see Exercises 10.1 and 10.2). Finally, we state the following proposition

(see Exercise 10.3).

180 Matroids

Proposition 10.5. Given a representation of a matroid M , a represen-

tation of the dual of M over the same field can be found in polynomial

time.

Transversal matroids. Let G be a bipartite graph with the vertex set

V (G) being partitioned to A and B. The transversal matroid M of G

has A as its ground set, and a subset X ⊆ A is independent in M if

and only if there is a matching that covers (saturates) X. That is, X

is independent if and only if there is an injective mapping φ : X → B

such that φ(v) is a neighbor of v for every v ∈ X. Let us now consider

the computation of a representation of a transversal matroid. For this

purpose, we first state the well-known Schwartz-Zippel lemma.

Proposition 10.6 (DeMillo and Lipton (1978); Zippel (1979); Schwartz

(1980)). Let p(x1, x2, . . . , xn) be a nonzero polynomial of n variables and

degree at most d over the finite field F. Then, for a1, a2, . . . , an ∈ F se-

lected independently and uniformly at random: Pr(p(a1, a2, . . . , an) 6= 0)

≥ 1− d/|F|.
In the context of the representation given below, by one-sided error

we mean that dependent sets in the graph would be preserved, but in-

dependent sets in the graph might not be preserved. Specifically, if the

procedure returns a matrix R, then with some (low) probability, some

subsets of X ⊆ A may be independent in M but dependent in the ma-

troid represented by R.

Theorem 10.7. There exists a one-sided error randomized polynomial

time algorithm that given a bipartite graph G with vertex bipartition

(A,B), outputs a representation of the transversal matroid M corre-

sponding to G over the rationals.

Sketch. Denote A = {a1, a2, . . . , a|A|} and B = {b1, b2, . . . , b|B|}. Let

RM be a |B| × |A| matrix where for all i ∈ {1, 2, . . . , |A|} and j ∈
{1, 2, . . . , |B|}, we define RM [j, i] as follows:

• If ai and bj are adjacent in G, then RM [j, i] is a randomly chosen

integer between 1 and 10 · |A| · 2|A|.
• Otherwise, RM [j, i] = 0.

By relying on Proposition 10.6, it can be shown that with high proba-

bility, RM is a representation of M (see Exercise 10.4).

We remark that a polynomial time deterministic computation of a

representation of a transversal matroid is not known.

10.2 Cut-Flow data structure 181

Gammoids. Let D be a directed graph, and let S and T be (not nec-

essarily disjoint) subsets V (D). Here, S is called the source set of the

gammoid, and T is called the sink set of the gammoid. We say that a set

X ⊆ T is linked to S, if there exist |X| vertex disjoint paths going from S

to X. Note that here we require that the paths are entirely disjoint, not

only internally disjoint. Furthermore, zero-length paths are also allowed

if X∩S 6= ∅. The gammoid M corresponding to D, S and T is a matroid

whose ground set is T , and where a subset X ⊆ T is independent in M

if and only if X is linked to S. In case T = V (D), the gammoid M is

called a strict gammoid.

A transversal matroid is in particular a gammoid, and the dual of a

strict gammoid is a transversal matroid. To see the former claim, given

a bipartite graph G with bipartition (A,B), direct the edges of G from

B to A, and define S = B and T = A. The proof of the latter claim

is given as an exercise (Exercise 10.5). Thus, by relying on Proposition

10.5 and Theorem 10.7, we can prove a weaker version of the following

theorem (see Exercise 10.6). To obtain explicit bound on compressions

sizes by using the following theorem, we also specify bit-length in its

statement.

Theorem 10.8 (Kratsch and Wahlström (2014)). There exists a ran-

domized polynomial time algorithm with one-sided error bounded by ε

that, given a directed graph D with subsets S and T of V (D), out-

puts a representation AM of the gammoid M corresponding to D, S

and T over the rationals. Moreover, the entries in AM are of bit-length

O(min{|T |, |S| log |T |}+ log(1/ε) + log |V (D)|), and its size is |S| × |T |.

10.2 Cut-Flow data structure

In this section we develop a data-structure based on representations of

matroids, which is a crucial component of forthcoming polynomial ker-

nels for several parameterized problems. We start with some definitions

and notations. Let D be a directed graph and S and T be (not nec-

essarily disjoint) subsets of V (D). We use mvdpD(S, T) to denote the

maximum number of (fully) vertex disjoint paths from S to T , and by

mincutD(S, T) we denote the minimum number of vertices required to

disconnect T from S in D. Note that verticed used to disconnected S

from T can belong to the sets S and T . By the classical Menger’s the-

182 Matroids

orem, it is well known that mvdpD(S, T) = mincutD(S, T) and that

mvdpD(S, T) can be computed in polynomial time.

The data structure that we want to build should serve the following

purpose. Given a directed graph D and a subset X ⊆ V (D), for every

partition of X = S ∪ T ∪R ∪U we want to store the maximum number

of vertex disjoints paths from S to T in D−R. Moreover, for every such

partition X, we want to compute mvdpD−R(S, T) in time polynomial

in |X| and log |V (D)|. It is trivial to construct such a structure of size

O(4|X| · log |V (D)|) by keeping the required number of paths for every

partition of X into four sets. However, this structure is not sufficiently

good for us—the size of the structure that we require should be bounded

by a polynomial of |X| and log |V (D)|.
More precisely, the formulation of our current task is as follows.

Given a digraph D and a subset X ⊆ V (D) of vertices (called terminals),

the Partition Cut-Flow problem asks to output a data structure of

size polynomial in |X| and log |V (D)| such that any query

For a given a partition of X = S ∪ T ∪R ∪ U , what is mvdpD−R(S, T)?

can be answered in time polynomial in |X| and log |V (D)|.

We proceed in three steps:

a) Describing the data structure;

b) Explaining how to answer a query;

c) Analyzing the time required to answer a query.

We implement the following approach to create the required data

structure.

• For a given digraph D with terminal set X, we construct a gammoid

M = (E, I). By using Theorem 10.8, we also construct a representa-

tion matrix AM of M .

• The gammoid M would have the following property: for every par-

tition P = (S, T,R, U) of X, it is possible in polynomial time to

compute a subset of elements IP of M such that T is linked to S in

D −R if and only if IP is independent in M .

• Thus, to answer the query on the number of paths from S to T in

D −R, we only need to compute IP and its rank.

10.2 Cut-Flow data structure 183

• Finally, to compute the rank of IP , we refer to our representation

matrix AM of M . Specifically, the computation of the rank of IP can

be done in polynomial time using Gaussian elimination.

Description of the data structure. Let X ′ = {x′ | x ∈ X} be a

vertex set that is a copy of X. The vertices x′ and x are called conjugates

of each other. Add X ′ and the arc set {(x′, x) | x ∈ X} to D, and let

the resulting digraph be D′. Consider the gammoid M whose source set

is X ′ and whose sink set is X ∪X ′. That is, the matroid M = (E, I) is

defined by E = X ∪X ′, where I contains the subsets of X ∪X ′ that are

linked to X ′. Let AM be a representation matrix of M .

The matrix AM will be the required data structure. By Theorem 10.8,

given a fixed ε > 0, the representation AM of M can be computed in

randomized polynomial time with one-sided error bounded by ε, and

so that AM would be a matrix over the rationals with entries of bit-

length O(|X| log |X| + log(1/ε) + log |V (D)|) and size (not the number

of bits) |X| × 2|X|. Thus, for a fixed ε > 0, the number of bits of the

representation is O(|X|3 log |X|+ |X|2 log |V (D)|).

Answering a query. Now we show that for every partition of X =

S∪T ∪R∪U , we can find the maximum number of vertex disjoint paths

between S and T in D − R by computing the rank of the appropriate

set of columns in AM . Towards this, we first establish a one-to-one cor-

respondence between subsets of X ∪X ′ and partitions of X. For every

I ⊆ X ∪X ′, we define a partition of X, called PI , as follows:

• S contains all the vertices v ∈ X with v, v′ /∈ I;
• T contains all the vertices v ∈ X with v, v′ ∈ I;
• R contains all the vertices v ∈ X with v ∈ I but v′ /∈ I;
• U = X \ (R∪ T ∪S), i.e. U contains all the vertices v ∈ X with v /∈ I

but v′ ∈ I.

See Fig 10.1 for an illustration. For a partition P = (S, T,R, U) of X,

the corresponding subset IP of X ∪X ′ (which may not be independent)

is T ∪R ∪ T ′ ∪ U ′. Observe that, for every subset I ⊆ X ∪X ′,

IPI = I.

Towards our main goal, we prove the following important lemma.

184 Matroids

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

Figure 10.1 Constructing the partition PI = (S, T,R, U) from I.

Lemma 10.9. A set I ⊆ X ∪X ′ is independent in the gammoid M if

and only if T is linked to S in D−R. Here, T and S are the subsets in

the partition PI corresponding to I.

Proof. We first show the forward direction of the proof. Let I ⊆ X ∪X ′
be an independent set in M . Thus there exists a set P of |I| vertex

disjoint paths from X ′ to I. For every vertex v′ ∈ X ′ ∩ I = T ′ ∪ U ′,
the only path from a vertex in X ′ to v′ is the one consisting only of v′

as every vertex in X ′, and in particular v′, has in-degree 0. For every

vertex w ∈ R, there is a path in P that is either of the form w′w or of

the form v′v · · ·w with v′ ∈ S′. In latter case, we can replace the path

v′v · · ·w by w′w; this replacement is possible as the only out-neighbor

of w′ is w, and thus w′ does not appear on any other path in P. These

arguments imply that for every vertex w ∈ T , there exists a path in P of

the form v′v · · ·w where v′ ∈ S′. All of these paths do not contain any

vertex of R, are vertex disjoint, and in fact v · · ·w is a path in D − R.

This implies that T is linked to S in D −R.

For the opposite direction, let T be linked to S in D − R. Let us

remind that for every subset I ⊆ X ∪X ′, IPI = I. To construct vertex

disjoint paths from X ′ to I, we proceed as follows. For the vertices

v′ ∈ X ′ ∩ I = T ′ ∪ U ′, we select the paths v′, and for the vertices

w ∈ R, we select the paths w′w. Finally, for a path v · · ·w from S to

T in D − R (corresponding to a witness of T being linked to S), where

v ∈ S and w ∈ T , we select a path from S′ to T by appending v′ to

it, that is, we select v′v · · ·w. Since we have thus shown that there exist

|I| vertex disjoint paths from X ′ to I, we derive that I is independent.

This completes the proof.

10.2 Cut-Flow data structure 185

Using Lemma 10.9, we prove the following lemma.

Lemma 10.10. Let P = (S, T,R, U) be a partition of X, and let IP ⊆
X ∪ X ′ be the set corresponding to P , that is, IP = T ∪ R ∪ T ′ ∪ U ′.
Then,

mvdpD−R(S, T) = rank(IP)− |X \ S|.

Proof. Let P = {P1, . . . , P`} be a maximum sized collection of vertex

disjoint paths from S to T in D − R, and let T ∗ ⊆ T be the set of

endpoints in T of these paths. Clearly, mvdpD−R(S, T) = |T ∗|. Since T ∗

is linked to S in D−R, by Lemma 10.9 we have that U ′∪T ′∪R∪T ∗ ⊆ IP
is an independent set of the gammoid. Moreover, if the gammoid has a

larger independent set Q that is contained in IP , then |Q ∩ T | > |T ∗|;
however, by Lemma 10.9 we have that Q ∩ T is linked to S, which is

a contradiction to our choice of T ∗. Therefore, U ′ ∪ T ′ ∪ R ∪ T ∗ is the

largest sized independent set of the gammoid among all the independent

sets contained in IP . That is, rank(IP) = |U ′| + |T ′| + |R| + |T ∗|. This

implies that

mvdpD−R(S, T) = |T ∗|
= rank(IP)− |U ′| − |T ′| − |R|
= rank(IP)− |U | − |T | − |R|
= rank(IP)− |X \ S|.

This completes the proof.

So to answer the query, we perform the following computation:

Given a partition of P = (S, T,R, U) of X, return rank(IP)− |X \ S|.

The correctness of the answer is justified by Lemma 10.10.

Query time. To answer the query, we have to compute the maximum

size of a set of linearly independent columns among the columns cor-

responding to IP in AM . This can be done in time O(|X|ω log |V (D)|).
Here, ω < 2.3727 is the exponent of the best matrix multiplication al-

gorithm.

We summarize the above in the following theorem.

Theorem 10.11. For every ε > 0, there is a randomized polynomial

time algorithm with one-sided error bounded by ε that, given a digraph

D and subset of terminals X, outputs a data structure for the Partition

186 Matroids

Cut-Flow problem with output size O(|X|3 log |X| + |X|2 log |V (D)|)
and query time O(|X|ω log |V (D)|).

10.3 Kernel for Odd Cycle Transversal

Let G be an undirected graph and O ⊆ V such that G−O is a bipartite

graph. For an undirected graph G, we say that a subset O ⊆ V (G) is

an odd cycle transversal of G if G−O is a bipartite graph. In the Odd

Cycle Transversal problem, we are given an undirected graph G

and a non-negative integer k. The task is to decide whether G has an

odd cycle transversal of size at most k.

To obtain a polynomial kernel for Odd Cycle Transversal, we

initially employ an FPT algorithm for this problem. This algorithm will

not only be used in a black box manner by the kernelization algorithm,

but the ideas underlying its design will be repeated in later steps of the

kernelizaion algorithm, “encoded” succinctly using matroids. Thus, we

first present the FPT algorithm in detail.

10.3.1 FPT algorithm

Iterative compression algorithm for Odd Cycle Transversal.

The FPT algorithm for Odd Cycle Transversal is based on the

so-called technique of iterative compression. The scheme of algorithms

relying on this technique is based on a compression routine, which is an

algorithm that, given a problem instance and a corresponding solution,

either calculates a smaller solution or proves that the given solution is

of minimum size. The point is that if the compression routine runs in

FPT time, then by applying the routine iteratively, we also obtain an

FPT algorithm.

We solve Odd Cycle Transversal in the following three steps.

Step 1: (Auxiliary problem) Solve the following auxiliary annotated

problem on bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer
k, find a set S of at most k vertices such that G − S has a proper
2-coloring with white and black colors where B \S is black and W \S
is white.

10.3 Kernel for Odd Cycle Transversal 187

Step 2: (Compression routine) Use Step 1 to solve the following prob-

lem on general graphs:

Given a graph G, an integer k, and a set Q of k + 1 vertices such
that G−Q is bipartite, find a set S of k vertices such that G− S is
bipartite.

Step 3: Apply the idea of iterative compression.

Solving the annotated problem. Let B,W be some vertex subsets

of a bipartite graph G. We can view the vertices in B and W as vertices

precolored in black and white, respectively, by some coloring function

f0. We want to find a set S of size at most k such that the graph

G − S has a proper 2-coloring f? called an extension, which extends

the precoloring of B ∪W (that is, the vertices in B and W retain their

predetermined colors). To find such a coloring, we proceed as follows.

First, we fix an arbitrary 2-coloring f of G in black and white. Let

this coloring correspond to the bipartition (B0,W0), where B0 and W0

denote the sets of vertices colored black and white, respectively. Clearly,

such a coloring f exists as G is a bipartite graph. Now, observe that in

terms of coloring functions, our objective is to find a set S of at most k

vertices such that G − S has another 2-coloring f? in black and white

such that B \ S is black and W \ S is white.

Observe that the vertices of Change(f0, f) = C := (B0∩W)∪(W0∩B)

should either belong to S or have different colors with respect to f and

f?. That is, for all v ∈ C, either v ∈ S or f(v) 6= f?(v). Similarly,

every vertex of Retain(f0, f) = R := (B0 ∩ B) ∪ (W0 ∩ W) should

either belong to S or have the same color with respect to f and f?.

That is, for all v ∈ R, either v ∈ S or f(v) = f?(v). The diagram in

Fig. 10.2 illustrates this argument. Let us summarize this observation in

the following statement.

Lemma 10.12. Let G be a bipartite graph with bipartition corresponding

to a coloring f , and let f0 be a precoloring of some of the vertices of G.

For any subset S ⊆ V (G) and extension f? of f0 for G−S, it holds that

(i) for all v ∈ Change(f0, f), either v ∈ S or f(v) 6= f?(v), and (ii) for

all v ∈ Retain(f0, f), either v ∈ S or f(v) = f?(v).

The following lemma will be used to solve the annotated problem.

Lemma 10.13. Let G be a bipartite graph with bipartition corresponding

188 Matroids

B0 W0

W

B

C

R

R

C

Figure 10.2 The sets C and R.

to a coloring f , and let f0 be a precoloring of some of the vertices of G.

For any subset S ⊆ V (G), G − S has an extension f? of f0 if and

only if S separates C = Change(f0, f) and R = Retain(f0, f), i.e. no

component of G− S contains vertices from both C \ S and R \ S.

Furthermore, a set S of size at most k such that G−S has an extension

f?, if one exists, can be found in time O(k|E(G)|).

Proof. We first prove the forward direction of the statement. To this

end, let S ⊆ V (G) be a subset such that G − S has an extension f? of

f0. Every vertex in G − S either changes its color or retains its color

with respect to f and f?. Adjacent vertices do the same as f or f? are

proper colorings of G. Thus, the vertices of every connected component

of G−S either all flip their colors or all keep their colors. In other words,

either for all the vertices v of the component we have that f(v) 6= f?(v),

or for all the vertices v of the component we have that f(v) = f?(v). By

Lemma 10.12, this implies that S separates C and R.

For the backward direction, let S ⊆ V (G) be a subset that separates

C and R. We construct a coloring f? of G as follows. Flip the coloring

with respect to f of the vertices of those components of G − S that

contain vertices from C \S. As S separates C and R, no vertex of R has

its color flipped. Since f is a proper 2-coloring of G, so is f?. Thus, by

the definition of f?, it is an extension of f0 with respect to G − S (see

Fig. 10.2).

To find a separator of size at most k separating C and R, one can

use classical max-flow min-cut techniques. In particular, our goal can

be achieved in time O(k|E(G)|) using k iterations of the Ford-Fulkerson

algorithm.

10.3 Kernel for Odd Cycle Transversal 189

Compression. In this step, we implement the compression routine. To

this end, we first prove the following lemma.

Lemma 10.14. Let G be a graph, and Q ⊆ V (G) be a subset such that

G − Q is a bipartite graph with bipartition (B,W). Let f be the proper

2-coloring corresponding to (B,W). For any subset S ⊆ V (G), G − S
is a bipartite graph if and only if there exists a partition (QB , QW , QS)

of Q such that QB and QW are independent sets, QS = Q ∩ S and S

separates C = Change(f0, f) and R = Retain(f0, f), where f0 is the

function that colors NG(QW) \Q black and NG(QB) \Q white.

Furthermore, a set S of size at most k such that G− S is a bipartite

graph, if one exists, can be found in time O(3|Q| · k|E(G)|).

Proof. For the forward direction, let S ⊆ V (G) be a subset such that

G−S is a bipartite graph, and let f? be a proper 2-coloring corresponding

to a bipartition (B?,W ?) of G−S. Every vertex v ∈ Q belongs to either

S or G − S, where in the latter case either f?(v) is black or f?(v) is

white. This observation leads to the partition (QB , QW , QS) of Q, where

QS = Q∩S, QB = Q∩B? and QW = Q∩W ?. Clearly, QB and QW are

independent sets. Let f0 be the function that colors NG(QW) \Q black

and NG(QB)\Q white. Now, observe that the neighbors of QB in G−Q
must be either colored white or deleted by S. Similarly, the neighbors

of QW in G − Q, say B, must be either colored black or deleted by S.

Therefore, f? is an extension of f0. By Lemma 10.13, this means that S

separates C and R.

For the reverse direction, let S ⊆ V (G) be a subset for which there

exists a partition (QB , QW , QS) of Q such that QB and QW are inde-

pendent sets, QS = Q ∩ S and S separates C and R. By Lemma 10.13,

G−S has an extension f? of f0, and let (B?,W ?) denote its correspond-

ing bipartition. Now, note that (B? ∪QB ,W ? ∪QW) is a bipartition of

G− S. Indeed, QB and QW are independent sets, and as f? is a proper

2-coloring of G−S, B? and W ? are also independent sets. Furthermore,

as f? extends f0, the neighbors of every vertex v in QB ∪QW are not in

the same side as v in (B? ∪QB ,W ? ∪QW). Thus, G− S is a bipartite

graph.

Finally, to compute the desired set S, we first branch into at most

3|Q| cases to consider every partition (QB , QW , QS) of Q such that QB
and QW are independent sets. In every branch, we seek a subset S′ ⊆
V (G) \QS of size at most k− |QS | such that S′ separates C and R. By

Lemma 10.13, this step can be carried out in time O(k|E(G)|). Overall,

190 Matroids

we can thus find a set S of size at most k such that G− S is a bipartite

graph, if one exists, in time O(3|Q| · k|E(G)|).
As a corollary to Lemma 10.14, we have the following result.

Corollary 10.15. For a given graph G, an integer k, and a set Q of

k+ 1 vertices such that G−Q is a bipartite graph, it can be determined

in time O(3k · k|E(G)|) if there exists a subset S ⊆ V (G) of k vertices

such that G−S is a bipartite graph, where if the answer is positive, such

a subset S is outputted.

Iterative compression. The final question that we need to address in

the context of the FPT algorithm is how to obtain a solution of size

k + 1. Luckily, this comes almost for free: We build such a solution

iteratively. Take an arbitrary ordering (v1, . . . , vn) of V (G) and let Gi
be the graph induced by {v1, . . . , vi}. For every i, we find a set Si of size

k such that Gi − Si is bipartite. For Gk, the set Sk = {v1, . . . , vk} is a

trivial solution. If Si−1 is known, then Qi = Si−1 ∪ {vi} is a set of size

k+ 1 whose deletion makes Gi bipartite. We use Corollary 10.15 to find

a suitable Si in time O(3k · k|E(Gi)|). If for some i ≤ n we reach the

conclusion that Gi does not have a solution of size k, then G also does

not have a solution of size k. Else, Sn is a solution of size at most k for

Gn = G.

The compression algorithm is called n times and thus the whole algo-

rithm runs in time O(3k ·k|V (G)|·|E(G)|). Thus, we obtain the following

theorem.

Theorem 10.16. Odd Cycle Transversal is solvable in time

O(3k · k · |V (G)| · |E(G)|).

10.3.2 Compression

Reformulation of the compression step. To obtain the desired ker-

nelization algorithm, we need to reformulate the compression step so

that we can apply Theorem 10.11. Given a graph G and a set Q such

that G−Q is bipartite, we define another graph G′ as follows. Let (Â, B̂)

be a fixed bipartition of G−Q. We take two copies of the set Q, denoted

by Qa = {qa | q ∈ Q} and Qb = {qb | q ∈ Q}. The vertex set of G′ is

A ∪ B ∪ Qa ∪ Qb. The edges within G′[Â ∪ B̂] are the same as within

G, while for every vertex q ∈ Q, the vertex qa is connected to all of the

vertices in NG(q)∩ B̂ and the vertex qb is connected to all of the vertices

in NG(q) ∩ Â.

10.3 Kernel for Odd Cycle Transversal 191

Let (S′, T ′, R′) be a partition of Qa ∪Qb. We say that (S′, T ′, R′) is a

valid partition if for every q ∈ Q,

• for every q ∈ Q, either |{qa, qb}∩S′| = |{qa, qb}∩T ′| = 1 or |{qa, qb}∩
R′| = 2, and

• {q ∈ Q | qa ∈ S′} and {q ∈ Q | qb ∈ S′} are independent sets.

Given a graph G and vertex subsets S′ and T ′ of V (G), we say that

X is a vertex cut-set of S′ and T ′ if in G−X there is no path between

a pair of vertices s, t such that s ∈ S′ and t ∈ T ′. Let us remind that

by mincutG(S′, T ′) we denote the minimum size of a vertex cut-set of

S′ and T ′ in G.

Lemma 10.17. Let G be a graph and Q ⊆ V (G) be such that G−Q is

bipartite with bipartition (Â, B̂). Then, the size of the minimum odd cycle

transversal of G is the minimum over all valid partitions (S′, T ′, R′) of

Qa ∪Qb of the following value:

|R′|
2

+ mincutG′−R′(S
′, T ′).

Proof. Let us denote (B,W) = (Â, B̂), and define f as the proper 2-

coloring corresponding to this bipartition of G−Q. For the forward di-

rection, let S be an odd cycle transversal of G. By Lemma 10.14, there

exists a partition (QB , QW , QS) of Q such that QB and QW are inde-

pendent sets, QS = Q ∩ S and S separates C = Change(f0, f) and R =

Retain(f0, f), where f0 is the function that colors NG(QW)\Q black and

NG(QB) \Q white. Observe that C = (NG(QB) ∩B) ∪ (NG(QW) ∩W)

and R = (NG(QB) ∩ W) ∪ (NG(QW) ∩ B). Let us define a partition

(S′, T ′, R′) of Qa ∪Qb as follows: S′ = {qa | q ∈ QB} ∪ {qb | q ∈ QW },
T ′ = {qb | q ∈ QB}∪{qa | q ∈ QW }, R′ = {qa | q ∈ QS}∪{qb | q ∈ QS}.
Clearly, for every q ∈ Q, either |{qa, qb} ∩ S′| = |{qa, qb} ∩ T ′| = 1 or

|{qa, qb}∩R′| = 2. Moreover, since QB and QW are independent sets, we

have that {q ∈ Q | qa ∈ S′} and {q ∈ Q | qb ∈ S′} are independent sets.

Thus, (S′, T ′, R′) is a valid partition. Hence, to conclude the proof of this

direction, it remains to show that mincutG′−R′(S′, T ′) ≤ |S \Q|, as this

would imply that |R
′|

2 +mincutG′−R′(S′, T ′) ≤ |S|. For this purpose, it is

enough to show that S \Q separates S′ and T ′ in G′−R′. However, this

follows as we argued that S separates (NG(QB) ∩B) ∪ (NG(QW) ∩W)

and (NG(QB) ∩W) ∪ (NG(QW) ∩B) in G.

For the reverse direction, let (S′, T ′, R′) be a valid partition of Qa∪Qb.
Let X be a vertex cut of minimum size between S′ and T ′ in G −

192 Matroids

R′. We define S as the union of {q ∈ Q | qa ∈ R′} and (X \ Q) ∪
{q ∈ Q | {qa, qb} ∩ X 6= ∅}. Note that S ⊆ V (G) and |S| ≤ |R′|

2 +

mincutG′−R′(S′, T ′). Thus, it remains to prove that G−S is a bipartite

graph. By Lemma 10.14, to show that G − S is a bipartite graph, it is

sufficient to show that there exists a partition (QB , QW , QS) of Q such

that QB and QW are independent sets, QS = Q ∩ S and S separates

C = Change(f0, f) and R = Retain(f0, f), where f0 is the function

that colors NG(QW) \Q black and NG(QB) \Q white. To this end, we

define QB = {q ∈ Q \ S | qa ∈ S′}, QW = {q ∈ Q \ S | qb ∈ S′} and

QS = Q ∩ S. As (S′, T ′, R′) is a valid partition, we immediately have

that QB and QW are independent sets. Moreover, as X separates S′ and

T ′ in G−R′, we have that S separates (NG(QB)∩W)∪ (NG(QW)∩B)

and (NG(QB)∩B)∪ (NG(QW)∩W) in G. Recall that f colors B black

and W white, and f0 colors NG(QW) \Q black and NG(QB) \Q white.

Thus, we have that C = (NG(QB) ∩ B) ∪ (NG(QW) ∩ W) and R =

(NG(QB) ∩W) ∪ (NG(QW) ∩B), which concludes the proof.

Compression. Now, we are prepared to proceed to the compression

algorithm for Odd Cycle Transversal. The compression algorithm

is a combination of Lemma 10.17 and Theorem 10.11. Here, the target

problem Compressed OCT is defined as follows. Given a set Q′ with

partition (Qa, Qb), a Cut-Flow data structure corresponding to Q′, and

a parameter k, the objective of Compressed OCT is to determine

whether there exists a valid partition (S′, T ′, R′) of Q′ such that |R
′|

2 +

mincutD′−R′(S′, T ′) ≤ k. Here, only the subgraph D′[Q′] of the digraph

D′ is given explicitly.

Let G be an input graph on n vertices. Observe that to exploit Lemma

10.17, we need a set Q ⊆ V (G) be such that G−Q is bipartite. To obtain

the desired Q we make use of a known α
√

log n factor approximation al-

gorithm for the optimization version of the Odd Cycle Transversal

problem:

Proposition 10.18. For some fixed α, Odd Cycle Transversal ad-

mits a polynomial time algorithm that, given an instance of Odd Cycle

Transversal, outputs a set Q that is an odd cycle transversal of G of

size α
√

log n · OPT , where OPT is the minimum size of an odd cycle

transversal of G.

Next, we outline the steps involved in designing the compression al-

gorithm for Odd Cycle Transversal.

10.3 Kernel for Odd Cycle Transversal 193

(i) If k ≤ log n, then run the O(3kmn) time algorithm of Theorem 10.16

to find a solution in polynomial time, after which return a trivial yes-

or no-instance accordingly.

(ii) Apply the known α
√

log n approximation algorithm for Odd Cycle

Transversal to find an approximate solution Q. If |Q| > kα
√

log n,

then output a trivial no-instance.

(iii) At this stage, we have k > log n and |Q| ≤ kα
√

log n. Thus, |Q| =

O(k1.5).

(iv) For the graph G and subset Q ⊆ V (G), we construct the graph G′

described in Section 10.3.2. To utilize Theorem 10.11, we translate G

into a digraph. To this end, let D′ be the digraph obtained from G′

by replacing every edge by a directed cycle of length two, i.e. two arcs

with different directions. By adding these double arcs, the reachability

relationships between vertices in G and D are the same. Let AM be

the matrix (that is, the data structure) returned by Theorem 10.11

by taking D′ as the input digraph and Qa ∪Qb as a set of terminals.

(v) By Theorem 10.11, the size ofAM in terms of bits is at mostO(k4.5 log k).

(vi) The output instance of Compressed OCT (defined before Proposi-

tion 10.18) is (Qa ∪Qb, D′[Qa ∪Qb], AM , k).

From Lemma 10.17 and Theorem 10.11, we derive the correctness of

the above procedure:

Lemma 10.19. The Odd Cycle Transversal admits a randomized

compression of size O(k4.5 log k) into Compressed OCT.

Before we proceed, let us clarify that by randomized compression, we

mean that with high probability (say, some constant close to 1), the

input and output instances are equivalent.

10.3.3 Kernel

Finally, let us show that Lemma 10.19 in fact implies that Odd Cy-

cle Transversal admits a polynomial kernel. To this end, first note

that Odd Cycle Transversal is an NP-hard problem. Furthermore,

we have that Compressed OCT is in NP. Indeed, given an instance

(Qa ∪ Qb, D′[Qa ∪ Qb], AM , k) of Compressed OCT, observe that a

non-deterministic Turing machine can “guess” a partition (S′, T ′, R′),
verify that the partition is valid in polynomial time (using D′[Qa∪Qb]),
and then verifying that |R

′|
2 + mincutD′−R′(S′, T ′) ≤ k (using AM).

Thus, there exists a polynomial-time algorithm that, given an instance

194 Matroids

of Compressed OCT, translates it into an equivalent instance of Com-

pressed OCT (see Theorem 1.6). Combined with Lemma 10.19, this

results in the following theorem.

Theorem 10.20. Odd Cycle Transversal admits a randomized

polynomial kernel.

Exercises

Problem 10.1 (l). Based on the matroid axioms, verify that the following families
indeed form matroids.

(i) Let G be a graph. Let M = (E, I) be a matroid defined on G, where E = E(G)
and I contains all forests of G. (Graphic Matroid)

(ii) Let G be a connected graph. Let M = (E, I) be a matroid defined on G, where
E = E(G) and I contains all F ⊆ E(G) such that the graph G′ obtained from G
by deleting edges of F is connected. (Co-Graphic Matroid)

Problem 10.2. Let G be a graph. Prove that the dual of the graphic matroid
corresponding to G is the co-graphic matroid corresponding to G.

Problem 10.3. Prove Proposition 10.5.

Problem 10.4. Complete the proof of Proposition 10.7.

Problem 10.5. Prove every strict gammoid is the dual of a transversal matroid.
(Hint: Given a strict gammoid corresponding to D,S and T = V (D), construct a
bipartite graph G with bipartition A = V (D) and B = {v′ : v ∈ V (D) \ S}, such
that there is an edge between v ∈ A and u′ ∈ B if v = u or there is an arc from v to
u in D.)

Problem 10.6. Prove the following weaker version of Theorem 10.8: There exists a
one-sided error randomized polynomial time algorithm that given a directed graph
D with subsets S and T of V (D), outputs a representation of the gammoid M
corresponding to D, S and T over the rationals. Here, it is not requested to bound
the bit-length of the entries.

(Hint: Given a gammoid, extend its target set. First use Exercise 10.4, and then
use Exercise 10.5. Afterwards, remember to restrict the target set.)

Problem 10.7. Let M1 = (E1, I1) and M2 = (E2, I2) be two matroids such that
E1 = E2 = E. Define M1 ∩M2 as M = (E, I) such that X ∈ I if and only if X ∈ I1
and X ∈ I2. Is M always a matroid? (Matroid Intersection)

Problem 10.8. Express the following as intersections of (possibly more than two)
matroids.

(i) Finding a maximum matching in a bipartite graph.
(ii) Testing whether a graph contains two edge disjoint spanning trees.

(iii) Finding a Hamiltonian path in a directed graph D between a pair of vertices s
and t of D.

10.3 Kernel for Odd Cycle Transversal 195

Bibliographic notes

In this chapter, we have only touched the surface of the deep and well-

studied area of Matroid Theory. We refer to the textbook of Welsh (2010)

as well as the books of Oxley (2010) and Lawler (2001) for an introduc-

tion to the field. For applications of matroids to the design of parame-

terized algorithms, we refer the book of Cygan et al. (2015). We remark

that Propositions 10.2 and 10.3 can be found as Propositions 3.4 and 3.5,

respectively, in (Marx, 2009). Moreover, Theorem 10.8 can be found

in (Kratsch and Wahlström, 2014). The randomized representation of

transversal matroids can be found in the memorandum of (Edmonds

and Fulkerson, 1965) (see also (Marx, 2009)). Recently, a deterministic

quasipolynomial representation was given by Lokshtanov et al. (2018).

We also refer to (Perfect, 1968) for the context of gammoids.

The randomized polynomial kernel for Odd Cycle Transversal is

based on (Kratsch and Wahlström, 2014). We remark that a determinis-

tic polynomial kernel for Odd Cycle Transversal is not known. Let

us also point out another work where the approach of matrix representa-

tion (which does not have to be based on matroids) has been considered:

Wahlström (2013) presented a compression for the problem of finding

a cycle through specific vertices given as input. Interestingly, here the

output problem is not known to be in NP, and hence we do not obtain

a kernel.

In this chapter, we have also referred to Ford-Fulkerson algorithm,

which can be found in (Ford Jr. and Fulkerson, 1956). Menger’s theo-

rem is due to Menger (1927). The most recent bound ω < 2.3728639 for

the matrix multiplication exponent is given in (Gall, 2014). The tech-

nique of iterative compression was introduced by Reed et al. (2004) to

solve Odd Cycle Transversal, and additional applications of this

technique to design parameterized algorithms are given in Cygan et al.

(2015). A faster algorithm for Odd Cycle Transversal was given in

Lokshtanov et al. (2014). The α
√

log n factor approximation algorithm

Odd Cycle Transversal is due to Agarwal et al. (2005).

11

Representative families

In the previous chapter, we used succinct representations of matroids to derive

a kernel for Odd Cycle Transversal of polynomial size. In this chapter, we

discuss kernelization algorithms that find vertices or edges that are irrelevant

and thus can be safely deleted. The tools that we use to identify irrelevant ver-

tices or edges are based on linear algebra and matroid theory. In what follows,

we first motivate these tools by giving as an example a parameterized algorithm

for Longest Path, and then we formalize the notion of a representative set.

This is followed by an efficient algorithm to compute these combinatorial ob-

jects together with several applications of representative sets in kernelization

algorithms.

11.1 Introduction to representative sets

Let us consider the classical dynamic programming algorithm for Hamil-

tonian Path, where for a given n-vertex graph G, the task is to deter-

mine whether there exists a path visiting each vertex of G exactly once.

Such a path is called a Hamiltonian path. A trivial algorithm would be

to try all possible vertex permutations of G, and for each permutation,

check whether it corresponds to a simple path. This approach will take

O(n! · n) steps. By making use of dynamic programming, it is possible

to solve Hamiltonian Path in time O(2n · n2).

Let G be an input graph and W be a matrix. The rows of W are

indexed by the vertices in V (G) = {v1, . . . , vn}, and the columns of W

are indexed by the integers in {1, . . . , n− 1}. The matrix entry W [vj , i]

stores all sets X ⊆ V (G) such that |X| = i and G has at least one path

196

11.1 Introduction to representative sets 197

of length i−1 ending at vj and using only the vertices of X. Observe that

in W we are only storing sets and not permutations of vertices. That

is, while it is possible that there exist many paths ending at vj with

internal vertices taken from X, rather than storing the order in which

each of them visits X, we only store the set X. This implies that the

size of the family stored at W [vj , i] is at most
(
n
i

)
. We can fill the matrix

as follows. For i = 1, the family stored in every entry W [vj , i] consists

only of {vj}. For w ∈ V (G), we use the notation W [w, i − 1] • {vj} to

denote the family of all sets of size i that can be formed from the union

of a set from W [w, i− 1] and {vj}. In other words,

W [w, i− 1] • {vj} = {X ∪ {vj} | X ∈W [w, i− 1] and vj 6∈ X}.

Then, we are able to compute the family of sets W [vj , i] by making use

of the following formula:

W [vj , i] =
⋃

w∈N(vj)

W [w, i− 1] • {vj}.

Clearly, if for some vj ∈ V (G) the family W [vj , n] is nonempty, then

G has a Hamiltonian path ending at vj . It is also easy to see that the

running time of the algorithm is O(2nn2).

Let us now try to adapt these arguments to the following parame-

terized version of the Hamiltonian Path problem. Recall that in the

Longest Path problem, we are given a graph G and a non-negative

integer k. The task is to decide whether G contains a path of length at

least k.

Observe that we can solve the problem by restricting the columns of

the matrix W to {1, . . . , k + 1}. However, the running time of this al-

gorithm is dominated by O(
(
n
k+1

)
), which is roughly nO(k). A natural

question that arises here is whether we can improve the running time

by pruning the family stored at W [vj , i]. However, what should be the

property of the pruned family Ŵ [vj , i] ⊆W [vj , i]? To explain this prop-

erty precisely, we will use the following notations. Let A be a set of size

i and B be a set of size k− i. We say that a path P on k+1 vertices is of

Avj+1B-type if the first i vertices of P belong to A, the (i+ 1)-th vertex

is vj , and the last k − i vertices belong to B. By taking a closer look at

the algorithm for Hamiltonian Path, we want the families Ŵ [vj , i] to

satisfy the following property:

198 Representative families

Let P be a path on k + 1 vertices of AvjB-type with |A| = i and

|B| = k− i. Then, A∪ {vj} clearly belongs to W [vj , i]. In this case, it is

not mandatory to store A∪ {vj}, but we would like to have at least one

set Â ∈ Ŵ [vj , i] such that there is a (k+1)-vertex path P ′ of ÂvjB-type.

Thus, for the purpose of the dynamic programming algorithm, it is

sufficient to store Ŵ [vj , i] rather than W [vj , i]. The next question is how

large should the set Ŵ [vj , i] be and how fast can it be computed.

To address the first question, let Ŵ [vj , i] be a minimal subfamily of

W [vj , i] that satisfies the required property. Minimality implies that for

every A ∈ Ŵ [vj , i], there exists a set B of size k − i such that (i) there

is a path on k+ 1 vertices of AvjB-type, and (ii) for each A′ ∈ Ŵ [vj , i]

such that A′ 6= A, there is no (k + 1)-vertex path of A′vjB-type. An

upper bound of the size of Ŵ [vj , i] can be obtained by considering the

following classical problem in extremal combinatorics. Let U be universe

and Ai, Bi ⊆ U , i ∈ {1, . . . , t}, be sets such that each Ai is of size p and

each Bi is of size q. Furthermore, Ai ∩ Bj = ∅ if and only if i = j. The

classical theorem of Bollobás implies that t is at most
(
p+q
p

)
. The crucial

observation here is that t does not depend on the size of the universe U .

This shows that the size of Ŵ [vj , i] is at most
(
k
i

)
. The family Ŵ [vj , i]

is called a (k − i)-representative family.

To address the second question, we need efficient algorithms comput-

ing representative families. The kernelization algorithms of this chapter

are based on a generalization of the result of Bollobás to a subspace vari-

ant proved by Lovász and a corresponding efficient computation. This

generalization is discussed in the following section.

11.2 Computing representative families

In this section we give an algorithm to find a small q-representative

family for a given family. For the sake of brevity, we use the follow-

ing notations: [n] = {1, . . . , n} and
(

[n]
i

)
= {X | X ⊆ [n], |X| = i}.

Moreover, we use the following operations on families of sets.

Definition 11.1. Given two families of sets A and B, we define

(•) A • B = {X ∪ Y | X ∈ A, Y ∈ B, X ∩ Y = ∅}.

11.2 Computing representative families 199

Let A1, . . . ,Ar be r families. Then,

•∏

i∈[r]

Ai = A1 • · · · • Ar.

(◦) A ◦ B = {A ∪B : A ∈ A, B ∈ B}.
(+) For a set X, we define A+X = {A ∪X : A ∈ A}.

We start with the formal definition of a q-representative family.

Definition 11.2 (q-representative family). Given a matroid M =

(E, I) and a family S of subsets of E, we say that a subfamily Ŝ ⊆ S
is q-representative for S if the following holds: for every set Y ⊆ E of

size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I,

then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is

q-representative for S we write Ŝ ⊆qrep S.

In other words, if some independent set in S can be extended to a

larger independent set by adding some q new elements, then there is

a set in Ŝ that can be extended by adding the same q elements. A

weighted variant of q-representative families is defined as follows. It is

useful for solving problems where we are looking for objects of maximum

or minimum weight.

Definition 11.3 (min/max q-representative family). Given a ma-

troid M = (E, I), a family S of subsets of E and a non-negative

weight function w : S → N, we say that a subfamily Ŝ ⊆ S is min

q-representative (max q-representative) for S if the following holds: for

every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from

Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y such that

(i) X̂ ∪ Y ∈ I; and

(ii) w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative

(max q-representative) family for S.

We say that a family S = {S1, . . . , St} of sets is a p-family if each set

in S is of size p.

We start by three lemmata providing basic results about represen-

tative sets. We prove them for unweighted representative families, but

they can be easily modified to work for the weighted variant.

Lemma 11.4. Let M = (E, I) be a matroid and S be a family of subsets

of E. If S ′ ⊆qrep S and Ŝ ⊆qrep S ′, then Ŝ ⊆qrep S.

200 Representative families

Proof. Let Y ⊆ E of size at most q such that there is a set X ∈ S disjoint

from Y with X∪Y ∈ I. By the definition of a q-representative family, we

have that there is a set X ′ ∈ S ′ disjoint from Y with X ′ ∪ Y ∈ I. Now,

because Ŝ ⊆qrep S ′, there exists X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈
I.

Lemma 11.5. Let M = (E, I) be a matroid and S be a family of subsets

of E. If S = S1 ∪ · · · ∪ S` and Ŝi ⊆qrep Si, then ∪`i=1Ŝi ⊆qrep S.

Proof. Let Y ⊆ E be an independent set of size at most q such that there

is a set X ∈ S disjoint from Y with X ∪ Y ∈ I. Since S = S1 ∪ · · · ∪ S`,
there exists an i such that X ∈ Si. This implies that there exists X̂ ∈
Ŝi ⊆ ∪`i=1Ŝi disjoint from Y with X̂ ∪ Y ∈ I.

Lemma 11.6. Let M = (E, I) be a matroid of rank k, S1 be a p1-family

of independent sets, S2 be a p2-family of independent sets, Ŝ1 ⊆k−p1rep S1,

and Ŝ2 ⊆k−p2rep S2. Then, Ŝ1 • Ŝ2 ⊆k−p1−p2rep S1 • S2.

Proof. Let Y ⊆ E of size at most q = k−p1−p2 such that there is a set

X ∈ S1•S2 disjoint from Y with X∪Y ∈ I. This implies that there exist

X1 ∈ S1 and X2 ∈ S2 such that X1 ∪X2 = X and X1 ∩X2 = ∅. Since

Ŝ1 ⊆k−p1rep S1, we have that there exists X̂1 ∈ Ŝ1 such that X̂1∪X2∪Y ∈ I
and X̂1 ∩ (X2 ∪ Y) = ∅. Now since Ŝ2 ⊆k−p2rep S2, we have that there

exists X̂2 ∈ Ŝ2 such that X̂1 ∪ X̂2 ∪ Y ∈ I and X̂2 ∩ (X̂1 ∪ Y) = ∅.
This shows that X̂1 ∪ X̂2 ∈ Ŝ1 • Ŝ2 and X̂1 ∪ X̂2 ∪ Y ∈ I, and thus

Ŝ1 • Ŝ2 ⊆k−p1−p2rep S1 • S2.

In what follows, we prove the following. Given a representable matroid

M = (E, I) of rank k = p + q with its representation matrix AM ,

a p-family of independent sets S, and a non-negative weight function

w : S → N, we can compute Ŝ ⊆qminrep S and Ŝ ⊆qmaxrep S of size
(
p+q
p

)

deterministically in time O
((
p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

. We use ω to denote

the matrix multiplication exponent. The current best known bound on

ω is ω < 2.373.

For our proof we need the following well-known generalized Laplace

expansion of determinants. For a matrix A = (aij), the row set and the

column set are denoted by R(A) and C(A), respectively. For I ⊆ R(A)

and J ⊆ C(A), A[I, J] =
(
aij | i ∈ I, j ∈ J

)
refers to the submatrix (or

minor) of A with the row set I and the column set J . For I ⊆ [n], let

Ī = [n] \ I and
∑
I =

∑
i∈I i.

11.2 Computing representative families 201

Proposition 11.7 (Generalized Laplace expansion). For an n×n ma-

trix A and J ⊆ C(A) = [n], it holds that

det(A) =
∑

I⊆[n],|I|=|J|
(−1)

∑
I+

∑
J det(A[I, J]]) det(A[Ī , J̄])

The proof of Generalized Laplace expansion can be found in most of

the textbooks on linear algebra, see Notes section for a reference, and

we omit it here.

We always assume that the number of rows in the representation ma-

trix AM of M over a field F is equal to rank(M) = rank(AM). Otherwise,

using Gaussian elimination we can obtain a matrix of the desired kind

in polynomial time.

Theorem 11.8. Let M = (E, I) be a linear matroid of rank p+ q = k,

S = {S1, . . . , St} be a p-family of independent sets and w : S → N be a

non-negative weight function. Then there exists Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep
S) of size

(
p+q
p

)
. Moreover, given a representation AM of M over a field

F, we can find Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size at most
(
p+q
p

)
in

O
((
p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

operations over F.

Proof. We only show how to find Ŝ ⊆qminrep S in the claimed running

time. The proof for Ŝ ⊆qmaxrep S is analogous, and for that case we only

point out the places where the proof differs. If t ≤
(
k
p

)
, then we can take

Ŝ = S. Clearly, in this case Ŝ ⊆qminrep S. So from now onwards we always

assume that t >
(
k
p

)
. For the proof we view the representation matrix

AM as a vector space over F and each set Si ∈ S as a subspace of this

vector space. With every element e ∈ E, let xe be the corresponding

k-dimensional column in AM . Observe that each xe ∈ Fk. For each

subspace Si ∈ S, i ∈ [t], we associate a vector ~si =
∧
j∈Si xj in F(kp) as

follows. In exterior algebra terminology, the vector ~si is a wedge product

of the vectors corresponding to elements in Si. For a set S ∈ S and

I ∈
(

[k]
p

)
, we define s[I] = det(AM [I, S]).

We also define

~si = (si[I])
I∈([k]

p) .

Thus the entries of the vector ~si are the values of det(AM [I, Si]), where

I runs through all the p sized subsets of rows of AM .

Let HS = (~s1, . . . , ~st) be the
(
k
p

)
× t matrix obtained by taking ~si as

columns. Now we define a weight function w′ : C(HS) → R+ on the

set of columns of HS . For the column ~si corresponding to Si ∈ S, we

202 Representative families

define w′(~si) = w(Si). LetW be a set of columns of HS that are linearly

independent over F, such that the size ofW is equal to rank(HS) andW
is of minimum total weight with respect to the weight function w′. That

is, W is a minimum weight column basis of HS . Since the row-rank of a

matrix is equal to the column-rank, we have that |W| = rank(HS) ≤
(
k
p

)
.

We define Ŝ = {Sα | ~sα ∈ W}. Let |Ŝ| = `. Because |W| = |Ŝ|, we have

that ` ≤
(
k
p

)
. Without loss of generality, let Ŝ = {Si | 1 ≤ i ≤ `} (else

we can rename these sets) and W = {~s1 . . . , ~s`}. The only thing that

remains to show is that indeed Ŝ ⊆qminrep S.

Let Sβ ∈ S be such that Sβ /∈ Ŝ. We show that if there is a set Y ⊆ E
of size at most q such that Sβ ∩Y = ∅ and Sβ ∪Y ∈ I, then there exists

a set Ŝβ ∈ Ŝ disjoint from Y such that Ŝβ ∪ Y ∈ I and w(Ŝβ) ≤ w(Sβ).

Let us first consider the case |Y | = q. Since Sβ ∩ Y = ∅, it follows that

|Sβ ∪ Y | = p+ q = k. Furthermore, since Sβ ∪ Y ∈ I, we have that the

columns corresponding to Sβ ∪ Y in AM are linearly independent over

F; that is, det(AM [R(AM), Sβ ∪ Y]) 6= 0.

Recall that ~sβ = (sβ [I])
I∈([k]

p) , where sβ [I] = det(AM [I, Sβ]). Simi-

larly, we define y[L] = det(AM [L, Y]) and

~y = (y[L])
L∈([k]

q) .

Let J = Sβ . Then,
∑
J =

∑
j∈Sβ j. Define

γ(~sβ , ~y) =
∑

I∈([k]
p)

(−1)
∑
I+

∑
Jsβ [I] · y[Ī].

Since
(
k
p

)
=
(
k
k−p
)

=
(
k
q

)
, the above formula is well defined. Observe that

by Proposition 11.7, we have that γ(~sβ , ~y) = det(AM [R(AM), Sβ∪Y]) 6=
0. We also know that ~sβ can be written as a linear combination of vectors

in W = {~s1, ~s2, . . . , ~s`}. That is, ~sβ =
∑`
i=1 λi~si, λi ∈ F, and for some

11.2 Computing representative families 203

i, λi 6= 0. Thus,

γ(~sβ , ~y) =
∑

I

(−1)
∑
I+

∑
Jsβ [I] · y[Ī]

=
∑

I

(−1)
∑
I+

∑
J

(∑̀

i=1

λisi[I]

)
y[Ī]

=
∑̀

i=1

λi

(∑

I

(−1)
∑
I+

∑
Jsi[I]y[Ī]

)

=
∑̀

i=1

λi det(AM [R(AM), Si ∪ Y]) (by Proposition 11.7)

Define

sup(Sβ) =
{
Si

∣∣∣ Si ∈ Ŝ, λi det(AM [R(AM), Si ∪ Y]) 6= 0
}
.

Since γ(~sβ , ~y) 6= 0, we have that

∑̀

i=1

λi det(AM [R(AM), Si ∪ Y]) 6= 0

and thus sup(Sβ) 6= ∅. Observe that for all S ∈ sup(Sβ) we have that

det(AM [R(AM), S ∪ Y]) 6= 0 and thus S ∪ Y ∈ I. We now show that

w(S) ≤ w(Sβ) for all S ∈ sup(Sβ).

Claim 11.9. For all S ∈ sup(Sβ), w(S) ≤ w(Sβ).

Proof. For contradiction assume that there exists a set Sj ∈ sup(Sβ)

such that w(Sj) > w(Sβ). Let ~sj be the vector corresponding to Sj and

W ′ = (W ∪ {~sj}) \ { ~sβ}. Since w(Sj) > w(Sβ), we have that w(~sj) >

w(~sβ) and thus w′(W) > w′(W ′). Now we show thatW ′ is also a column

basis of HS . This will contradict our assumption that W is a minimum

weight column basis of HS . Recall that ~sβ =
∑`
i=1 λi~si, λi ∈ F. Since

Sj ∈ sup(Sβ), we have that λj 6= 0. Thus ~sj can be written as linear

combination of vectors in W ′. That is,

~sj = λβ~sβ +
∑̀

i=1,i6=j
λ′i~si. (11.1)

Moreover, every vector ~sγ /∈ W can be written as a linear combination

204 Representative families

of vectors in W:

~sγ =
∑̀

i=1

δi~si, δi ∈ F. (11.2)

By substituting (11.1) into (11.2), we conclude that ~sγ can be written

as linear combination of vectors in W ′. This shows that W ′ is also a

column basis of HS , a contradiction proving the claim.

Claim 11.9 and the discussions preceding it show that we could take

any set S ∈ sup(Sβ) as the desired Ŝβ ∈ Ŝ. Hence Ŝ ⊆qminrep S for each

Y of size q. This completes the proof for the case |Y | = q.

Suppose that |Y | = q′ < q. Since M is a matroid of rank k = p + q,

there exists a superset Y ′ ∈ I of Y of size q such that Sβ ∩ Y ′ = ∅
and Sβ ∪ Y ′ ∈ I. This implies that there exists a set Ŝ ∈ Ŝ such that

det(AM [R(AM), Ŝ ∪ Y ′]) 6= 0 and w(Ŝ) ≤ w(S). Thus the columns

corresponding to Ŝ ∪ Y are linearly independent.

The proof is constructive, and the algorithm constructing a repre-

sentative family of size at most
(
p+q
p

)
can be easily deduced from the

proof. Actually, the only procedures performed by the algorithm are

those computing a determinant and finding a basis. Thus to argue about

the running time of the algorithm, we have to explain how to

(a) compute determinants, and

(b) apply fast Gaussian elimination to find a minimum weight column

basis.

It is well known that one can compute the determinant of an n × n

matrix in time O(nω). For a rectangular matrix A of size d × n (with

d ≤ n), it is possible to compute a minimum weight column basis in time

O(ndω−1). See the Notes section for references. Thus given a p-family

of independent sets S, we can construct the matrix HS as follows. For

every set Si, we first compute ~si. To do this we compute det(AM [I, Si])

for every I ∈
(

[k]
p

)
. This can be done in time O(

(
p+q
p

)
pω). Thus, we

can obtain the matrix HS in time O(
(
p+q
p

)
tpω). Given HS , we can find a

minimum weight basisW of linearly independent columns of HS of total

minimum weight in time O(t
(
p+q
p

)ω−1
). Given W, we can easily recover

Ŝ. Thus we can compute Ŝ ⊆qminrep S in O
((
p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

field

operations. This concludes the proof for finding Ŝ ⊆qminrep S. To find

Ŝ ⊆qmaxrep S, the only change we need to do in the algorithm for finding

11.3 Kernel for Vertex Cover 205

Ŝ ⊆qminrep S is to find a maximum weight column basis W of HS . This

concludes the proof.

In Theorem 11.8 we assumed that rank(M) = p + q. However, we

remark that one can obtain a similar result even when rank(M) > p+ q

using the notion of truncation, see Notes.

11.3 Kernel for Vertex Cover

In this section, as a warmup to the following sections, we first apply the

computation of representative families to obtain a polynomial kernel to

our favorite problem: Vertex Cover.

We have already seen several quadratic kernels for Vertex Cover

earlier in the book. Here, we use matroid theory to obtain a kernel of

similar size. A few natural questions that arise in this context are the

following:

(a) Which matroid should we associate to Vertex Cover?

(b) What is the collection F for which we want to find representatives?

(c) For what value of q should we define q-representatives?

It appears that the answer to (b) is generally easy and that it governs

the answers to both (a) and (c). We remark that in combinatorial opti-

mization, F is the set of constraints that is unbounded and we need to

find a representative family for it; a more philosophical viewpoint on this

subject is given later. In the context of Vertex Cover, the constraints

correspond to the edges of the input graph G. From now onwards, we

assume that (G, k) is an input to Vertex Cover. Let F = E(G) (each

edge is thought of as a set of size 2). Now, let us identify the informa-

tion we expect from a q-representative of F to encode. We would like

to find a representative family for F , say F̂ , such that G has a vertex

cover of size k if and only if there is a k-sized vertex cover hitting all

the edges in F̂ . In order to use the approach of representative sets, it

must be the case that the vertex subsets corresponding to edges in F
are independent sets in some matroid.

We associate the following uniform matroid with G. Let M = (E, I)

be the matroid where E = V (G) and I consists of all subsets of V (G) of

size at most k+2. Now using Theorem 11.8, compute a k-representative

F̂ ⊆krep F in polynomial time. The size of F̂ is at most
(
k+2

2

)
. We show

that G has a vertex cover of size k if and only if there is a k-sized vertex

206 Representative families

cover hitting all the edges in F̂ . The forward direction follows easily as

F̂ is a subset of E(G). For the other direction, let X be a vertex set

of size k that hits all the edges corresponding to F̂ . We claim that X

is also a vertex cover of G. Towards a contradiction, assume that X

does not hit some edge, say uv, of G. Then X ∩ {u, v} = ∅, and thus

by the definition of representative sets, we have that there exists a set

{a, b} ∈ F̂ such that X ∩ {a, b} = ∅. This contradicts the fact that X

hits all the edges corresponding to F̂ . This implies that X is indeed a

vertex cover of size at most k for G. Let G′ be the subgraph of G that

has no isolated vertices and E(G′) = F̂ . Return G′ as the desired kernel.

This results in the following.

Theorem 11.10. Vertex Cover admits a kernel of size O(k2).

Before we proceed to describe other examples, let us briefly discuss a

philosophical viewpoint on representative families. Given a huge dataset,

the task of generating an accurate synopsis is of a great significance and

it is used in many applications. Objects similar to representative families

have been used as a form of synopsis in data-mining. A good representa-

tive family in this setting maximizes the amount of information it cap-

tures about the original dataset when compared to other subsets of the

same size. In combinatorial optimization, the huge data set corresponds

to the huge number of constraints that we need to satisfy. Representa-

tive families can be used to prune given sets of constraints to sets of

constraints of size polynomial in the parameter while still maintaining

the answer. We demonstrate this approach with a few other examples;

in particular,refer to the abstraction given in Section 11.5.

11.4 Digraph Pair Cut

In this section we give a polynomial kernel for a problem that can be

thought of as a generalization of Vertex Cover, and abstracts the

difficulty in several cut problems.

Let D be a directed graph, s ∈ V (D) and {x, y} ⊆ V (D) be a pair

of vertices. We say that the pair {x, y} is reachable from s if there exist

paths from s to x and from s to y in D. These paths need not be disjoint.

Now, we are ready to state the problem formally. In the Digraph Pair

Cut problem, we are given a directed graph D, a source vertex s ∈
V (D), a set P of pairs of vertices, and a non-negative integer k. The

11.4 Digraph Pair Cut 207

task is to decide whether there exists a set X ⊆ V (D) \ {s} such that

|X| ≤ k and no pair in P is reachable from s in D −X.

Let us remark that a vertex can occur in several pairs of P. We first

show that Digraph Pair Cut is indeed a generalization of Vertex

Cover. Given an instance (G, k) of Vertex Cover, we obtain an in-

stance of Digraph Pair Cut as follows. Let D′ be an edgeless digraph

on V (G). Now, we obtain D from D′ by adding a new vertex s /∈ V (D′)
as well as a directed arc from s to every vertex in V (D′), that is, D is

a star directed away from its center s. Let P = E(G), that is, the set of

the two endpoints of each edge in E(G) belongs to P. Now, it is easy to

see that G has a vertex cover of size at most k if and only if there exists

a set X ⊆ V (D) \ {s} such that |X| ≤ k and no pair in P is reachable

from s in D −X.

It is natural to try the strategy we employed for Vertex Cover for

Digraph Pair Cut; let us see what happens when we try to do that. As

before, we associate a uniform matroid with D. Let M = (E, I) be the

matroid, where E = V (D) and I consists of all subsets of V (D) of size

at most k + 2. Now using Theorem 11.8, in polynomial time compute a

k-representative family P̂ ⊆krep P. The size of P̂ is at most
(
k+2

2

)
. There

are two obvious questions:

(i) Is it true that (D, s,P, k) is a yes-instance if and only if (D, s, P̂, k)

is a yes-instance?

(ii) Does this imply that we have a kernel polynomial in k?

We first answer the second question. This method directly does not

give us a polynomial kernel—while the number of pairs is polynomial in

k, this may not be the case with the size ofD. However, it does allow us to

upper bound the size of “essential” constraints by a polynomial function

of k. We will explain later a simple trick that uses the equivalent instance

(D, s, P̂, k) to obtain a polynomial size kernel. So for now, we only focus

on obtaining an equivalent instance (D, s, P̂, k), where |P̂| = kO(1). Let

us try to answer the first question. The forward direction is obvious as

P̂ ⊆ P. For the backward direction, let vertex set X ⊆ V (D) \ {s} be

such that |X| ≤ k and no pair in P̂ is reachable from s in D −X. The

only reason why X may not be a solution for (D, s,P, k) is that there

exists a pair {a, b} ∈ P \P̂ such that {a, b} is reachable from s in D−X.

Clearly, then X ∩ {a, b} = ∅ and thus by the definition of representative

families, there exists a pair {a′, b′} ∈ P̂ such that X ∩ {a′, b′} = ∅. For

Vertex Cover this immediately implied that X was not the required

solution for the reduced instance and hence we arrived at the desired

208 Representative families

contradiction. However, for Digraph Pair Cut, the condition X ∩
{a′, b′} = ∅ does not imply that the pair {a′, b′} is reachable from s in

D−X. Indeed, it could be that X hits all the paths from s to either a′

or b′ somewhere else.

The discussion in the above paragraph suggests that our choice of

a uniform matroid to define a representative family is not correct. We

need a matroid where the fact that X ∪ {a′, b′} is an independent set

implies that there are paths from s to a′ and b′ in D − X. It seems

very natural to use gammoids in an appropriate manner, and indeed

this is what we will do. In this context, note that on the one hand, if

X ∪{a′, b′} is independent, then that would imply that there are |X|+2

vertex disjoint paths from an appropriate source set with its endpoints

in X ∪ {a′, b′}. On the other hand, if a pair {a′, b′} is reachable from s,

that is, there are paths from s to a′ and b′, then the witnessing paths

are only two and they need not be disjoint. We need to take care of this

option appropriately.

All the paths we are considering originate from s, and thus s is a

sensible candidate for the source set S of the gammoid we would like

to form. However, if some set X needs to be an independent set in a

gammoid, then it must be linked to S and thus there must be |X| vertex

disjoint paths from S to X. Furthermore, we also need to find a solution

that does not include s. To overcome these difficulties, we add k + 1

vertices s1, . . . , sk+1, give them same adjacencies as s, and then delete

s. We call this transformed digraph D′ and define S = {s1, . . . , sk+1}. It

is not difficult to see that (D, s,P, k) is a yes-instance if and only if there

exists a setX ⊆ V (D′)\S such that |X| ≤ k and no pair in P is reachable

in D′−X from any vertex s′ ∈ S. From now onwards, we will work with

the instance (D′, S,P, k), and for the sake of presentation we denote

D′ by D. Moreover, from now onwards, by slightly abusing notation

we will refer to the tuple (D,S,P, k) as the instance of Digraph Pair

Cut. Having replaced s by S is not sufficient—we still need to perform

additional work to define the matroid where all the sets that we want to

be independent are indeed independent. This is what we will do next.

Let M = (E, I) be a strict gammoid with E = V (D) and source

set S. We would like to compute a k-representative set P̂ ⊆krep P with

respect to the gammoid we constructed. However, to compute the rep-

resentative set, it is required that for every pair {a, b} ∈ P, this pair is

an independent set in the gammoid. This is a general principle: if we

want to compute a representative set for a family F , then every set in F
should be an independent set in the base matroid. Observe that in the

11.4 Digraph Pair Cut 209

current setting, we cannot guarantee that there are two vertex disjoint

paths from S to a pair {a, b} in P. We are only guaranteed that there

are is a path from S to each vertex among a and b (else the pair can be

removed from P), but these two paths may not be vertex disjoint. Thus,

to make {a, b} independent in our gammoid, we apply the following dis-

jointness trick which will be useful in other settings too. We construct a

linear matroid M that is a disjoint sum of two gammoids. We make two

copies of the digraph D and call them D1 and D2. A copy of a vertex

v ∈ V (D) becomes v1 in D1 and v2 in D2. Furthermore, let Si, i ∈ {1, 2},
be the copy of S in Di. For i ∈ {1, 2}, let Mi = (Ei, Ii) be the gammoid

with Ei = V (Di) and the source set Si. Let M = M1 ⊕M2. We also

modify our family P as follows.

Let

S =
{
{a1, b2}

∣∣∣ {a, b} ∈ P
}
.

Observe that since |Si| = k + 1, we have that the largest independent

set in Ii has size k + 1, and thus the rank of M is 2k + 2. Let Ŝ ⊆2k
rep S

and P̂ =
{
{a, b}

∣∣∣ {a1, b2} ∈ Ŝ
}
. Clearly, |P̂| ≤

(
2k+2

2

)
.

It remains to prove the following lemma.

Lemma 11.11. (D,S,P, k) is a yes-instance of Digraph Pair Cut if

and only if (D,S, P̂, k) is.

Proof. The forward direction is obvious as P̂ ⊆ P.

For the reverse direction, let X be a solution to (D,S, P̂, k). If X

is not a solution for (D,S,P, k), it means that exists a pair {a, b} ∈
P \ P̂ such that {a, b} is reachable from S in D − X. Clearly, then

X ∩ {a, b} = ∅. The proof would follow easily if we could show that

X1 ∪ {a1} (X2 ∪ {b2}) is an independent set in I1 (I2). Indeed, that

would imply that {a1, b2}∪X1 ∪X2 is an independent set in I and thus

there exists a pair {a′1, b′2} ∈ Ŝ such that X1 ∪{a′1} is independent in I1
and X2 ∪ {b′2} is independent in I2. This in turn implies that there are

|X|+ 1 vertex disjoint paths from S to X ∪ {a′} in D, hence there is a

path from S to a′ in D − X. Similarly, there is a path from S to b′ in

D −X and thus {a′, b′} is reachable from S—a contradiction as X is a

solution to (D,S, P̂, k). Thus, our goal boils down to finding a solution

X for (D,S, P̂, k) with the following properties: If there exists a pair

{a, b} ∈ P \ P̂ such that {a, b} is reachable from S in D−X, then there

are |X|+ 1 vertex disjoint paths from S to X ∪{a} as well as to X ∪{b}

210 Representative families

in D. Obviously, not every X satisfy these conditions, and a priori it is

not at all clear that such a solution exists.

To find a solution of the desired kind, we digress at this point. Let S

and T be vertex subsets (not necessarily disjoint) of a digraph D, and

X be a minimum vertex cut between S and T . That is, X is a minimum

sized vertex subset such that in D−X there is no path from a vertex in

S \X to a vertex in T \X. Moreover, assume that X 6= S. Let R(S,X)

denote the set of vertices reachable from S in D−X. Let u be a vertex

in R(S,X). Is it true that there are |X|+ 1 vertex disjoint paths from S

to X ∪ {u} in D′ = D[R(S,X) ∪X]? If not then by Menger’s theorem

there is a set Z in D[R(S,X) ∪X] of size |X| that disconnects S from

X ∪ {u} in D′. Clearly, Z 6= X else we can reach u from S in D′ − Z.

Observe that R(S,Z) (R(S,X) and Z is also a minimum vertex cut

between S and T . Now, for any vertex w ∈ R(S,Z), we again ask the

following question: Are there |Z|+1 = |X|+1 vertex disjoint paths from

S to Z∪{w} in D[R(S,Z)∪Z]? Observe that this process will stop as D

is finite and in each step the size of the reachability set decreases. Thus,

we have shown that there exists a minimum vertex cut, say Z, between

S and T such that for every vertex w ∈ R(S,Z), we have that there are

|Z| + 1 vertex disjoint paths from S to Z ∪ {w} in D[R(S,Z) ∪ Z]. In

other words, Z is the unique minimum vertex cut between S and Z in

D. This brings us to the following definition.

Definition 11.12 (Closest set). Let D be a digraph and S and T be

vertex subsets (not necessarily disjoint) of V (D).

(i) A set X ⊆ V (D) is closest to S if for every vertex w ∈ R(S,X), there

are |X|+1 vertex disjoint paths from S to X∪{w} in D[R(S,X)∪X].

That is, X is the unique minimum vertex cut between S and X. In

other words, X is the only vertex cut of size at most |X| for paths

from S to X.

(ii) Let Z be a minimum vertex cut between S and T such that for every

vertex w ∈ R(S,Z), there are |Z| + 1 vertex disjoint paths from S

to Z ∪ {w} in D[R(S,Z) ∪ Z]. Such a set Z is called a T -induced-

closest-set. In other words, Z is the closest to S minimum vertex cut

between S and T .

Now we return to the Digraph Pair Cut problem. Let (D,S,P, k)

be an instance of Digraph Pair Cut and X be a solution to it. A

solution X is called special if it is closest to S.

11.4 Digraph Pair Cut 211

Claim 11.13. If (D,S,P, k) is a yes-instance of Digraph Pair Cut,

then there exists a special solution to the problem.

Proof of the claim. Let Y be a solution to (D,S,P, k) and X be a Y -

induced-closest-set. By definition, we have that |X| ≤ |Y | and that for

every vertex w ∈ R(S,X), there are |X| + 1 vertex disjoint paths from

S to X ∪{w} in D[R(S,X)∪X]. It only remains to show that X is also

a solution to (D,S,P, k). This follows from the observation that every

path from S to a pair {a, b} ∈ P containing a vertex of Y should also

contain a vertex of X. A formal proof is as follows. Suppose that X is

not a solution to (D,S,P, k). This implies that there exists a pair {a, b}
such that there are paths Pa and Pb from S to a and b, correspondingly,

in D −X. However, either Pa contains a vertex of Y , or Pb contains a

vertex of Y . Without loss of generality assume that Pa contains a vertex

of Y . Furthermore, let y be the first occurrence of a vertex from Y on

Pa. Let P ′a be the prefix subpath of Pa whose last vertex is y. Thus in P ′a
the only vertex from Y is y. But because X is the Y -induced-closest-set,

we have that X is a minimum vertex cut between S and Y . Thus X

contains a vertex of Pa—a contradiction to Pa being a path from S to

a in D −X. This completes the proof.

Now, let us conclude the proof the reverse direction of Lemma 11.11.

Rather than picking any solution to (D,S, P̂, k), we pick a special so-

lution X, whose existence is guaranteed by Claim 11.13. As we have

argued earlier, to conclude the proof, it suffices to show that X1 ∪ {a1}
(X2 ∪ {b2}) is an independent set in I1 (I2). However, this follows since

X is closest to S, which means that there are |X| + 1 vertex disjoint

paths from S to X ∪ {a} as well as |X|+ 1 vertex disjoint paths from S

to X ∪ {b}. This concludes the proof of the lemma.

We summarize all that we have said so far in the following lemma.

Lemma 11.14. Let (D,S,P, k) be an instance of Digraph Pair Cut.

Then, in randomized polynomial time it is possible to obtain a set P̂ ⊆ P
such that

• |P̂| = O(k2), and

• (D,S,P, k) is a yes-instance if and only if (D,S, P̂, k) is a yes-instance.

Proof. The set P̂ defined in Lemma 11.11 is a representative set of a

linear matroid M . The representation AM is formed from the repre-

sentation matrices of two gammoids. Each of the gammoids for the

graph D has |S| sources. Let U be the set of vertices of the pairs in

212 Representative families

P̂. By Theorem 10.8, there is a randomized polynomial-time algorithm

with one-sided error bounded by ε to compute a representation A of

a gammoid of size |S| × |U | such that every entry of A has bit length

O(k log k+ log(1
ε) + log |V (D)|). Thus by Theorem 11.8, the family P̂ is

computable in polynomial time. The rank of M is 2k+2, and the family

P̂ is a 2k-representative family, thus |P̂| = O(k2). The equivalence of

the two instances follows from Lemma 11.11.

Now we are fully prepared to prove the following theorem. Before that,

let us remind that by randomized kernel, we mean that with high prob-

ability (say, some constant close to 1), the input and output instances

are equivalent.

Theorem 11.15. Digraph Pair Cut admits a randomized polynomial

kernel.

Proof. The proof is based on Lemma 11.14. First, we need the following

claim.

Claim 11.16. There exists a randomized algorithm that solves Di-

graph Pair Cut in time 2O(k2)nO(1).

Proof of the claim. Given an instance (D,S,P, k) to Digraph Pair

Cut, we first apply Lemma 11.14 and obtain an equivalent instance

(D,S, P̂, k). Let U be the set of vertices of the pairs in P̂. A vertex

subset W ⊆ U is called good if it contains at least one vertex from each

pair in P̂. Now, to check whether the given instance is a yes-instance,

we proceed as follows. For every good set W , we check whether it can

be separated from S by at most k vertices. If there exists a good W for

which we succeed, then we determine that (D,S,P, k) is a yes-instance,

and otherwise we determine that it is a no-instance.

Clearly, if we determine that (D,S,P, k) is a yes-instance, then it is

correct. In the other direction, suppose that (D,S,P, k) is a yes-instance.

Let X be a solution to (D,S,P, k). We form a set T by picking a vertex

from each pair {a, b} ∈ P such that this vertex is not reachable from

S in D − X. Clearly, X separates T from S. In fact, every minimum-

sized vertex cut that separates S from T is a solution to the instance

(D,S,P, k). As T is a good set, we determine that (D,S,P, k) is a yes-

instance.

Now, we compress Digraph Pair Cut into a problem of finding

the rank of an independent set in an appropriate matroid. We apply

Lemma 11.14 to obtain an equivalent instance (D,S, P̂, k). Let U be

11.4 Digraph Pair Cut 213

the set of vertices of the pairs in P̂. Let M = (E, I) be the gammoid

correponding to D with the source set S and the sink set U . Moreover, let

AM be the corresponding representation matrix, so that the size of AM
is |S| × |U | and every entry has bit-length at most O(k log k + log(1

ε) +

log |V (D)|) where ε is the probability of failure. (Note that in the matrix

AM , every column corresponds to a vertex.) Thus, for a fixed ε, the bit

length is bounded by O(k log k+log |V (D)|). Let us remind that a vertex

subset W ⊆ U is called good if it contains at least one vertex from each

pair in P̂. Thus, (D,S, P̂, k) is a yes-instance if and only if there exists

a good set W ⊆ U such that there exists a set X ⊆ V (D) of size at

most k so that in D −X there is no path from S to W . For any good

set W ⊆ U , the minimum size of such a set X ⊆ V (D) that separates S

from W is equal to the maximum number of vertex disjoint paths from

S to W (by Menger’s theorem), which is the rank of the set of columns

corresponding to W in AM .

We would like to bound the total number of bits in AM by a polyno-

mial function of k. Towards this we first check whether 2O(k2) ≤ |V (D)|,
and if this is the case, then we apply Claim 11.16 and solve the prob-

lem in time 2O(k2)|V (D)|O(1) ≤ |V (D)|O(1). Thus, in polynomial time

we can decide whether the given input is a yes-instance. Otherwise, we

have that |V (D)| ≤ 2O(k2), and therefore log |V (D)| ≤ O(k2). This im-

plies that the number of bits in AM is at most |S| · |U | · O(k2) = O(k5).

Thus we have obtained an instance of the following Low-Rank Good

Set Testing problem, where the size of the instance is bounded by

O(k5).

In the Low-Rank Good Set Testing we are given a matrix A, a

family P of pairs of columns of A and a positive integer k. The task is to

decide whether there is a set of columns W that has at least one column

from every pair in P, and such that the rank of the submatrix induced

by W is at most k.

To derive the existence a kernel for Digraph Pair Cut, we invoke

Theorem 1.6 about polynomial compressions. Observe that Low-Rank

Good Set Testing is in the class NP. Moreover, Digraph Pair Cut

is NP-complete—for example, this can be shown by making use of the

reduction from Vertex Cover which we gave in the beginning of this

section. Thus, by Theorem 1.6, a polynomial compression to Low-Rank

Good Set Testing implies a polynomial kernel for Digraph Pair

Cut. This completes the proof of the theorem.

214 Representative families

11.5 An abstraction

In this section we abstract a theme common to the kernels we saw for Di-

graph Pair Cut and Vertex Cover. One way to design a polynomial

kernel for a graph problem where the objective is to find a vertex/edge

subset of size at most k that satisfies some properties is to try to keep a

certificate for every k-sized subset that tells us why it cannot be a solu-

tion. For example, for Vertex Cover for every vertex set X of size at

most k that is not a vertex cover, we would like to keep an edge uv such

that X ∩ {u, v} = ∅. Sometimes we do not keep this certificate for every

subset of size at most k that is not a solution, but rather for only those

sets that are not a solution and satisfy certain properties. For example,

for Digraph Pair Cut, we know that if there is a solution, then there

is a solution that is a closest set to S. This is why for Digraph Pair

Cut it is sufficient that for each closest set X to S of size at most k that

is not a solution, we keep a pair {u, v} to certify that X is indeed not a

solution. In what follows, we abstract and formalize these arguments.

We start by describing a special constraint satisfaction problem (CSP).

For a universe U , let
(
U
≤x
)

denote the family of all subsets of U of size

at most x. In the d-Subset CSP problem, we are given a universe U , a

family C ⊆
(
U
≤d
)
, a function f :

(
U
≤k
)
×C → {0, 1} with oracle access and

a non-negative integer k. Here, we mean the we do not have an explicit

representation of f , but given any (X, c) ∈
(
U
≤k
)
, we can obtain f(X, c)

in polynomial time. The task is to decide whether there exists X ∈
(
U
≤k
)

such that for every c ∈ C, f(X, c) = 1. We refer to the set X as a solution

to d-Subset CSP.

Example 11.17. To see why Vertex Cover is a special case of d-

Subset CSP, for an instance (G, k) of Vertex Cover, we construct

an equivalent instance (U, C, f, k) of d-Subset CSP as follows. We take

a universe U = V (G) and a family of constraints C = E(G). For every

X ∈
(
U
≤k
)

and constraint (or edge) c = uv ∈ C, we put f(X, c) = 1 if

X ∩ {u, v} 6= ∅ and f(X, c) = 0 otherwise. Then, X is a vertex cover of

size k in G if and only if X is a solution to (U, C, f, k).

Example 11.18. Similarly, for an instance (D, s,P, k) of Digraph

Pair Cut, we take U = V (D) and C = P. For every X ∈
(
U
≤k
)

and

c = {x, y} ∈ C, we define f(X, c) = 1 if the pair {x, y} is not reachable

from s in D − X and f(X, c) = 0 otherwise. It is easy to see that X

is a digraph pair cut of size k in D if and only if X is a solution to

(U, C, f, k).

11.5 An abstraction 215

Our goal is to find a (desirably small) subset of constraints C′ ⊆ C
such that (U, C, f, k) is a yes-instance if and only if (U, C′, f, k) is a yes-

instance. In particular, we would like to bound |C′| ≤ g(k), where g is a

polynomial function of k alone.

An approach to find the desired C′ is to find a solution to the following

implicit hitting set problem. For a set X ⊆ U of size at most k, we define

FX =
{
c ∈ C | f(X, c) = 0

}
.

Thus FX is the set of constraints which X does not satisfy. This leads

to the following implicit hitting set problem over the universe C. The

instance of the problem is of the form
(
C,F =

{
FX | X ∈

(
U

≤ k

)})
.

We say that C′ ⊆ C is a hitting set for the instance (C,F), if for every

subset X of size at most k, if FX 6= ∅, then also C′ ∩ FX 6= ∅.
The following lemma shows that the family of constraints of a yes-

instance to d-Subset CSP can be “compressed” to a hitting set of

(C,F).

Lemma 11.19. Let C′ be a hitting set for the instance (C,F). Then,

(U, C, f, k) is a yes-instance if and only if (U, C′, f, k) is a yes-instance.

Proof. The forward direction is straightforward because C′ ⊆ C. For the

reverse direction, let X be a solution to (U, C′, f, k). We have to show

that X is also a solution to (U, C, f, k). For a contradiction, assume that

this is not the case. Hence there exists a constraint c ∈ C such that

f(X, c) = 0. This implies that FX is non-empty and hence there is a

constraint, say c′ in C′ ∩ FX . Then f(X, c′) = 0, and hence X is not a

solution to (U, C′, f, k). This is a contradiction, completing the proof.

Thus the main questions are for which kind of functions f can we have

|C′| ≤ kO(1), and when can the desired family C′ be found in polynomial

time? We call f a disjointness function, if for all X ∈
(
U
≤k
)

and c ∈ C,
f(X, c) = 0 if and only if X ∩ c = ∅. By definition, the function f

from Example 11.17 is a disjointness function, but the function from

Example 11.18 is not.

The following theorem is an application of the Sunflower lemma (The-

orem 8.2).

Theorem 11.20. Let (U, C, f, k) be a yes-instance of d-Subset CSP

216 Representative families

and f be a disjointness function. Then, there exists a hitting set C′ for

(C,F) of size (kd)O(d) and this set can be found in polynomial time.

Proof. We give an algorithm computing the required hitting set. At ev-

ery step of the algorithm, we delete one constraint from the current

set of constraints, while maintaining the following condition for every

X ∈
(
U
≤k
)
: if FX was non-empty before deleting the constraint, then

it remains non-empty after deleting the constraint. This ensures that a

hitting set for the reduced instance is also a hitting set for the origi-

nal instance. We finally stop when the number of constraints becomes a

polynomial function of k and d.

We first check whether |C| > d!(k + 1)d. If |C| ≤ d!(k + 1)d then

we return C as C′. Otherwise by the Sunflower Lemma (Theorem 8.2),

there exists a sunflower with k + 2 petals and such a sunflower can be

computed in time polynomial in |U | + |C| + k. Recall that a sunflower

with k+ 2 petals and a core Y is a collection of sets c1, c2, . . . , ck+2 ∈ C
such that ci ∩ cj = Y for all i 6= j; the sets ci \ Y are petals and none of

them is empty. Note that a family of pairwise disjoint sets is a sunflower

(with an empty core). We would like to show that every hitting set for

(C \{c1},F) is also a hitting set for (C,F), and vice versa. Towards this,

it is sufficient to prove that for all X ∈
(
U
≤k
)
, FX ∩ C 6= ∅ if and only

if FX ∩ (C \ {c1}) 6= ∅. Let X ∈
(
U
≤k
)
. Clearly, if FX ∩ (C \ {c1}) 6= ∅

then FX ∩C 6= ∅. For the reverse direction, suppose that FX ∩C 6= ∅ and

c1 ∈ FX . We aim to show that in this case, FX also contains one of the

constraints in {c2, . . . , ck+2}. Since c1 ∈ FX , we have that f(X, c1) = 0,

and because f is a disjointness function, this implies that X ∩ c1 = ∅.
Thus, X ∩ Y = ∅. Now since the size of X is at most k and each of

the petals is non-empty, there exists a constraint c′ ∈ {c2, . . . , ck+2}
such that X does not intersect the petal of c′ and thus it does not

intersect c′ itself. The last assertion implies that c′ ∈ FX and hence

FX ∩ (C \ {c1}) 6= ∅.
We repeat the algorithm, deleting constraints until it returns a set C′

such that |C′| ≤ d!(k+ 1)d ≤ (kd)O(d). Since at each step the number of

constraints drops by one, we have that the algorithm terminates in at

most |C| steps and thus in polynomial time. This completes the proof.

We now consider a broad class of functions for which we can find set

a C′ of size kO(1) as above in polynomial time. We call a function f

matroidal if there exists a matroid M = (E, I) such that

11.6 Combinatorial approach 217

• U ⊆ E, and

• f(X, c) = 0 if and only if X ∪ c ∈ I.

For matroidal functions corresponding to linear matroids, one can

show the following theorem, whose proof is simply based on a computa-

tion of Ĉ ⊆r−drep C using Theorem 11.8. A formal proof is left as Exercise

11.5.

Theorem 11.21. Let (U, C, f, k) be an instance to d-Subset CSP and

f be a matroidal function. Furthermore, let AM be a matroid represen-

tation for the corresponding matroid M of rank r. Then, in polynomial

time we can find a hitting set C′ for (C,F) of size
(
r
d

)
.

Theorems 11.20 and 11.21 can lead to the derivation of kernels for

special cases of d-Subset CSP as in polynomial time they shrink C to

be of size polynomial in k, assuming that d is fixed. Let us remind that

the objective of this section was to describe a generic way to find a small

witness set that preserve all no-instances.

11.6 Combinatorial approach

In the previous chapter we gave a polynomial kernel for Odd Cycle

Transversal. The approach was based on compressing an instance of

the problem into a gammoid of polynomial size and then using Cook’s

theorem to construct a kernel. The drawback of such an approach is that

while we know that there exists a polynomial kernel, it is not easy to

estimate its size. In this section we discuss a “combinatorial” approach

avoiding this drawback. The approach is based on Cut-covering lemma,

which we discuss in detail in the following subsection.

11.6.1 Cut-covering lemma

In this subsection we use matroids to find a set of vertices that is not too

large and “covers all minimum cuts” between a particular source set S

and a particular terminal set T . Let us remind that for vertex subsets A

and B of a digraph D, a (vertex) (A,B)-cut is a vertex set Z such that

every directed path from A to B contains a vertex of Z. The set Z can

intersect A and B. We study the following Cut-Covering problem. For

a given digraph D and vertex subsets S and T , the task is to find a set

Z (as small as possible) such that for every A ⊆ S,B ⊆ T , Z contains a

minimum (A,B)-cut.

218 Representative families

w

N�(w) N+(w) N�(w) N+(w)

Figure 11.1 Neighborhood closure operation.

Of course, we can simply define V (D) as Z. However, we will see how

to find Z of size that can be significantly smaller than the size of V (D).

The main idea is to identify vertices that are irrelevant for our purpose

and then discard them appropriately.

We start with the following natural question: Which conditions force

a vertex w ∈ V (D) to be in the set Z? If a vertex w appears in every

minimum cut between some A ⊆ S and B ⊆ T , then it must be in Z.

These vertices are called essential vertices. We will see that just having

these essential vertices in Z is almost sufficient. More precisely, we will

show that

(a) either all vertices are essential, or

(b) we can obtain an equivalent instance of the problem with a strictly

smaller number of vertices.

We first deal with the second scenario. Towards this, we define the

notion of “neighborhood closure” in digraphs.

Definition 11.22. Given a digraph D and a vertex w ∈ V (D), we say

that a digraph D′ is obtained by the neighborhood closure of w in D if

D′ is obtained by deleting the vertex w and making a complete bipartite

graph between the in-neighbours N−(w) and out-neighbours N+(w) of

w, with arcs directed from N−(w) to N+(w). We denote the result of

this operation by clw(D), see Fig. 11.1.

In the following two lemmas, we describe the transformation that helps

us in eliminating non-essential vertices without changing the sizes of

minimum vertex cuts between subsets of S and T .

Lemma 11.23. Let D be a digraph, A and B be vertex subsets and

w ∈ V (D) \ (A ∪B). Then,

mincutD(A,B) ≤ mincutclw(D)(A,B).

11.6 Combinatorial approach 219

Proof. Let Z be a minimum vertex cut between A and B in clD(w).

For a contradiction, assume that Z is not a vertex cut between A and

B in D. Then, there exist vertices s ∈ A and t ∈ B such that there is

a path Pst between s and t in D − Z that contains w. Let u and v be

the in-neighbor and out-neigbor, respectively, of w on Ps,t. Because of

the neighborhood closure operation we have that P ′s,t, which is a path

without w, is a path in D′ − Z. This contradicts our assumption about

Z.

Lemma 11.24. Let D be a digraph, S and T be vertex subsets and

w ∈ V (D) \ (S ∪ T) be a non-essential vertex. Then, for all A ⊆ S and

B ⊆ T we have that

mincutD(A,B) = mincutclw(D)(A,B).

Proof. LetD′ = clw(D). The inequality mincutD(A,B) ≤ mincutD′(A,B)

follows from Lemma 11.23.

We now show that

mincutD(A,B) ≥ mincutD′(A,B).

Since w is a non-essential vertex, there exists a minimum vertex cut

between A and B, say Z, that does not contain w. We claim that Z is

also a vertex cut between A and B in D′. Suppose that Z is not a vertex

cut between A and B, then there exist vertices s ∈ A and t ∈ B such that

there is a path Pst between s and t in D′−Z. Clearly, Pst must contain

at least one arc introduced by neighborhood closure operation. For every

arc xy in Pst that was introduced by the neighborhood closure operation,

we replace xy by a directed path xwy. This gives a directed walk P ′st from

s to t in D−Z. Having P ′st, we also derive the existence of a directed path

from s to t in D−Z, which is a contradiction. Hence, Z is indeed a vertex

cut between A and B, and thus mincutD(A,B) ≥ mincutD′(A,B).

The next question we address is how to find essential vertices in poly-

nomial time. Towards this goal, we try to understand the properties of

these vertices. Let w be an essential vertex. That is, there exist a subset

A ⊆ S and a subset B ⊆ T such that every minimum sized vertex cut

between A and B in D includes w. Let D′ = clD(w). By Lemma 11.23,

we have that mincutD(A,B) ≤ mincutD′(A,B). Of course, the previous

inequality cannot be replaced by equality, as this would be a contradic-

tion to w being an essential vertex. Thus, we have that

mincutD′(A,B) ≥ mincutD(A,B) + 1.

220 Representative families

w
S T

A B

C

Figure 11.2 Structure of an essential vertex.

As we show below, this indicates, for every minimum vertex cut between

A and B, the existence of a certain path packing that has two paths

between A and B in D that are vertex disjoint apart from having w as

a common vertex. See Figure 11.2 for an illustration.

Formally, we prove Lemma 11.25 ahead. Here, for a digraph D and

sets A,C ⊆ V (D), R(A,C) denotes the union of C and the set of vertices

in D − C reachable from A and NR(A,C) denotes the union of C and

the set of vertices in D−C non-reachable from A. Note that in Lemma

11.25, w ∈ C.

Lemma 11.25. Let D be a digraph, w /∈ A ∪ B be an essential vertex

for sets A and B, and C be any minimum vertex cut between A and B.

Then,

(i) there is a set of |C|+1 paths from A to C in R(A,C) that are pairwise

vertex disjoint, except for two of these paths which both end in w, and

(ii) there is a set of |C| + 1 paths from C to B in NR(A,C) that are

pairwise vertex disjoint, except for two of these paths which both start

in w.

Proof. We only prove the first part. The proof of the second part is

similar. Since C is a minimum vertex cut between A and B, by Menger’s

theorem there exist |C| vertex disjoint paths between A and B. Let these

paths be P ′i = ai1 · · · aiir , i ∈ {1, . . . , |C|}. Clearly, each of them contains

exactly one vertex of C. Let Pi = ai1 · · · aii` , i ∈ {1, . . . , |C|}, be the

subpaths of P ′1, . . . , P
′
|C| where the last vertices on these paths belong to

C.

Construct a digraph D′ by starting with D[R(A,C)] and then adding

a vertex w′ and all arcs from the in-neighbors of w to w′. (Note that

C ⊆ R(A,C).) That is, w′ is copy of w that only has arcs from its in-

neighbors. Let β be the size of maximum flow from A to C ∪ {w′} in

11.6 Combinatorial approach 221

D′. If β = |C| + 1 then we are done, as by Menger’s theorem there are

|C|+1 vertex disjoint paths from A to C∪{w′} and the paths ending at

w and w′ in D′ both terminate at w in D. Furthermore, all these paths

are present in D[R(A,C)]. Observe that β cannot be smaller than |C|
as the paths Pi, i ∈ {1, . . . , |C|}, belong to D. Thus, let us assume that

β = |C|. This implies that there is a separator Z of size |C| between A

and C ∪ {w′} in D′.
We distinguish four cases based on whether each of w,w′ is present

in Z or not, and show that none of these cases arise. This will imply

that the only case that can occur is that β = |C| + 1, for which we

have already derived the conclusion of the lemma. We start with the

observation that since Pi, i ∈ {1, . . . , |C|}, are vertex disjoint paths, (a)

each one of them contains exactly one vertex of Z, and (b) no two of

them contain the same vertex.

(i) {w,w′} ∈ Z: This is not possible as it would imply that at least one

of the paths Pi, i ∈ {1, . . . , |C|}, does not intersect Z.

(ii) {w} ∈ Z and {w′} /∈ Z: Let Pj be the path which ends in w. Since

w ∈ Z, we have that the vertices of P ∗j , defined as the path Pj without

the last vertex, does not contain any other vertex of Z. Furthermore,

since w /∈ A, we have that P ∗j is not empty. However, in this case we

can get a path from A to w′ that avoids Z by first using the path

P ∗j and then using an arc to w′. This contradicts the fact that Z

separates A and C ∪ {w′} in D′.
(iii) {w′} ∈ Z and {w} /∈ Z: This case is similar to the previous case.

(iv) {w,w′} /∈ Z: Observe that in this case, we have found a set Z that

separates A from C in D and thus separates A from B in D. However,

the size of Z is equal to |C|. Thus, it is a minimum vertex cut between

A and B that avoids the essential vertex w, which is a contradiction.

The above case analysis completes the proof.

Now we will use the properties of essential vertices given in Lemma

11.25 to find non-essential vertices.

Lemma 11.26. Let D be a digraph, S and T be vertex subsets and r

denote the size of a minimum vertex cut between S and T . Then in ran-

domized polynomial time, we can find a set Z ⊆ V (D) of size
(|S|+|T |+r

3

)

that contains all essential vertices in D \ (S ∪ T).

Proof. We start with a simple reduction rule. Delete all the vertices in

V (D) \ (S ∪ T) that are either not reachable from S or cannot reach T .

222 Representative families

Clearly, these vertices are not part of any path from S to T and thus can

be discarded. Thus, without loss of generality we can assume that every

vertex in V (D) \ (S ∪ T) is on some path starting from a vertex in S

and ending in a vertex of T . To capture essential vertices, we construct a

linear matroid M that is a disjoint sum of two gammoids and a uniform

matroid.

(i) M [0] is the uniform matroid of rank r. It is defined on the universe

V [0], where V [0] is a copy of V (D). For a vertex v ∈ V (D), we will

use v[0] to denote the corresponding vertex in V [0].

(ii) M [1] is a gammoid defined using S. Let D[1] be the digraph con-

structed as follows. Make a copy of the digraph D, called D[1], with

vertex set V [1]. Introduce a sink-only vertex v[1]′ for every vertex v[1].

That is, for every vertex v[1] make a new vertex v[1]′ and then make

all the in-neighbors of v[1] adjacent to v[1]′ as in-neighbors. M [1] is

the gammoid (V [1]
⋃
V [1]′, I[1]) where V [1]′ = {v[1]′ : v[1] ∈ V [1]}

and I[1] consists of all the subsets linked to the set S[1].

(iii) M [2] is a gammoid defined using T . Let D[2] be the digraph con-

structed as follows. Make a copy of the digraph D, called D[2], with

vertex set V [2]. Reverse every arc of D[2] and get the digraph D[2]′.
Introduce a sink-only vertex v[2]′ for every v[2]. That is, for every ver-

tex v[2] make a new vertex v[2]′, and then make all the in-neighbors

of v[2] in D[2]′ adjacent to v[2]′ as in-neighbors. M [2] is the gam-

moid (V [2]
⋃
V [2]′, I[2]) where V [2]′ = {v[2]′ : v[2] ∈ V [2]} and I[2]

consists of all the subsets linked to the set T [2] in D[2]′.

Essentially, the idea is that we use M [1] and M [2] to encode Proper-

ties (i) and (ii), respectively, mentioned in Lemma 11.25 about essential

vertices. More precisely, if v is an essential vertex for a pair of sets

A ⊆ S and B ⊆ T , then observe that for any minimum vertex cut C

between A and B, v ∈ C and we have that C[1] ∪ {v[1]′} ∈ I[1] and

C[2] ∪ {v[2]′} ∈ I[2]. We will see the application of matroid M [0] later.

We form a linear matroid M = (E, I) where M = M [0]⊕M [1]⊕M [2].

Observe that rank(M) = |S|+ |T |+ r.

Now we need to define a family of independent sets of rank 3 in M

such that each set corresponds to a vertex in D and that will be the

family for which we will compute an appropriate representative family.

For every vertex v ∈ V (D), let f(v) = {v[0], v[1]′, v[2]′}. We define

F = {f(v) | v ∈ V (D) \ (S ∪ T)}.

Observe that since every vertex in V (D) \ (S ∪ T) is on some S to T

11.6 Combinatorial approach 223

path, we have that each f(v) ∈ F is independent. We use Theorem 11.8

to compute F̂ ⊆|S|+|T |+r−3
rep F . Clearly, the size of F̂ is upper bounded

by
(|S|+|T |+r

3

)
. We will set Z := {v ∈ V (D) | f(v) ∈ F̂}.

It only remains to show that Z contains all essential vertices. Towards

this it would be sufficient to show the following. For every essential vertex

q ∈ V (D) \ (S ∪ T), there is an independent set Cq in M such that

• f(q) and Cq are disjoint, and f(q) ∪ Cq is an independent set in M ,

and

• for any other vertex s ∈ V (D) \ (S ∪ T),

– either f(s) ∪ Cq is not independent,

– or f(s) and Cq are not disjoint.

To see why proving the claim above is sufficient, observe the following.

For every essential vertex q, the claimm above implies that there exists

an independent set Cq such that f(q) is the unique independent set in

F for which Cq ∩ f(q) = ∅ and Cq ∪ f(q) ∈ I. Thus, by the definition

of representative families, f(q) must be in F̂ . Thus we obtain all the

essential vertices in F̂ by, in some sense, “isolating” them.

Let q ∈ V (D) \ (S ∪ T) be an essential vertex in D with respect to

A ⊆ S and B ⊆ T , and let C be a minimum vertex cut between A and

B. We define

Cq = (C[0] \ {q[0]})
⋃

((S[1] \A[1]) ∪ C[1])
⋃

((T [2] \B[2]) ∪ C[2]) .

Observe that Cq is an independent set of rank at most |S|+ |T |+ r− 3.

Indeed, |C[0] \ {q[0]}| ≤ r − 1 since the size of a minimum vertex cut

between S and T is r. Moreover, as q is an essential vertex that does not

belong to A∪B and both A and B are vertex cuts between A and B, we

have that |C| ≤ min{|A|, |B|} − 1, and therefore |(S[1] \A[1]) ∪ C[1]| ≤
|S| − 1 and |(T [2] \B[2])∪C[2]| ≤ |T | − 1. In addition, note that f(q) =

{q[0], q[1]′, q[2]′} and Cq are disjoint. We need to show that f(q) ∪ Cq
is an independent set. Clearly, q[0] ∪ (C[0] \ q[0]) is an independent set

in M [0] as its size is upper bounded by r. By Lemma 11.25, there is a

set of |C| + 1 paths from A to C in R(A,C) which are pairwise vertex

disjoint, except for two of these paths which intersect in q. Therefore,

(S[1] \ A[1]) ∪ C[1] ∪ {q[1]′} is independent in M [1]. Similarly, one can

show that (T [2] \ B[2]) ∪ C[2] ∪ {q[2]′} is an independent set in M [2].

This proves that f(q) ∪ Cq is an independent set in M .

Finally, we want to show that for any other vertex s, s 6= q, either

f(s) ∩ Cq 6= ∅ or f(s) ∪ Cq /∈ I. Now for any other vertex s, one of the

following three cases happens.

224 Representative families

G
TS

B
A

q

C
C[1]A[1]

S[1]

B[1]

T[1]

s

Figure 11.3 An illustration for the proof of Lemma 11.26.

• The vertex s ∈ C. In this case, f(s) and Cq have s[0] as a common

element. Thus, f(s)∩Cq 6= ∅. This is the only place where we use the

uniform matroid in our proof. However, this looks unavoidable.

• The vertex s is reachable from A in D \C. In other words, the vertex

s is not reachable from B in D \C. See Figure 11.3 for an illustration.

Observe that (T [2]\B[2])∪C[2]∪{s[2]′}) is not independent in D[2]′.
This is because all the paths from B[2] to s[2]′ in D[2]′ must pass

through C[2].

• The vertex s is not reachable from A in D \ C. Then, (S[1] \ A[1]) ∪
C[1]∪{s[1]′} is not independent in M [1]. This is because all the paths

from A[1] to s[1]′ pass through C[1].

The above case analysis completes the proof.

Now we combine the results obtained in this section to prove the

following main cut-covering result.

Theorem 11.27 (Cut Covering Theorem). Let D be a digraph and S

and T be vertex subsets. Let r denote the size of a minimum vertex cut

between S and T (which may intersect S and T). There exists a set

W ⊆ V (D) of size at most
(|S|+|T |+r

3

)
+ |S| + |T | such that for any set

A ⊆ S and B ⊆ T , it holds that W contains a minimum vertex cut

between A and B. Furthermore, one can find such a set in randomized

polynomial time with failure probability O(2−|V (D)|).

Proof. The proof is obtained by iteratively using Lemmata 11.24 and

11.26. Specifically, we apply the following procedure until it is no longer

possible.

Apply Lemma 11.26 on the input and obtain a set Z. If V (D) \ (S ∪ T ∪ Z)
is empty, then return the current vertex set of D as W . That is, W := V (D).
Otherwise, if there exists a vertex w ∈ V (D) \ (S ∪ T ∪ Z), let D′ = clD(w),
and update D := D′.

11.6 Combinatorial approach 225

The correctness of the above procedure follows from the following facts.

Lemma 11.26 implies that when we apply the closure operation with

respect to a vertex w, then it is not an essential vertex. Lemma 11.24

implies that since w is a non-essential vertex, for all A ⊆ S and B ⊆ T we

have that mincutD(A,B) = mincutclD(w)(A,B). Thus Lemmata 11.24

and 11.26 prove the correctness of the above procedure. The size bound

follows from the fact that we stop only when all the vertices belong to

S ∪ T ∪ Z. This completes the proof.

Theorem 11.27 has a useful “terminal version”, which can be directly

applied to derive several kernelization results.

Corollary 11.28. Let D be a digraph and X ⊆ V (D) be a set of termi-

nals. Then, there exists a set of vertices Z of size O(|X|3) such that for

any P,Q,R ⊆ X, there exists a minimum vertex cut between P and Q

in D − R that is contained in Z. Furthermore, one can find such a set

in randomized polynomial time with failure probability O(2−|V (D)|).

Proof. The idea is to construct an auxiliary directed graph where The-

orem 11.27 can be applied. For every vertex x ∈ X, we introduce an

additional vertex called x− and make it an in-neighbor to x. That is, x−

is a source whose only neighbor is x. Let the resulting digraph be D′,
and for a set A ⊆ X, we define A− = {y− | y ∈ A}. We let S = X−

and T = X, and apply Theorem 11.27 to compute a set W . We return

the set Z := (W \W−) ∪ {w : w− ∈W−} ⊆ V (D). Notice that X ⊆ Z.

Clearly, |Z| ≤ |W | ≤
(|S|+|T |+r

3

)
+ |S|+ |T | = O(|X|3).

It only remains to prove that for any P,Q,R ⊆ X, there exists a

minimum vertex cut between P and Q in D−R that is contained in Z.

For this purpose, consider some subsets P,Q,R ⊆ X, and define A =

P− ∪R− and B = Q ∪R. We aim to exhibit a correspondence between

a minimum vertex cut between P and Q in D − R and a minimum

vertex cut between A and B in D′. First, note that by adding R to any

minimum cut between P and Q in D−R, we obtain a vertex cut between

A and B in D′, and thus mincutD′(A,B) ≤ mincutD−R(P,Q) + |R|.
Now, by Theorem 11.27, there exists C ′′ ⊆ W that is a minimum

vertex cut between A and B in D′. Due to the inequality above, |C ′′| ≤
mincutD−R(P,Q) + |R|. The minimality of C ′′ implies that u and u−

cannot both belong to C ′′, and that C ′′ \Q− = ∅. This in return implies

that C ′ = (C ′′ ∪ {u | u− ∈ C ′′ ∩ P−}) \ P−, which is a subset of

V (D) ∪ R−, is also a minimum vertex cut between A and B in D′. In

particular, |C ′| ≤ mincutD−R(P,Q)+ |R|. Define C = C ′\(R∪R−), and

226 Representative families

note that C ⊆ Z. We first claim that C is a vertex cut between P and

Q in D − R. Suppose not, then there exists a path L from a vertex w

in P to a vertex in Q in D that avoids C ∪R. In this case, observe that

w−L is a path from A to B that avoids the vertices of C ′ ∪ (R ∪ R−),

which is a contradiction. Thus, C is indeed a vertex cut between P and

Q in D − R. Next, observe that by construction and minimality of C ′,
for every vertex v ∈ R, C ′ must contain exactly one of v and v−. This

implies that |C| = |C ′| − |R| ≤ mincutD−R(P,Q). As |C| cannot be

smaller than mincutD−R(P,Q), we have that |C| = mincutD−R(P,Q).

This completes the proof.

11.6.2 Applications of Cut-covering lemma

In this section we obtain combinatorial polynomial kernels for two prob-

lems by applying Theorem 11.27.

Digraph Pair Cut: Given an instance (D,S,P, k) of Digraph Pair

Cut, we first apply Lemma 11.14. In randomized polynomial time, this

application returns a family P̂ ⊆ P such that (a) |P̂| = O(k2), and (b)

(D,S,P, k) is a yes-instance if and only if (D,S, P̂, k) is a yes-instance.

Recall that we have done some gadgeteering to transform a single source

s into a set S of size k + 1. Let U be the set of vertices of pairs in P̂.

Now, we apply Theorem 11.27 with S′ := S and T := U , and obtain

a set W ⊆ V (D) of size
(|S′|+|T |+r

3

)
+ |S′| + |T | = O(k6) such that for

any set A ⊆ S and B ⊆ U , it holds that W contains a minimum vertex

cut between A and B. Recall that a vertex subset J ⊆ U is called good

if it contains at least one vertex from each pair in P̂. We know that

there exists a good set J such that any minimum vertex cut between S

and J in D is a solution to the reduced instance (D,S, P̂, k). Thus, we

know that if there exists a solution, then there is one that is contained

in Z \ S. Now, we obtained an equivalent reduced instance (D′, S, P̂, k)

as follows. Let v1, . . . , vp ∈ V (D) \ Z. Let D0 := D. For i = 1 to p, let

Di = clvi(Di−1). Return (Dp, S, P̂, k) as the reduced equivalent instance.

The correctness of this step follows from Lemma 11.24. Thus, we have

obtained a combinatorial kernel for Digraph Pair Cut with O(k6)

vertices. This results in the following theorem.

Theorem 11.29. Digraph Pair Cut admits a randomized kernel with

O(k6) vertices.

11.6 Combinatorial approach 227

Odd Cycle Transversal: We first recall some of the transformations

defined in the previous chapter. Given a graph G, and a set Q such

that G \ Q is bipartite, we defined another graph G′ as follows. Let A

and B be a fixed bipartition of G \ Q. We take two copies of Q, called

Qa = {qa | q ∈ Q} and Qb = {qb | q ∈ Q}. The vertex set of G′ is

A ∪ B ∪Qa ∪Qb. Edges within G′[A ∪ B] are as in G, while for q ∈ Q,

the vertex qa is connected to NG(q) ∩ A and the vertex qb is connected

to NG(q) ∩B.

Let S, T and R be a partition of Qa ∪Qb. We say that (S, T,R) is a

valid partition if for every q ∈ Q either |{qa, qb}∩S| = |{qa, qb}∩T | = 1

or |{qa, qb} ∩ R| = 2. By Lemma 10.17, we know that the size of the

minimum odd cycle transversal is the minimum over all valid partitions

of Qa ∪Qb = S ∪ T ∪R of the following value:

|R|
2

+ mincutG′−R(S, T). (11.3)

Observe that we first need a set Q ⊆ V (G) such that G−Q is bipar-

tite. To obtain such a set Q, we make use of the known α
√

log n factor

approximation algorithm for the optimization version of Odd Cycle

Transversal. Specifically, the algorithm mentioned in Theorem 10.18

outputs in polynomial time a set Q of size at most α
√

log n · OPT ,

where OPT is the size of a minimum odd cycle transversal for G. If

k ≤ log n, then run the O(3kmn) time algorithm of Theorem 10.16 to

find a solution in polynomial time. We return a trivial yes- or no-instance

accordingly. Else if |Q| > kα
√

log n, then output a trivial no-instance.

Next, assume that none of the cases above occurs, and thus we have

k > log n and |Q| ≤ kα√log n. Hence, |Q| = O(k1.5).

Now, we create the graphG′ described above, and defineX := Qa∪Qb.
Let D be the digraph obtained from G′ by replacing every edge e =

uv ∈ E(G′) by arcs −→uv and −→vu. We then apply Corollary 11.28 with

X := Qa ∪Qb to obtain a set Z of size O(|X|3) = O(k4.5) such that for

any P ′, Q′, R′ ⊆ X, a minimum vertex cut between P ′ and Q′ in D−R′
is contained in Z. Thus, by Equation 11.3 we know that if there exists an

odd cycle transversal of size at most k, then Z covers at least one such

odd cycle transversal. Now, we obtain a combinatorial kernel for Odd

Cycle Transversal as follows. Let Z ′ := (Z∪Q)\ (Qa∪Qb). Clearly,

Z ′ ⊆ V (G) and if there exists an odd cycle transversal of size at most k,

then there is one contained in Z ′. For every pair of vertices u, v ∈ Z ′, if

there exists a path in G connecting u and v such that none of its internal

vertices belongs to Z ′, then proceed as follows. If there exists such an

228 Representative families

odd length path, then add an edge between u and v. If there exists such

an even length path, then add an edge between u and v and subdivide

it. It is possible that for a pair of vertices u and v we have added both

an edge and a subdivided edge. Let G′ be the resulting graph on Z and

the newly added subdivided vertices. Clearly, the number of vertices in

V (G′) excluding the new subdivided vertices is O(k4.5), thus G′ is of

size O(k9), and G has an odd cycle transversal of size at most k if and

only if G′ has an odd cycle transversal of size at most k. This results in

the following theorem.

Theorem 11.30. Odd Cycle Transversal admits a randomized

kernel of size O(k9).

Exercises

Problem 11.1 (l). In the d-Hitting Set problem, we are given a family F of sets
of size d over a universe U and a positive integer k. The problem is to decide whether
there exists a subset X ⊆ U such that |X| ≤ k and for every set F ∈ F , F ∩X 6= ∅.
Obtain a kO(d) kernel for the problem using the method of representative sets.

Problem 11.2. The goal of this exercise is to obtain an alternate proof for bounding
the size of representative sets in the case of uniform matroids. Let A1, . . . , Am be
p-element sets and B1, . . . , Bm be q-element sets such that Ai ∩ Bj = ∅ if and only
of i = j.

(i) Show that m ≤ 2p+q . (Hint: Consider a uniform random partition of U =
∪mi=1(Ai ∪Bi).)

(ii) Show that m ≤
(p+q

p

)
. (Hint: Consider permutations of U .)

(iii) Show that the bound of
(p+q

p

)
on m is tight.

(iv) Let S = {S1, . . . , St} be a family of p-element sets. Using the above exercises,

show that the size of a q-representative family is upper bounded by
(p+q

p

)
.

Problem 11.3. For vertices u, v of a connected graph G, a vertex (u, v)-separator
is a set of vertices S such that u, v 6∈ S and u and v are in different connected
components in G − S. It is easy to see that an n-vertex graph can contain Ω(2n)
separators. How many inclusion-wise minimal separators can be in an n-vertex graph?
Use representative sets to obtain the upper bound O((2 − ε)n) on the number of
minimal separators for some ε > 0.

Problem 11.4. Let G be a connected graph on 2n vertices and L be a family of

forests of G of size n (that is, the number of edges is n). Let L̂ ⊆ L be a family of
forests such that for any forest F of size n − 1, if there exists a forest X ∈ L such

that F ∪X is a spanning tree of G, then there exists a forest X̂ ∈ L̂ such that F ∪ X̂
is a spanning tree of G. Obtain a non-trivial upper bound on the size of |L̂| (such as
cn).

Problem 11.5. Prove Theorem 11.21.

Problem 11.6 (A). Consider the following problem. Given a graph G with a special
vertex v and integers s and k, the task is to determine whether we can remove k
vertices from G− v such that the connected component of v has at most s vertices.

11.6 Combinatorial approach 229

Show that this problem has a randomized polynomial kernel with respect to s + k
using representative sets over gammoids. [Hint: Give v “capacity” k + 1 to form a
gammoid. Next, show that a set X “closest” to v of size at most k is not a solution if
and only if there exist s+1 distinct vertices that can each extend X to an independent
set in that gammoid.]

Problem 11.7. In the Almost 2-SAT problem, we are given a CNF formula ϕ,
where every clause consists of at most two literals, and an integer k. The task is to
determine whether it is possible to make ϕ satisfiable by deleting at most k clauses.
Now, in the Almost 2-SAT Compression problem, the input also consists of a
set X of clauses whose deletion makes ϕ satisfiable. Present a parameter-preserving
transformation from Almost 2-SAT Compression, parameterized by k + |X|, to
Digraph Pair Cut.

Problem 11.8. Almost 2-SAT has an O(
√

logn)-approximation algorithm and

an 2.6181knO(1)-time algorithm, due to Agarwal et al. (2005) and Narayanaswamy
et al. (2012), respectively. Having these algorithms and the answer to Exercise 11.7
at hand, show that Almost 2-SAT admits a randomized polynomial kernel.

Bibliographic notes

The O(2nn2) time dynamic programming algorithm for the Hamilto-

nian Path problem from the introductory section to this chapter is the

classical algorithm of Bellman (1962) and Held and Karp (1962). Monien

(1985) used representative families for set systems for his Longest

Path algorithm. The Two-Families Theorem of Bollobás (1965) for ex-

tremal set systems and its generalization to subspaces of a vector space

of Lovász (1977) (see also Frankl, 1982) are corner-stones in extremal

set theory with numerous applications in graph and hypergraph the-

ory, combinatorial geometry and theoretical computer science. We refer

to (Jukna, 2011, Section 9.2.2), surveys of (Tuza, 1994, 1996), and Gil

Kalai’s blog1 for more information on these theorems and their applica-

tions.

The current best known bound ω, that is, ω < 2.373, is due to Williams

(2012) and Gall (2014). An algorithm computing the determinant of an

n × n matrix in time O(nω) can be found, for example, in Bunch and

Hopcroft (1974). For a rectangular matrix A of size d× n (with d ≤ n),

Bodlaender et al. (2015) outlined an algorithm computing a minimum

weight column basis in time O(ndω−1). The proof of Generalized Laplace

expansion (Proposition 11.7) can be found, for example in (Murota,

2000, Proposition 2.1.3). The non-algorithmic proof of Theorem 11.8,

i.e. the bound on the size of the minimum representative family, is due

to (Lovász, 1977, Theorem 4.8). The first to provide an algorithmic proof

1 http://gilkalai.wordpress.com/2008/12/25/lovaszs-two-families-theorem/

230 Representative families

for this lemma was (Marx, 2009, Lemma 4.2). However, the running

time of the algorithm given in (Marx, 2009) is f(p, q)(||A||t)O(1) where

f(p, q) is a polynomial in (p + q)p and
(
p+q
p

)
; more precisely, f(p, q) =

2O(p log k) ·
(
p+q
p

)O(1)
. The proof in this book follows the proof of Fomin

et al. (2016b). Although it is based on exterior algebra and is essentially

the same as the proof given in (Lovász, 1977), it avoids the terminology

from exterior algebra. For other applications of efficient computations of

representative sets, see (Fomin et al., 2017).

The presentation of randomized polynomial kernel for Digraph Pair

Cut and Odd Cycle Transversal is based on (Kratsch and Wahlström,

2014). In that paper, the authors present a more careful size bound of

O(|S|·|T |·r) for |W | in the Cut-Covering Theorem (Theorem 11.27), and

of O(k4) vertices for Digraph Pair Cut. Moreover, the authors give a

randomized polynomial kernel for Almost 2-SAT (on which Exercises

11.7 and 11.8 are based). The Almost 2-SAT problem can be used

to express several other problems, including Odd Cycle Transver-

sal and Vertex Cover above a guarantee. In addition, Kratsch and

Wahlström (2014) present a randomized polynomial kernel with O(ks+1)

vertices for Vertex Multiway Cut with a fixed number of terminals

s (as well as a randomized polynomial kernel for Multicut with a fixed

number of terminals pairs), a randomized polynomial kernel with O(k3)

vertices for Vertex Multiway Cut with deletable terminals, and a

randomized polynomial kernel for Group Feedback Vertex Set for

a group of s elements, where the latter problem is a generalization of

Odd Cycle Transversal. We remark that the questions of the ex-

istence of polynomial kernels for Vertex Multiway Cut and Group

Feedback Arc/Vertex Set without restrictions as above are open.

Later, the matroid-based tools of Kratsch and Wahlström (2014) led to

the discover of additional randomized polynomial kernels. For example,

Hols and Kratsch (2018) obtained a randomized polynomial kernel for

the Subset Feedback Vertex Set problem, which is a generalization

of Feedback Vertex Set where we do not need to hit all cycles, but

only those passing through at least one “prescribed” vertex. Moreover,

Kratsch (2016) obtained a randomized polynomial kernel for a parame-

terization of Vertex Cover above a guarantee higher than the one of

Kratsch and Wahlström (2014).

We remark that the abstraction based on d-Subset CSP is close

to the kernelization results for Min Ones Constraint Satisfaction

problems by Kratsch and Wahlström (2010). In our case (with matroidal

11.6 Combinatorial approach 231

constraints) the constraints must be monotone, but the function f for

testing a single constraint may internally depend on the entire variable

set U . In the Min Ones setting, the constraints need not be monotone,

but may only depend on d values at a time. If the constraints are not

monotone, then even when f(X, c) depends on only d values from X for

every c, it is not trivial to determine when the problem has a polyno-

mial kernel, and that the answer has a characterization by Kratsch and

Wahlström (2010). Exercise 11.6 was given by Wahlström in WorKer

(Workshop on Kernelization) 2013. Finally, we remark that closest sets

occur in the bipedal stage of the algorithm for Multicut of Marx and

Razgon (2014). There are also similarities between closest sets and the

concept of important separators, see (Marx, 2011).

12

Greedy Packing

In this chapter we consider kernelization algorithms in whose basis lies some

greedy packing of constraints. The purpose of the greedy process is to either

simply solve the instance or deduce that is has a special structure that can be

exploited. This approach is particularly useful in the context of “above guar-

antee” parameterizations.

For a number of optimization problems, there is some (upper or lower)

bound on the size of an optimum solution, and hence the problem be-

comes trivial for small values of parameter k. This often brings us to

results to which we referred (in Section 2.1) as a trivial kernelization.

For example, consider the MaxCut problem, where given a connected

graph G and an integer k, we ask whether G contains a cut with at

least k edges. Here, if k ≤ |E(G)|/2, then we have that (G, k) is a yes-

instance. Otherwise, (G, k) is already kernel with at most 2k edges and

2k + 1 vertices. Below we consider additional simple examples:

• For every boolean CNF formula on m clauses, there is an assignment

that satisfies at least m/2 clauses.

• In any graph on m edges, there is a cut with at least m/2 edges,

i.e. there is a partition of the vertex set such at least m/2 edges lie

between the two parts.

• In any planar graph on n vertices, there is an independent set of size

at least n/4 (as the graph can be properly colored with 4 colors).

• In any graph, the size of any vertex cover is at least as large as the

size of a maximum matching. In particular, if a graph on n vertices

has a perfect matching, then every vertex cover must have size at

232

12.1 Set Cover 233

least n/2. Unlike the previous three examples, this example does not

immediately give us a trivial kernel.

To deal with this anomaly, Mahajan and Raman (1999) introduced the

notion of parameterization beyond a guarantee. In this scenario, the

parameter is not the solution size, but the value of the solution minus

the lower bound, which can range from small to moderate values for

most instances.

In this chapter we give kernelization algorithm for a few of these prob-

lems. All these kernels have a common theme: they start by computing

some greedy packing of constraints. If the packing process can last for

sufficiently many steps, we conclude that we have a yes-instance. Other-

wise, we obtain a structured input. This structure is exploited to derive

a polynomial kernel.

12.1 Set Cover

Our first example is Set Cover, where we consider a parameterization

below a trivial bound, rather then above a guarantee as in the next two

sections. In a typical covering problem, we are given a universe U of size

n, a family S (S could be given implicitly) of size m and an integer k, and

the objective is to check whether there exists a subfamily S ′ ⊆ S of size

at most k satisfying some desired properties. If S ′ is required to contain

all the elements of U , then our covering problem is the classical Set

Cover problem and S ′ is called a solution set family. The most natural

question in this context is whether there exists a solution set family of

size at most k. However, it is well known that Set Cover is unlikely

to admit a fixed parameter tractable algorithm when parameterized by

the solution size.

Observe that n is a trivial upper bound on the size of solution set

family. Can we obtain a result more interesting than this trivial bound?

This section gives an affirmative answer to this question. Here, we ad-

dress the (n − k)-Set Cover problem, where for a given universe U

of size n, a family S of size m and an integer k, the task is to decide

whether U can be covered by at most n− k sets from S.

We denote an instance of (n − k)-Set Cover by (U,S, k), where U

is the universe to be covered, S is the family of sets available and k is

the parameter. The following definition is crucial for our arguments.

Definition 12.1 (k-mini set cover). For a subfamily T ⊆ S, let Q(T)

234 Greedy Packing

be the set of elements covered by T , that is,

Q(T) =
⋃

T∈T
T.

A collection of sets T is a k-mini set cover of S if |T | ≤ k and |Q(T)| ≥
|T |+ k.

We will implement the following approach.

• If (U,S, k) contains a k-mini set cover T , then this is a yes-instance

of (n− k)-Set Cover. Indeed, T covers at least |T |+ k elements of

U . The remaining n − |T | − k elements can be covered by at most

n − |T | − k sets of S, which overall results in a set cover of size at

most n− k.

• We start building a k-mini set cover T in a greedy manner: We add a

new set to T only if it covers at least two elements not already covered

by sets from T . If we succeed to build a k-mini set cover, then we are

done.

• If we fail to build a k-mini set cover, then we arrive at a very specific

situation: No set from S \ T can cover more than one element not

already covered by T . We will use this situation to develop a reduction

rule resulting in an equivalent instance with at most 2k2−2 elements.

In Fig. 12.1, we present an algorithm called GreedyMiniSet, which

constructs a family T ⊆ S with certain properties that we show imply

the presence of a k-mini set cover. Starting from an empty set, the family

T is constructed by adding at each step a set T that covers at least two

elements not already covered by sets from T . The algorithm stops when

either the family T contains k sets or no set T as above can be found.

Algorithm Greedy-mini-set(S, k).
Input: Universe U , family of sets S and integer k.
Output: Family T .

T ← ∅;
while |T | < k and ∃T ∈ S \T such that |Q(T ∪{T})| ≥ |Q(T)|+ 2 do
T ← T ∪ {T};

Figure 12.1 Algorithm GreedyMiniSet

12.1 Set Cover 235

Lemma 12.2. If a collection of sets S satisfies |Q(S)| ≥ |S| + k, then

S contains a k-mini set cover.

Proof. Let T be the set returned by GreedyMiniSet(S, k). We claim

that T is a k-mini set cover. Suppose that it is not. Then,

|Q(T)| − |T | < k. (12.1)

Since at every step of GreedyMiniSet we add to Q(T) at least two new

elements, this yields that |T | < k and that for every set S ∈ S \ T ,

|Q({S}) \ Q(T)| ≤ 1. This implies that

|Q(S \ T) \ Q(T)| ≤ |S \ T |. (12.2)

By (12.1) and (12.2), we deduce that

|T |+ |S \ T | > |Q(T)| − k + |Q(S \ T) \ Q(T)|. (12.3)

Since |S| = |T |+ |S \ T | and |Q(S)| = |Q(T)|+ |Q(S \ T) \ Q(T)|, by

(12.3), we have that

|S| > |Q(S)| − k,

which is a contradiction. This completes the proof of the lemma.

Lemma 12.3. An instance (U,S, k) of (n − k)-Set Cover is a yes-

instance if and only if Q(S) = U and there exists a k-mini set cover

T ⊆ S.

Proof. Suppose that S contains a k-mini set cover T . By definition,

|Q(T)| ≥ |T | + k. For every element u ∈ U \ Q(T), we add a set from

S containing u to T . Let T ′ denote the family of obtained sets. Clearly,

T ′ is a set cover. Note that we added at most n − |Q(T)| sets to T to

obtain T ′. Therefore, |T ′| ≤ n− |Q(T)|+ |T | ≤ n− k.

If S contains a set cover T of size at most n − k, then we have that

|T | ≤ n − k and |Q(T)| = n. Therefore, by Lemma 12.2, T contains a

k-mini set cover. This completes the proof of the lemma.

Now we are ready to prove the main result of this section.

Theorem 12.4. There is a polynomial time algorithm that, given an

instance (U,S, k) of (n−k)-Set Cover, returns an equivalent instance

(U ′,S ′, k) such that |U ′| ≤ 2k2 − 2.

Proof. We first verify that Q(S) = U , as otherwise there is no solution

and we can return a trivial no-instance. Now, we call GreedyMiniSet(S, k)

to construct a collection of sets T . If T is a k-mini set cover, then

236 Greedy Packing

we are done. Next, suppose that T is not a k-mini set cover. Then by

Lemma 12.3, |T | < k. Hence |Q(T)| ≤ 2k − 2.

Note that every set in S\T covers at most one element from U \Q(T).

For u ∈ Q(T) and v ∈ U \ Q(T), we denote by Su,v all sets in S
containing both u and v. We carry out a marking procedure that marks

in total at most k(2k − 2) elements from U \ Q(T). For each element

u ∈ Q(T), we mark k unmarked elements v ∈ U \ Q(T) such that

Su,v 6= ∅. If there are less than k such elements, we mark as many as

we can. Note that during the marking procedure, no element is marked

twice. For an element u ∈ Q(T), let Mu denote the elements that were

marked for u. We apply the following reduction rule:

Reduction nkSC.1. Let U ′ = Q(T) ∪ (
⋃
u∈Q(T)Mu), and S ′ ⊆ S

be the family of all sets containing only elements from U ′. The new

instance is (U ′,S ′, k).

Note that |U ′| = |Q(T)| + |⋃u∈Q(T)Mu| ≤ (2k − 2) + k(2k − 2) =

2k2−2, and that the marking procedure can be carried out in polynomial

time. Therefore, it only remains for us to show that Rule nkSC.1 is safe.

Thus, we proceed to show that the instances (U ′,S ′, k) and (U,S, k) are

equivalent.

In one direction, as every k-mini set cover for (U ′,S ′, k) is also a k-

mini set cover for (U,S, k), Lemma 12.3 implies correctness. To prove

the opposite direction, by Lemma 12.3, it is sufficient to show that if

there exists a k-mini set cover for (U,S, k), then there exists a k-mini

set cover for (U ′,S ′, k).

Let T ′ be a k-mini set cover for (U,S, k) which has the least number

of sets from S \S ′. It is sufficient to show that T ′ ⊆ S ′, as this will imply

that T ′ is also a k-mini set cover for (U ′,S ′, k). Targeting a contradiction,

suppose that T ′ 6⊆ S ′. Pick a set T ∈ T ′ such that T /∈ S ′. Let W =

T ∩ Q(T), and consider the set T \W . First, note that |T \W | ≤ 1,

as otherwise we have a contradiction to our greedy construction of T .

Moreover, note that there exists an element in T \W , which we denote

by z, as otherwise T ⊆ Q(T) ⊆ U ′ and therefore T should have been

chosen to belong to S ′. We also have that W 6= ∅ because |T | ≥ 2—if

|T | ≤ 1, then T ′ \ {T} is a k-mini set cover whose number of sets from

S \ S ′ is smaller than than |T ′ \ S ′|, which is a contradiction.

Consider an element u ∈ W . The fact that T /∈ S ′ means that z /∈
Mu. This implies that the marking procedure marked k elements from

12.2 Max-Lin-2 above average 237

U \Q(T) other than z for u. Therefore, |Mu| = k. Since T \Q(T) = {z}
and Mu ⊂ U \ Q(T), we have T ∩Mu = ∅. Recall that every set in S
contains at most one element from U \Q(T). This means that every set

in S contains at most one element from Mu. As |T ′ \ {T}| ≤ k − 1, it

must be the case that at least one of the elements in Mu is not covered

by T ′. For every element u ∈ W , we define r(u) to be an element from

Mu \ Q(T ′). Recall that for distinct u, v ∈ W , the sets Mu and Mv are

disjoint by definition. This means that for distinct u, v ∈ W , r(u) 6=
r(v). We denote by Su any set from the collection Su,r(u) (recall that

Su,r(u) is the collection of sets in S which contain both u and r(u)).

Note that Su,r(u) 6= ∅ since r(u) ∈Mu. We now claim that the collection

T ′′ = (T ′ \ {T}) ∪ {Su | u ∈W} is also a k-mini set cover.

Note that the collection T ′′ covers every element covered by the col-

lection T ′ except z since W ⊆ ⋃u∈W Su ⊆ Q(T ′′). However, for each

u ∈ W , T ′′ also covers at least one element that was not covered by T ′
(recall that the element r(u) is not covered by T ′). Also, since for dis-

tinct u, v ∈W , r(u) 6= r(v), we have
∣∣(⋃

u∈W Su
)
\ Q(T ′)

∣∣ ≥ |W |. Thus,

|Q(T ′′)| ≥ |Q(T ′)| − 1 + |W |. Clearly, we have |T ′′| ≤ |T ′| + |W | − 1.

Therefore, since T ′ was a k-mini set cover, |Q(T ′′)| ≥ |T ′|+k+|W |−1 ≥
|T ′′| + k. Now, by Lemma 12.2, T ′′ contains a k-mini set cover. Since

for every u ∈W , Su ∈ S ′, this k-mini set cover uses at least one less set

from S \ S ′ than T ′, which contradicts our choice of T ′. Therefore, we

conclude that T ′ is a k-mini set cover for (U ′,S ′, k). This completes the

proof of the theorem.

Observe that Theorem 12.4 bounds only the size of the universe in

the reduced instance. The number of sets in the family of the reduced

instance still could be exponential in k. Such kernels are called partially

polynomial kernels. However, if we further assume that the sets in the

family are bounded by some fixed constant r, then a kernel with O(k2)

size universe has an O(k2r) size set family.

12.2 Max-Lin-2 above average

In this section we consider the Max-Lin-2 problem, defined as follows.

The input consists of a system S and an integer k. The system S contains

m linear equations e1, . . . , em in n variables z1, . . . , zn over F2 . Each

equation ej , j = 1, . . . ,m, is of the form
∑
i∈Ij zi = bj , where ∅ 6= Ij ⊆

{1, . . . , n}, and it has a positive integral weight wj . The task is to decide

238 Greedy Packing

whether there is an assignment of values to the variables z1, . . . , zn such

that the total weight of the satisfied equations is at least k.

Let us remind that in F2, which is also known as GF(2) and the

Galois field of two elements, we have two elements 0 and 1. Here, the

addition operation corresponds to the logical XOR operation, while the

multiplication operation corresponds to the logical AND operation. For

example, consider the following system:

z1 + z2 + z4 = 1 (w1)

z2 + z3 = 0 (w2)

z2 + z3 + z4 = 1 (w3)

In this system, the assignment z1 = z2 = z3 = 1 and z4 = 0 satisfies the

last two equations and thus it is of weight w2 + w3.

Let W = w1 + · · ·+wm. The following lemma implies that Max-Lin-2

admits a trivial polynomial kernel when parameterized by the weight of

satisfied equations. An alternative proof is given as Exercise 12.2.

Lemma 12.5. There exists an assignment such that the total weight of

the satisfied equations in S is at least W/2.

Proof. The proof of the lemma is an application of the probabilistic

method. Consider a random assignment δ, where each variable zi is

independently at random assigned zero or one with probability 1
2 each.

Equation ei is satisfied by δ if and only if the sum of the ones modulo

2 in the left side of the equation is equal to the constant bi in the right

side of the equation, which happens with probability exactly 1/2. By the

linearity of expectation, the expected total weight of satisfied equations

of S is W
2 , as

E(total weight of satisfied equations) =
∑

1≤i≤m
wi·Pr(ei is satisfied) =

W

2
.

Since the expected weight above of satisfied equations is at least W/2,

there exists an assignment such that the total weight of satisfied equa-

tions in S is at least W/2.

Lemma 12.5 yields that Max-Lin-2 admits a polynomial kernel when

parameterized by the weight of satisfied equations. Indeed, if 2k ≤ W ,

then by Lemma 12.5, we have a yes-instance. Otherwise, since the weight

of each of the equations is at least 1, we have at most 2k equations, each

of weight at most 2k, which trivially brings us to a polynomial kernel.

Since the “average” weight of all assignments is at least W/2, the much

12.2 Max-Lin-2 above average 239

more interesting question about Max-Lin-2 asks whether it admits a

kernel when parameterized “above the average” W/2.

In this section, we give a kernel for “above average” parameterization

for a special variant of Max-Lin-2, where each equation has at most

r variables. We refer to this variant as the Max-r-Lin-2 problem. In

what follows, we give a polynomial kernel for Max-r-Lin-2 when the

parameter is k′ = k−W/2. In other words, the task is to decide whether

there is an assignment of values to the variables z1, . . . , zn such that the

total weight of satisfied equations is at least W
2 + k′.

The ideas behind the kernel for Max-r-Lin-2 parameterized above

average are as follows.

• We start with two reduction rules. The first rule searches for equations

on the same set of variables, and if it finds such a pair, it replaces

it with another equation. As a result of this rule, we arrive at an

equivalent system, where all equations are on different sets of variables.

For the second rule, we associate a matrix of coefficients with the

system of equations: in this matrix, rows correspond to equations and

columns correspond to variables. The second rule reduces the number

of variables in the system in such a way that in the new equivalent

system the number of variables is equal to the column rank of the

coefficient matrix. Both rules also keep the number of variables in each

equation upper bounded by r. We apply these rules exhaustively.

• If a resulting irreducible instance has O(rk′) variables, then due to

the first reduction rule, all equations should be on different sets of

variables. Since each of the equations has at most r variables, we have

that the number of equations is k′O(r). For fixed r, with a simple trick,

this would imply that the bit-size of the reduced instance is bounded

by some polynomial of k′ and thus we have a polynomial kernel.

• If we arrive at an irreducible instance with more than c · rk′ variables

for some constant c, then we prove that we already have a yes-instance.

To prove this, we consider a greedy algorithm, which repeatedly selects

an equation e and a variable zi from e. We mark e, eliminate all

equations containing zi by adding e to them, and then apply reduction

rules. It is easy to show that such an algorithm can be turned into an

assignment satisfying all marked equations.

• It remains to show that it is possible to identify in polynomial time

an ordering of the equations such that by feeding the equations to

240 Greedy Packing

the greedy algorithm in this order, we will mark enough equations to

produce an assignment of weight at least W
2 + k′. To find such an

ordering, we crucially rely on the fact that after applying the second

reduction rule, we have a system with a full column-rank matrix of

coefficients. Based on this, we show that a large irreducible system

contains a set of ck′ equations K such that none of the system equa-

tions can be expressed as a sum of two or more equations from K. By

feeding to the greedy algorithm equations from K first, we guarantee

that we mark all equations from K, and hence can satisfy equations

of sufficient weight.

Let A(S) denote the m× n matrix of the coefficients of the variables

in S. The maximum number of linearly independent columns of A(S) is

equal to the rank of the matrix and thus can be obtained by applying

Gaussian elimination algorithm. For an n × m matrix where n ≤ m,

Gaussian elimination is known to be computable in a number of arith-

metic operations bounded by O(mnw−2) where w < 2.373 is the matrix

multiplication exponent. Since we are working in the field F2, we obtain

the following result.

Lemma 12.6. For the coefficient matrix A(S), a set of linearly indepen-

dent columns of maximum size as well as a set of linearly independent

rows of maximum size can be found in time O(mnw−2) where w < 2.373

is the matrix multiplication exponent.

We are ready to state our first reduction rule for Max-Lin-2.

Reduction MLA.1. If there is a subset I of {1, 2, . . . , n} such that

S contains the equation
∑
i∈I zi = b′ with weight w′ and equation∑

i∈I zi = b′′ with weight w′′, then proceed as follows. If b′ = b′′, then

replace this pair of equations by one with weight w′+w′′. Otherwise

(b′ 6= b′′), keep only the equation with the larger weight, and assign

it the new weight |w′ − w′′|. If the resulting weight is 0, delete this

equation from the system.

The safeness of Reduction Rule MLA.1 is simple and is left as Exer-

cise 12.3.

12.2 Max-Lin-2 above average 241

Reduction MLA.2. Let t be the rank of A(S), and let ai1 , . . . ,ait

be column vectors of A(S) that are linearly independent. Then, delete

all variables not in {zi1 , . . . , zit} from the equations of S.

Lemma 12.7. Reduction Rule MLA.2 is safe.

Proof. First of all, by Lemma 12.6, the rule is implementable in polyno-

mial time.

Without loss of generality, let us assume that {a1, . . . ,at} is an inde-

pendent set of column vectors of A(S) of cardinality equal to the rank

of A(S). We will show that there exists an optimal solution (a solu-

tion maximizing the weight sum of satisfied equations) such that every

variable not in {z1, . . . , zt} is assigned zero. We refer to variables in

{z1, . . . , zt} as to independent variables and to all other variables as de-

pendent variables. Among all optimal solutions, we choose one with the

maximum number of dependent variables that have been assigned zero.

Let δ be such an assignment. Targeting a contradiction, let us assume

that there exists a dependent variable zj such that δ(zj) = 1. Then,

for some subset I ⊆ {1, . . . , t}, we have aj =
∑
`∈I a`. Let δ′ be a new

assignment defined as follows:

δ′(zx) =

{
δ(zx), if x ∈ {1, . . . , n} \ (I ∪ {j})
δ(zx) + 1, otherwise.

Let us remark that in the definition of δ′, of course we take δ′x := δx + 1

modulo 2. Since δ′ assigns zero to more dependent variables than δ, it

only remains to prove that every equation satisfied by δ is also satisfied

by δ′.

Let O and O′ be the sets of indices of variables that have been assigned

one by δ and δ′, respectively. By the definition of O and O′, and as we

are working over F2, we have that O′ = (O\(I∪{j}))∪(I\O). Moreover,

observe that the assignments δ and δ′ are completely characterized by

the sets O and O′, respectively. From the matrix A(S) we delete all rows

corresponding to equations that are not satisfied by δ, and denote the

new matrix by Ã. Furthermore, let ãi denote the i-th column of Ã, and

let b̃ denote the vector containing right-sides of the equations satisfied

242 Greedy Packing

by δ. Then, we have the following.

b̃ =
∑

i∈O
ãi =

∑

i∈O\{j}
ãi + ãj =

∑

i∈O\{j}
ãi +

∑

i∈I
ai

=
∑

i∈O\(I∪{j})
ãi + 2 ·

∑

i∈O∩I
ãi +

∑

i∈I\O
ãi

=
∑

i∈O′
ãi

Thus every equation satisfied by δ is also satisfied by δ′, which completes

the proof.

A system S is called irreducible if Reduction Rules MLA.1 and MLA.2

do not apply to S. In order to proceed analyzing an irreducible system,

we need to present a greedy procedure whose usefulness will be argued

using the following definition. We remark that in the context of this

procedure, we only need to consider Reduction Rule MLA.1. The utility

of Reduction Rule MLA.2 will be cleared later.

Definition 12.8. Let δ : z = (z1, . . . , zn) → {0, 1}n be an assignment

to the variables of the system S. The excess of δ, denoted by exδ(S),

is the total weight of equations satisfied by δ minus the total weight of

equations falsified by δ. We define the excess of a system S as

ex(S) = max
δ

exδ(S),

where the maximum is taken over all assignments δ.

Recall that k′ = k−W/2, and let us note that there is an assignment

such that the total weight of the satisfied equations is at least W
2 + k′

if and only if ex(S) ≥ 2k′, see Exercise 12.4. In other words, (S, k) is a

yes-instance of Max-Lin-2 if and only if ex(S) ≥ 2k′.
For a system of equations S, consider the algorithm in Fig. 12.2. This

algorithm, GreedySystem, greedily tries to maximize the total weight

of satisfied equations of A(S)z = b. GreedySystem will be a central

component in our kernelization procedure. We denote A = A(S), and

assume that initially no equation or variable in Az = b is marked.

To understand the intuition underlying this greedy process, first note

that at any point of the execution of the algorithm, after already marking

some equations, algorithm GreedySystem has replaced A(S)z = b with

an equivalent system under the assumption that the equations marked

so far are satisfied; that is, for every assignment of values to the variables

12.2 Max-Lin-2 above average 243

Algorithm GreedySystem.
Input: System of equations Az = b.
Output: Empty system of equations.

while system Az = b is nonempty do
(i) Choose an arbitrary equation

∑
i∈I zi = b, set

` = min{i : i ∈ I}, and mark the variable z`;
(ii) Mark this equation and delete it from the system;
(iii) Replace every equation

∑
i∈I′ zi = b′ containing z` by the equation∑

i∈I zi +
∑

i∈I′ zi = b+ b′;
(iv) Exhaustively apply Reduction Rule MLA.1 to the system.

Figure 12.2 Algorithm GreedySystem

z1, . . . , zn that satisfies the equations marked so far, we have the same

excess in both original and current systems. Second, note that since

z` + z` = 0 in F2, in Step (iii) of the algorithm we are actually entirely

eliminating z` from the system.

Lemma 12.9. For any set of equations marked by GreedySystem, there

exists an assignment of excess at least the size of this set.

Proof. Let e1, e2, . . . , e` denote the equations marked by some run of

GreedySystem, where the indices correspond to the order in which the

equations were marked. Accordingly, let z1, z2, . . . , z` denote the marked

variables. Moreover, let Spre
i denote the system immediately before the

algorithm marked ei, and let Spost
i denote the system immediately after

the application of Step (iii) in the iteration corresponding to ei. Observe

that Spre
1 is the input system, and that for all i ≥ 2, is the system imme-

diately after the application of Step (iv) in the iteration corresponding

to ei is exactly Spre
i+1, where we use Spre

`+1 to denote the empty system.

We prove by induction on i, where i ranges from `+ 1 to 1, that the

excess of the system Spre
i is at least (` + 1) − i. Note that this claim,

when i = 1, is precisely the claim of the lemma. In the base case, where

i = ` + 1, the system is empty and thus the excess is clearly 0. Now,

suppose that the claim is true for i + 1, and let us prove it for i. By

the inductive hypothesis, we have that the excess of Spre
i+1 is at least

(` + 1) − (i + 1). Due to the safeness of Reduction Rule MLA.1 , we

have that the excess of Spost
i is also at least (` + 1) − (i + 1). Consider

the assignment δ that achieves this excess. We extend this assignment

by setting zi so that the equation ei is satisfied—this is possible as zi is

not present at all in the system Spost
i . Then, the obtained assignment δ′

244 Greedy Packing

satisfies all equations satisfied by δ, and in addition it satisfies ei. This

assignment in particular witnesses that the excess of Spre
i is at least

(`+ 1)− i. This completes the proof.

The main reason why we require Lemma 12.9 lies in the following

observation. By this lemma, we know that if the algorithm executes

sufficiently many iterations, that is, at least 2k′ iterations, then there is

an assignment such that the total weight of the satisfied equations is at

least W
2 + k′ (as every assignment has non-zero weight). However, the

number of equations marked by GreedySystem depends on the choice of

equations to mark in the first step.

In what follows, we will consider the special case of the problem where

in the initial system S, each equation has only r variables. Then, it is

possible to find a large enough set of equations (in the initial system) that

can be marked in successive iterations of GreedySystem. In this case,

GreedySystem executes sufficiently many iterations, which allows us to

establish a kernel. In other words, an appropriate choice of equations to

mark is used in Lemma 12.12 to show that if in an irreducible system

the number of variables in each equation is bounded by r and the total

number of variables is large enough (lower bounded by a linear function

of r), then the excess is at least 2k′. Lemma 12.11 gives a linear-algebraic

basis for the choice used in Lemma 12.12.

Definition 12.10. Let K and M be sets of vectors in Fn2 such that

K ⊆ M . We say K is M -sum-free if no sum of two or more distinct

vectors in K is equal to a vector in M .

Observe that K is M -sum-free if and only if K is linearly independent

and no sum of vectors in K is equal to a vector in M\K. We will use

the properties of M -sum-free sets in the next lemma.

Lemma 12.11. Let M be a set of vectors in Fn2 such that M contains

a basis of Fn2 . Suppose that each vector of M contains at most r non-

zero coordinates. If k ≥ 1 is an integer and n ≥ r(k − 1) + 1, then in

polynomial time we can find a subset K of M of size k such that K is

M -sum-free.

Proof. For k = 1, the proof is immediate because every set containing a

single vector in M is trivially M -sum-free. Thus, we next assume that

k ≥ 2. Let 1 = (1, . . . , 1) be the vector in Fn2 in which every coordinate

is 1. Since every vector in M has at most r non-zero coordinates, we

12.2 Max-Lin-2 above average 245

have that 1 6∈M. By our assumption, M contains a basis of Fn2 , and by

Lemma 12.6, we can find such a basis in polynomial time O(n2|M |).
We write 1 as a sum of some vectors of this basis B:

1 = v1 + v2 + · · ·+ vs,

where {v1, . . . , vs} ⊆ B and v1, . . . , vs are linearly independent. We can

find such an expression for 1 in polynomial time; indeed, all we have to

do is to solve the system of equations Bx = 1, which can be done in

time O(n2|M |).
From now on, our proof strategy is as follows. We want to show

that either {v1, . . . , vs} ⊆ B is the desired K, or that we can find a

strictly smaller expression for 1 as a sum of vectors in M . For each v ∈
M\{v1, . . . , vs}, consider the set Sv = {v, v1, . . . , vs}. By Lemma 12.6,

in time O(n2|M |) we can check whether Sv is linearly independent. We

consider two cases:

Case 1: Sv is linearly independent for each v ∈ M\{v1, . . . , vs}. Then,

{v1, . . . , vs} is M -sum-free. Here, we also use the fact that {v1, . . . , vs}
is linearly independent. Recall that 1 = v1 + v2 + · · · + vs, and thus

for every coordinate j ∈ [n], there exists a vector vi such that the jth

coordinate of vi is one. Since each vi has at most r positive coordinates,

we have that r(k − 1) < n ≤ sr. Hence, s > k − 1 implying that s ≥ k.

Thus, {v1, . . . , vk} is the required set K.

Case 2: Sv is linearly dependent for some v ∈ M\{v1, . . . , vs}. Then,

we can find (in polynomial time) I ⊆ [s] such that v =
∑
i∈I vi. Thus,

1 = v1 + v2 + · · ·+ vs =
∑

i∈I
vi +

∑

i∈[s]\I
vi = v +

∑

i∈[s]\I
vi.

Since |I| ≥ 2, the above is a shorter expression for 1. Let {v′1, . . . , v′s′} =

{v} ∪ {vi : i /∈ I}. Note that {v′1, . . . , v′s′} is linearly independent.

Since s ≤ n and Case 2 produces a shorter expression for 1, after at

most n iterations of Case 2 we will arrive at Case 1.

Our interest in Lemma 12.11 is due to the following result.

Lemma 12.12. Let S be an irreducible system with m equations and

n variables such that each equation contains at most r variables, and

n ≥ (2k′ − 1)r + 1. Then, there exists an assignment δ to the variables

of S such that exδ(S) ≥ 2k′.

Proof. Recall that A(S) is the matrix of the coefficients of the variables

246 Greedy Packing

in S. Then, A(S) has m rows and n columns. For each equation ej , there

is a row in A(S) corresponding to it. We think of each row as a vector

in Fn2 . Let M be the set of vectors corresponding to the rows.

We claim that M spans Fn2 , or in other words, M contains a basis of

Fn2 . Indeed, since Reduction Rule MLA.2 is not applicable, the column

rank of A(S) is n. Since the row rank is equal to the column rank, we

have that M contains n linearly independent vectors and thus spans Fn2 .

Thus, M contains a basis for Fn2 . In addition, each vector from M

contains at most r non-zero coordinates and n ≥ (2k′ − 1)r + 1. There-

fore, using Lemma 12.11 we can find an M -sum-free set K ⊆ M of

2k′ vectors. Without loss of generality, let us assume that {e1, . . . , e2k′}
are the equations corresponding to the vectors of K. We run algorithm

GreedySystem, choosing at Step (i) an equation of S from {e1, . . . , e2k′}
each time. Let S ′ be the resulting system.

We claim that during the execution of GreedySystem no equation

from {e1, . . . , e2k′} is deleted before it is marked. Indeed, if this is not

the case, then for some ` ≤ 2k′, there is an equation e in S such that

after i ≤ ` − 1 iterations of GreedySystem, equations e` and e contain

the same set of variables. Since the system is irreducible, ` > 1. By our

choice of pivoting equations in GreedySystem, the vector corresponding

to equation e` at the i-th iteration is a sum of at least two vectors from

K. Therefore, the vector v ∈M corresponding to e is a sum of at least

two vectors from (the original set) K, which contradicts the choice of K

as M -sum-free.

Hence, in GreedySystem all 2k′ equations e1, . . . , e2k′ are marked.

Then by Lemma 12.9, there exists an assignment of excess at least

2k′.

We are ready to give a polynomial kernel for Max-r-Lin-2 parame-

terized “above average”.

Theorem 12.13. Max-r-Lin-2 admits a kernel of polynomial size for

k′ = k −W/2 with at most (2k′ − 1)r variables and k′O(r)
equations.

Proof. Let (S, k), where S is the system of equations, be an instance

of Max-r-Lin-2. After applying Reduction Rules MLA.1 and MLA.2

exhaustively, we obtain a new irreducible equivalent system (S?, k?).
Since both reduction rules are implementable in polynomial time, the

system (S?, k?) is obtained in polynomial time.

Let n be the number of variables in S?, and observe that the number

of variables in every equation of S? does not exceed r. If n ≥ (2k′ −

12.3 Max-Er-SAT 247

1)r + 1, then by Lemma 12.12, (S?, k?) is a yes-instance of Max-r-

Lin-2. Otherwise, n ≤ (2k′ − 1)r, and we have the required number

of variables. Furthermore, since (S?, k?) is irreducible, we have that no

two equations from S? have the same set of variables. Thus, the total

number of equations in S? is at most
∑r
i=1

(
(2k′−1)r

i

)
.

However, although the obtained system S? has (2k′ − 1)r variables

and k′O(r)
equations, it is still not necessary a kernel. The reason is that

to encode weights of S?, we need Ω(logW) bits. Since the weights of the

equations in S? can be arbitrarily large, we cannot guarantee that logW

is bounded by some function of k?. This can be easily resolved as follows.

If there exists an equation of weight at least 2k′, then we can conclude

that we have a yes-instance (see Exercise 12.5). Else, every weight can

be encoded using O(log k′) bits. This completes the proof.

12.3 Max-Er-SAT

Let us remind that in the Max-r-SAT problem we are given a CNF

formula ϕ, where every clause consists of at most r literals, and an

integer k. The task is to decide whether there exists an assignment ψ that

satisfies at least k clauses of ϕ. In this section, we consider a more specific

variant of the Max-r-SAT problem, called Max-Er-SAT. Here, we

assume that the input formula ϕ is an r-CNF formula for some positive

integer r, that is, each clause of ϕ consists of exactly r literals. We also

assume that literals in one clause pairwise involve different variables,

i.e., there are no two identical literals and no literal is the negation of

another one. Requiring that each clause consists of exactly r literals

makes Max-Er-SAT and Max-r-SAT quite different: for example, we

cannot just repeat one of the literals of a clause with less than r literals

to increase its size to be exactly r.

For an r-CNF formula one can show the following bound, whose proof

is left as Exercise 12.6.

Lemma 12.14. For an r-CNF formula ϕ with m clauses, there exists

an assignment satisfying at least
(
1− 1

2r

)
m clauses.

Lemma 12.14 motivates the following above average parameterization

of Max-Er-SAT: for a given r-CNF formula ϕ with m clauses and

integer k′, the task is to decide whether there is an assignment satisfying

at least
(
1− 1

2r

)
m+k′ clauses of ϕ. In other words, the instance of Max-

248 Greedy Packing

Er-SAT parameterized above average consists of a pair (ϕ, k), where the

parameter is k′ = k −
(
1− 1

2r

)
m.

For a formula ϕ, we denote its clause set by Cls(ϕ). We say that a

variable x occurs in clause C, denoted by x ∈ Vars(C), if C contains

x or x̄. For a formula ϕ, we will next define a polynomial Pϕ having

variables x1, . . . , xn. By slightly abusing notation, we do not distinguish

here between the variables of Pϕ and of ϕ. Thus, we identify the Boolean

values true and false with the real numbers 1 and −1, respectively. Con-

sequently, an assignment is a function ψ : {x1, x2, . . . , xn} → {−1, 1}.
Now, the polynomial is defined by the following formula:

Pϕ(x1, x2, . . . , xn) =
∑

C∈Cls(ϕ)

1−

∏

xi∈Vars(C)

(1− εi · xi)

 ,

where for xi ∈ Vars(C),

εi =

{
−1, if x̄i ∈ C,
1, if xi ∈ C.

For an assignment ψ, we define sat(ϕ,ψ) as the number of clauses

satisfied by ψ, and we denote Pϕ(ψ) = Pϕ(ψ(x1), . . . , ψ(xn)).

Lemma 12.15. For every k ≥ 1, the following are equivalent

• Formula ϕ has a truth assignment satisfying at least k +
(
1− 1

2r

)
m

clauses.

• There is a truth assignment ψ such that Pϕ(ψ) ≥ 2rk.

Proof. For every truth assignment ψ,
∏
xi∈Vars(C)(1 − εixi) is equal to

2r if C is not satisfied by ψ and 0 otherwise. Thus,

Pϕ(ψ) = (m− 2r(m− sat(ϕ,ψ))) = 2r · (sat(ϕ,ψ)− (1− 2−r)m).

Hence, Pϕ(ψ) ≥ 2rk if and only if sat(ϕ,ψ) ≥ (1− 2−r)m+ k.

The next lemma shows that there is a polynomial time algorithm

that given an instance (ϕ, k1) of Max-Er-SAT with parameter k′1 =

k1− (1−2−r)m, constructs in time mO(r) an equivalent instance (S, k2)

of Max-r-Lin-2 with parameter k′2 = k2 −W/2 such that the size of S
is polynomial in k′1. In other words, we have a compression of Max-Er-

SAT.

12.3 Max-Er-SAT 249

Lemma 12.16. There is an algorithm that for a given r-CNF formula

ϕ with m clauses and an integer k, in time mO(r) constructs a system

of weighted linear equations S over F2 such that

• The system S has O(k′r) variables, k′O(r) equations, and the size of S
(together with equation weights) is k′O(r). Here, k′ = k− (1− 2−r)m.

• There is a truth assignment of ϕ satisfying at least (1 − 2−r)m + k′

clauses if and only if there is an assignment of variables of S of weight

at least W/2 + k′.

Proof. For an r-CNF formula ϕ, we construct the polynomial Pϕ. We

rewrite Pϕ as the sum of multilinear monomials:

Pϕ =
∑

I∈F
cI
∏

i∈I
xi,

where F is a family of nonempty subsets of {1, . . . , n} and cI 6= 0. Let

us note that since every clause of ϕ has r variables, every set I ∈ F has

at most r elements.

We construct a system of linear equations S with n variables z1, . . . , zn
as follows. For every I ∈ F and the corresponding multilinear monomial

cI
∏
i∈I xi, the equation eI of S is

∑
i∈I zi = bI , where

bI =

{
0, if cI > 0,

1, if cI < 0.

The weight wI of equation eI is |cI |/2r−1.

Let us note that regrouping Pϕ and the construction of S can be easily

done in time mnO(r).

Claim 12.17. There is an assignment of variables of S of weight at

least W/2 + k′ if and only if there is a truth assignment of ϕ satisfying

at least (1− 2−r)m+ k′ clauses.

Proof. Suppose that there exists an assignment δ : z = (z1, . . . , zn) →
{0, 1}n of weight at least

W

2
+ k′ =

∑
I∈F wI

2
+ k′.

We construct a truth assignment ψ such that Pϕ(ψ) ≥ 2r ·k′. By Lemma

12.15, this would yield that ψ satisfies at least (1−2−r)m+k′ clauses of

ϕ. In assignment ψ, we set xi = (−1)δ(zi) for all i ∈ {1, . . . , n}. In other

250 Greedy Packing

words, ψ assigns 1 to xi if the value of zi is 0 and −1 if the value of zi
is 1. Then, for every I ∈ F ,

∏

i∈I
xi = 1 if and only if

∑

i∈I
zi = 0,

and
∏

i∈I
xi = −1 if and only if

∑

i∈I
zi = 1.

By the choice of bI , we have that if equation eI is satisfied by δ, then

cI
∏
i∈I xi = |cI |, and if eI is not satisfied by δ, then cI

∏
i∈I xi = −|cI |.

Let ISAT be the family of satisfied sets I ∈ F , that is, the family of

sets such that for every I ∈ ISAT equation eI is satisfied by δ. More-

over, denote IUNSAT = F \ ISAT . Let us remind that the excess of the

assignment δ is at least 2k, see Exercise 12.4. Thus,

exδ(S) =
∑

I∈ISAT
wI −

∑

I∈IUNSAT
wI ≥ 2k′.

Therefore,

Pϕ(ψ) =
∑

I∈F
cI
∏

i∈I
xi =

∑

I∈ISAT
cI
∏

i∈I
xi +

∑

I∈IUNSAT
cI
∏

i∈I
xi

=
∑

I∈ISAT
|cI | −

∑

I∈IUNSAT
|cI |

= 2r−1

(∑

I∈ISAT
wI −

∑

I∈IUNSAT
wI

)
≥ 2r−1 · 2k′ = 2r · k′.

For the opposite direction, for an assignment ψ of ϕ, we define δ(zi) =

0 if ψ(xi) = 1 and δ(zi) = 1 if ψ(xi) = −1. Then, by exactly the same

arguments as above, exδ(S) ≥ 2k, and the claim follows.

y

Finally, by Theorem 12.13, the problem Max-r-Lin-2 admits a poly-

nomial kernel with at most O(k′r) variables and k′O(r)
equations for

k′ = k−W/2. Thus, we use Theorem 12.13 to construct such an instance

(S?, k?). By our construction, (ϕ, k) is a yes-instance of Max-Er-SAT

if and only if (S?, k?) is a yes-instance of Max-r-Lin-2.

Lemma 12.16 shows that Max-Er-SAT admits a “compression” into

an instance of another problem. While for fixed r the instance of Max-

r-Lin-2 is bounded by some polynomial of k, this is not a polynomial

12.3 Max-Er-SAT 251

kernel. Recall that in the definition of a kernelization algorithm, an in-

stance of a problem is mapped into an instance of the same problem,

which is not what Lemma 12.16 actually does.

12.3.1 Kernel for Max-Er-SAT

We conclude this section with a proof that Max-Er-SAT above average

admits a polynomial kernel.

Theorem 12.18. Max-Er-SAT admits a kernel of size k′O(1), where

k′ = k − (1− 2−r)m.

Proof. By Lemma 12.16, Max-Er-SAT admits a polynomial compres-

sion into Max-r-Lin-2 transforming every instance (x, k) of Max-Er-

SAT with k′ = k− (1− 2−r)m into an equivalent instance y of Max-r-

Lin-2 of size k′O(r)
. Since Max-Er-SAT is NP-hard and Max-r-Lin-

2 is in NP (actually, the decision versions of both problems are NP-

complete), Theorem 1.6 implies that Max-Er-SAT admits a kernel of

size k′O(1), where k′ = k − (1− 2−r)m.

Exercises

Problem 12.1. In MaxCut, we are given a graph G and integer k, and the task is
to determine whether G contains a cut of size k. In other words, we need to decide
whether the vertex set of G can be partitioned into two sets such that the number
of edges between these sets is at least k. Show that MaxCut is a special case of
Max-Lin-2.

Problem 12.2 (l). Prove Lemma 12.5 by induction rather than the probabilistic
method. To this end, consider the following approach. Assign values to the variables
z1, . . . , zn one by one using the following greedy procedure. Each time a value is
assigned to a variable zi, all equations containing zi are simplified: if zi = 0 then zi
is simply removed from all such equations, and if zi = 1 then the right hand side b
of every such equation is replaced by 1 − b. As long as there is no equation of the
form zi = b, zi is assigned an arbitrary value. Otherwise, zi is assigned the value that
satisfies those equations of the form zi = b having total weight at least Wi/2, where
Wi is the total weight of equations of the form zi = b. Show by induction that the
assignment produced by the greedy procedure satisfies equations of total weight at
least W/2.

Problem 12.3 (l). Show that Reduction Rule MLA.1 is safe.

Problem 12.4 (l). Show that (S, k) is a yes-instance of Max-Lin-2 AA if and
only if ex(S) ≥ 2k′.

Problem 12.5 (l). Complete the proof of Theorem 12.13: Show that if there exists
an equation of weight at least 2k′, then we have a yes-instance.

Problem 12.6. Prove Lemma 12.14: For an r-CNF formula ϕ with m clauses, there
exists an assignment satisfying at least m(1− 2−r) clauses.

252 Greedy Packing

Problem 12.7. Max-Lin-2-Odd is Max-Lin-2 in which all equations have odd
number of variables. Prove that Max-Lin-2-Odd has a kernel with O(k2) variables
and equations.

Hint: Write the excess as a symmetric random discrete variable X (X is symmetric
if P(X = a) = P(X = −a) for every real a). Use the fact that for a symmetric discrete

random variable X, we have P(X ≥
√

E(X2)) > 0.

Bibliographic notes

Parameterizations above and below guarantee were introduced by Ma-

hajan and Raman (1999). In particular, the parameterizations of Max-

Lin-2 and Max-Er-SAT considered in this chapter were stated in that

work. Section 12.1 is largely based on the work of Basavaraju et al.

(2016). Crowston et al. (2014) proved that the number of variables of

Max-Lin-2 (without restriction on the number of variables in an equa-

tion) can be reduced to O(k2 log k); it is an open problem whether Max-

Lin-2 admits a polynomial kernel. The polynomial kernels for Max-r-

Lin-2 and Max-r-SAT are largely based on the work of Crowston et al.

(2010), but also on results already known due to Gutin et al. (2011b)

and further extended by Crowston et al. (2014). An alternative proba-

bilistic approach is due to Alon et al. (2011) and Gutin et al. (2011b).

The number of variables in the compressed instance has been further

improved by Kim and Williams (2012) and Crowston et al. (2014). We

remark that the traditional approach to compute the rank of a matrix

A, on which we relied in this chapter, is by Gaussian elimination. For

an m × n matrix with m ≤ n, it is known that this approach can be

implemented in O(nmw−1) field operations (Bunch and Hopcroft, 1974),

where w is the matrix multiplication exponent.

Other interesting examples of algorithms and hardness results for

above and below guarantee parameterizations include (Chen and Zhou,

2017; Makarychev et al., 2015; Crowston et al., 2014, 2012b,a, 2013;

Gutin et al., 2012, 2011c; Mahajan et al., 2009). In particular, Gutin

and Yeo (2012) provide a comprehensive survey of various constraint

satisfaction problems parameterized above and below tight bounds. This

survey was recently updated (see Gutin and Yeo, 2017). A generalization

of Exercise 12.7 was given by Gutin et al. (2011b).

13

Euler’s formula

On planar graphs, there exist many parameterized problems that are known to

admit polynomial or even linear kernels, while on general graph these problems

do not admit such kernels. To show such positive results, several kernelization

techniques have been developed. In this chapter we give some simple and elegant

examples of kernels for problems on planar graphs, while in Chapter 15 we

discuss more powerful techniques based on tools from logic. All the kernels in

this chapter are based on Euler’s formula.

13.1 Preliminaries on planar graphs

A graph is planar if it can be embedded (drawn) in the plane in such a

way that its edges intersect only at their endpoints. Such an embedding

is called a plane graph or planar embedding of the graph. Let G be a

plane graph. Note that its edges bound regions. Regions bounded by

edges, including the outer region, are called by faces of G.

The following is one of the earliest results in Graph Theory.

Theorem 13.1 (Euler’s formula). Let G be a connected plane graph

with n vertices, m edges and f faces. Then

n−m+ f = 2.

The proof of Euler’s formula is left as Exercise 13.1.

We will use the following proposition, whose proof follows from Euler’s

formula. We leave the proof of it as Exercise 13.2.

253

254 Euler’s formula

Lemma 13.2. Let G be a triangle-free planar graph with n > 3 vertices

and m edges. Then, m ≤ 2n− 4.

In addition, we will use the following lemma often.

Lemma 13.3. Let G be a planar graph, C ⊆ V (G), and let N3 be a set

of vertices from V (G) \ C such that every vertex from N3 has at least

three neighbors in C. Then, |N3| ≤ max{0, 2|C| − 4}.

Proof. We construct a bipartite graph H with bipartition C and N3. A

vertex of C is adjacent to a vertex from N3 if and only if these vertices

are adjacent in G. On the one hand, H is a triangle-free subgraph of G,

and thus by Lemma 13.2,

|E(H)| ≤ 2|V (H)| − 4 = 2(|C|+ |N3|)− 4.

On the other hand, every vertex of N3 is of degree at least 3 in H, and

thus

|E(H)| ≥ 3 · |N3|.

Hence

3 · |N3| ≤ 2|V (H)| − 4 = 2(|C|+ |N3|)− 4

and the lemma follows.

13.2 Simple planar kernels

In this section we give two examples of kernels based on the same idea.

Our examples are for Connected Vertex Cover and Edge Dom-

inating Set on planar graphs. Before we proceed, a clarification is

required here. When we say that some parameterized graph problem

admits a kernel on planar graphs, we mean that the input graph is pla-

nar as well as that the output graph of the kernelization algorithm must

be planar. Thus, in this situation we are allowed to use only reduction

rules that do not alter the planarity of the graph.

Let C be a set of vertices or edges which is a yes-certificate of some

parameterized problem. In both of our examples the vertices outside C

will form an independent set. By making use of Lemma 13.3, we esti-

mate that the number of vertices outside solution with at least three

13.2 Simple planar kernels 255

neighbors in C does not exceed 2|C|. Thus if we manage to design re-

duction rules leaving at most f(|C|) vertices with at most two neighbors

in C, then the number of vertices in the reduced graph does not exceed

|C|+2|C|+f(|C|). In both of our examples, the function f will be linear

and reduction will keep the planarity of the graph. Thus we obtain linear

kernels.

13.2.1 Planar Connected Vertex Cover

For a graph G, we say that a subset of vertices S ⊆ V (G) is connected

if G[S] is connected. Our first example is the following problem. In the

Connected Vertex Cover problem, we are given a graph G and a

non-negative integer k. The task is to decide whether G has a connected

vertex cover of size at most k.

We will show in Chapter 19 that Connected Vertex Cover does

not admit a polynomial kernel. However, on planar graphs not only does

this problem admit a polynomial kernel, but it admits a linear-vertex

kernel.

Theorem 13.4. Connected Vertex Cover on planar graphs admits

a 4k-vertex kernel.

Proof. We apply three reduction rules. The first reduction rule is the

same reduction rule we used in Section 2.2 for Vertex Cover.

Reduction CVC.1. If G contains an isolated vertex v, remove v

from G. The new instance is (G− v, k).

If we cannot apply Reduction Rule CVC.1 anymore, we can assume

that the input planar graph G is connected because otherwise G has no

connected vertex cover.

The second reduction rule is similar to the third reduction rule from

Section 2.2.

Reduction CVC.2. If there are two vertices u, v of degree 1 with a

common neighbor, then remove one of them, say u. The new instance

is (G− u, k).

The proof that Reduction Rule CVC.2 is safe is easy—there is always

256 Euler’s formula

an optimal vertex cover containing no vertex of degree 1. Let us remark

that after exhaustive application of Reduction Rule CVC.2, every vertex

of the graph has at most one neighbor of degree 1.

To guarantee that the resulting vertex cover is connected, we use gad-

gets. The next rule treats vertices of degree 2. Let v be a vertex of degree

2. If v is a cutvertex, i.e. after its removal the graph becomes discon-

nected, then it should be in every connected vertex cover. Otherwise, as

we will see below, v can be deleted while both of its neighbors should

be in the connected vertex cover.

Reduction CVC.3. Let v be a vertex of degree 2 that is not a

cutvertex. Let u and w be the neighbors of v. First, delete v. If u

has no neighbor of degree 1, then add a new vertex u′ and make it

adjacent to u. Similarly, if w has no neighbor of degree 1, then add a

new vertex w′ and make it adjacent to w.

Claim 13.5. Reduction Rule CVC.3 is safe.

Proof of the claim. Let v be a vertex of degree 2 of G with neighbors u

and w and which is not a cutvertex. To prove the claim, it is sufficient to

show that there is a connected vertex cover of size k containing v in G if

and only if there is a connected vertex cover in G−v of size k containing

u and w.

Let C be a connected vertex cover of size k in G. If v 6∈ C, then

u,w ∈ C and we are done. We assume from now that v ∈ C. Because C

is connected, at least one neighbors of v should be in C. Let us assume

first that exactly one neighbor of v, say u, is in C. Then w 6∈ C. The

set C ′ = (C \ {v}) ∪ {w} is obviously a vertex cover of size k. To show

that C ′ is connected we argue as follows. In the graph G[C], vertex v

is of degree 1, and thus the set C \ {v} is also connected. Because v is

not a cutvertex, w should have at least one neighbor in G besides v, and

because C is a vertex cover, all these neighbors should be in C. Thus C ′

is connected.

It only remains to handle the case where v, u, w ∈ C. Clearly, C \ {v}
is a vertex cover. If C \ {v} is still a connected set, then we are done.

Otherwise, G[C] consists of two connected components. Since v is not a

cutvertex, there is an u,w-path in G avoiding v. Because C is a vertex

cover, there should be a vertex of the path, say x, adjacent to vertices

from each of the two connected components of C \ {v}. However, then

(C \ {v}) ∪ {x} is connected vertex cover of size k.

13.2 Simple planar kernels 257

We are ready to conclude the proof of the theorem. Let (G, k) be a

reduced yes-instance, hence none of the three rules can be applied to

G. Let C be a vertex cover in G of size k. The remaining vertices of

V (G) \ C can be classified according to the number of neighbors they

have in C. We denote by N1 the set of vertices of V (G)\C with at most

one neighbor in C, by N2 with exactly two neighbors, and N3 with at

least three neighbors.

By Reduction Rules CVC.1 and CVC.2, |N1| ≤ |C| = k. Because

every cutvertex should be in every connected vertex cover, we have that

by Reduction Rule CVC.3, |N2| ≤ k. Finally, by Lemma 13.3, |N3| ≤
max{0, 2|C| − 4} = 2k − 4. Therefore,

|V (G)| = |C|+ |N1|+ |N2|+ |N3| ≤ k + k + 2k − 4 = 4k − 4.

13.2.2 Planar Edge Dominating Set

In the Edge Dominating Set, we are given a graph G and a non-

negative integer k, and the objective is to determine whether there exists

a set X of at most k edges of G such that G−V (X) is edgeless. In other

words, we seek a set X of at most k edges such that every edge in G

shares an endpoint with at least one edge in X. It is known that Edge

Dominating Set admits a kernel with at most O(2k2) vertices. When

the problem is restricted to planar graph, it is possible to obtain a linear

kernel.

Theorem 13.6. Edge Dominating Set on planar graphs admits a

14k-vertex kernel.

Proof. Let (G, k) be an instance of planar Edge Dominating Set. Our

first two rules are exactly the same as for connected vertex cover treating

vertices of degree 0 and 1.

Reduction EDS.1. If G contains an isolated vertex v, remove v

from G. The new instance is (G− v, k).

Reduction EDS.2. If there are two vertices u, v of degree 1 with a

common neighbor, we remove one of them, say u. The new instance

is (G− u, k).

258 Euler’s formula

u

v

x y

u

v

Figure 13.1 Illustration for Reduction Rule EDS.3.

It is easy to show that both rules are safe.

Our next rules treat vertices of degree 2. We say that an edge dom-

inating set D contains a vertex v if v is an endpoint of an edge from

D. Consider first the following situation, where we have two nonadja-

cent vertices u, v and at least two vertices of degree 2, say x and y, are

adjacent to both u and v, see Fig. 13.1.

Claim 13.7. If G has an edge dominating set of size k, then G has an

edge dominating set of size k containing u and v.

Proof of the claim. Let D be an edge dominating set of G of size k. It

should contain at least one of the vertices, u or v. Suppose it does not

contain u. Then both edges xv and yv must be in D. Since the set D′

obtained from D by replacing yv with xu is also an edge dominating set,

the claim follows.

By making use of the claim, we deduce that the following rule is safe.

Reduction EDS.3. If there are two nonadjacent vertices u and v,

whose common neighborhood N(u)∩N(v) contains at least two ver-

tices of degree 2, then remove all degree 2 vertices from the common

neighborhood of u and v. If u has no neighbor of degree 1, then add

a new vertex and make it adjacent to u. Similarly for v, if v has no

neighbor of degree 1, then add a new vertex and make it adjacent to

v, see Fig. 13.1.

Our next observation is as follows.

Claim 13.8. Suppose there is a vertex x of degree 2 adjacent to two

13.2 Simple planar kernels 259

adjacent vertices u and v, i.e. xu, xv, uv ∈ E(G). If G has an edge

dominating set of size k, then G has an edge dominating set of size k

containing u and v.

Proof of the claim. Let D be an edge dominating set of G of size k.

Then, D contains at least one of the vertices u and v. Suppose that D

does not contain u. Then, to dominate the edge xu, the edge xv must

be in D. Since the set D′ obtained from D by replacing xv with uv is

also edge dominating, the claim follows.

Based on the above claim, we conclude that the following reduction

rule is safe.

Reduction EDS.4. If there are two adjacent vertices u, v such that

their common neighborhood N(u) ∩ N(v) contains at least one ver-

tex of degree 2, then remove all degree 2 vertices from the common

neighborhood of u and v except one.

Now we are ready to conclude the proof. Let (G, k) be an irreducible

yes-instance such that none of the four rules can be applied to G. Let

D be an edge dominating set of size k, and let S be the set of vertices

contained in D. Then |S| ≤ 2k. As in Theorem 13.4, we partition the

vertices of V (G) \ S into the sets N1, N2 and N3 of vertices having at

most one, two, and at least three neighbors in S, respectively. Observe

that V (G) \ S is an independent set, and thus vertices from N1 are

of degree at most 1 and vertices from N2 are of degree 2. By Reduc-

tion Rules EDS.1 and EDS.2, we have that |N1| ≤ |S|. By Reduction

Rules EDS.3 and EDS.4, for every pair of vertices of S, there is at most

one vertex from N2 adjacent to both. A contraction of an edge incident

to a vertex from N2 results in an edge between two vertices of S. Thus

the size of N2 is at most the maximum number of edges a planar graph

on |S| vertices can have. By Euler’s formula, this number is at most

3|S|−6. Thus, |N2| ≤ 3|S| and by Lemma 13.3, |N3| ≤ max{0, 2|S|−4}.
Putting all together, we arrive at

|V (G)| = |S|+|N1|+|N2|+|N3| ≤ |S|+|S|+3|S|−6+2|S|−4 ≤ 14k−10.

It is possible to improve the bound on the kernel obtained in Theo-

rem 13.6 to 12k-vertex kernel, see Exercise 13.4.

260 Euler’s formula

13.3 Planar Feedback Vertex Set

In Section 5.5, we gave a quadratic kernel for Feedback Vertex Set.

Now we show that on planar graphs the problem admits a linear kernel.

More importantly, the techniques we use to obtain such a kernel will

serve as a prototype of much more powerful techniques (protrusion

decompositions and protrusion replacements) discussed in Part II.

The ideas used in the kernelization algorithm for planar Feedback

Vertex Set can be seen as generalization of the arguments we used

for planar Connected Vertex Cover and Edge Dominating Set.

These arguments do not work directly for the following reason. Suppose

that a graph G has a feedback vertex set of size k and suppose that

we succeed to identify a feedback vertex set S of size almost k. (For

this purpose, there is a polynomial time 2-approximation algorithm on

general graphs and even a polynomial time approximation scheme on

planar graphs, see Notes for details.) By making use of Euler’s formula,

we bound the number of vertices in G−S having at least three neighbors

in S. However, we cannot bound the number of vertices with at most

two neighbors in S. Indeed, while as before, we can eliminate vertices of

degree 1 and 2, the crucial difference is that G−S is not an independent

set and there still can be vertices of high degree in G having only few

(say, at most one) neighbors in S. Nevertheless, G − S is a forest, and

hence we will implement the following strategy.

• First we show how to enlarge S to a set R0, still keeping its size linear

in k, such that every connected component of G−R0 has at most four

neighbours in S.

• Now we can use Euler’s formula to argue that the number of differ-

ent neighborhoods in R0 of connected components of G − R0 is of

order O(k). We group these components according to their neighbor-

hoods in R0. In other words, we partition the vertices of G into sets

{R0, R1, . . . , Rρ} such that

– max{ρ, |R0|} = O(k),

– for each i ∈ {1, . . . , ρ}, Ri induces a forest in G, and

– for each i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0 and |NG(Ri)| ≤ 4.

• This type of partition is a special case of a protrusion decomposition,

which we define in the following chapters. While the number of sets

Ri is small, the sizes of these sets are not bounded.

13.3 Planar Feedback Vertex Set 261

• Our next step will be to reduce the size of each of the sets Ri, i ≥ 1,

to a constant size. This will imply the desired linear kernel. By mak-

ing use of logic-defined reductions which we develop in the following

chapters, one can replace such protrusions to protrusions of constant

size. However, for feedback vertex sets we will avoid this step by in-

troducing “hand made” reductions.

We start by constructing the required partition. Let us remark that

in the following lemma any bound in O(|S|) on ρ and R0 suffices for a

linear kernel.

Lemma 13.9. Let S be a feedback vertex set of a graph G. Then, in

polynomial time one can construct a partition of V (G),

R = {R0, R1, . . . , Rρ},
such that

• ρ ≤ 30 · |S| and |R0| ≤ 5 · |S|,
• for each i ∈ {1, . . . , ρ}, G[Ri] is a forest in G, and

• for each i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0 and |NG(Ri)| ≤ 4.

Proof. We start from constructing R0. For every connected component

T of G−S we perform the following procedure. Let us remind that T is a

tree. We turn T into a rooted tree by selecting a vertex r of T as a root.

For a vertex t ∈ V (T) we use Tt to denote the subtree of T rooted at

t. Consider the case where T contains a vertex t satisfying the following

properties:

• The tree Tt has at least three neighbors in S.

• For every child s of t, Ts has at most two neighbors in S.

In this case, we mark t and remove all vertices of Tt from T . We proceed

with marking and removing vertices until T has no subtree with at least

3 neighbors in S. Let Q be the set of all vertices from all components of

G− S marked by this procedure.

We claim that |Q| ≤ 2|S|. To prove it, we consider a bipartite graph

BG with bipartition S and Q = {q1, q2, . . . , qp}. For each i ∈ {1, . . . , p},
vertex qi has exactly the same set of neighbors in S as the subtree of T

obtained from the subtree rooted in qi by removing all subtrees rooted

in marked vertices below qi. In other words, BG is constructed from

G by contracting the corresponding subtree into its marked root and

262 Euler’s formula

afterwords removing edges between the marked vertices. It is clear that

BG is planar. Because every vertex of Q has at least three neighbors in

S, by Lemma 13.3, we have that |Q| ≤ 2|S|.
We enlarge the set Q by replacing it with its least common ances-

tor closure. In other words, we put Q := LCA-Closure(Q). Then by

Lemma 9.28, the total number of marked vertices Q is at most 4|S|. We

define the set

R0 = S ∪Q.

By the arguments above, we have that

|R0| ≤ 5|S|. (13.1)

Another important property of R0 is that every connected component

T of G−R0 has at most four neighbors in R0. Indeed, T is a connected

subgraph of the forest G − S, and thus it is a tree. By the selection of

the set Q, T has at most two neighbors in S. Moreover, by Lemma 9.27,

T has also at most two neighbors in Q. Thus,

NG(T) ⊆ R0 and |NG(T)| ≤ 4. (13.2)

We partition the components of G−R0 into classes according to their

neighborhoods in R0. We say that two connected components T and T ′

of G−R0 are equivalent if NG(T) = NG(T ′). Let R1, R2, . . . , Rρ be the

equivalence classes of connected components of G − R0. By (13.2), we

have that

NG(Ri) ⊆ R0 and |NG(Ri)| ≤ 4, for each 1 ≤ i ≤ ρ. (13.3)

To bound ρ, we use again Lemma 13.3. We construct a bipartite graph

RG with bipartition R0 and R = {r1, r2, . . . , rρ}. For each i ∈ {1, . . . , ρ},
vertex ri is adjacent to NG(Ri). In other words, RG is constructed from

G by replacing each of the classes Ri by a single vertex ri and making

it adjacent to the neighbors (in R0) of a components—all components

from the same class have the same neighborhood—of Ri. It is clear that

RG is planar.

We partition the vertices of R according to their degrees: let N1 be

the set of vertices of degree 1, N2 of degree 2, and N3 of degree 3 and 4.

Because G is connected there are no isolated vertices in R. The number

of vertices in N1 does not exceed the number of vertices in R0, thus

|N1| ≤ |R0|. Because every vertex from N2 has a unique neighborhood in

R0, the number of vertices of N2 does not exceed the maximum number

of edges a planar graph on |R0| vertices can have, which by Euler formula

13.3 Planar Feedback Vertex Set 263

is at most 3|R0|. By Lemma 13.3, the number of vertices from N3 is at

most 2|R0|. Hence,

ρ ≤ 6|R0| ≤ 30|S|. (13.4)

By combining (13.1), (13.3) and (13.4), the partition {R0, R1, . . . , Rρ}
has the required properties.

Let (G, k) be a yes-instance of Feedback Vertex Set. By making

use of Lemma 13.9, we proceed with the following strategy.

• We find a feedback vertex set of order O(k) and use Lemma 13.9

to construct a“protrusion decomposition” R = {R0, R1, . . . , Rρ} with

|R0|, ρ ∈ O(k).

• We use Reduction Rules FVS.1 and FVS.2 to eliminate vertices of

degree at most 2. This is not sufficient to obtain the desired kernel,

to which end we need one more rule.

• Let us note that while R0 is a feedback vertex set, we cannot guarantee

that it contains even one optimal feedback vertex set. We will show

how in polynomial time it is possible to find a superset M of R0 of

size O(k) such that M contains at least one optimal feedback vertex

set.

• Now, having such a set M , we introduce one more reduction rule:

Suppose that a vertex v ∈ M is adjacent to at least two vertices

in one connected component of G − M . Then, one can argue that

the vertex v is relevant, meaning that there is an optimal feedback

vertex set containing v, and thus we can take an equivalent instance

(G− v, k − 1).

• With the “relevant vertex” reduction rule at hand, we are able to apply

Euler’s formula to bound the number of vertices in G−M as O(k).

We proceed with the proof of the main theorem of this section.

Theorem 13.10. Feedback Vertex Set on planar graphs admits a

linear kernel.

Proof. Let (G, k) be an instance of Feedback Vertex Set, where G

is planar. We also assume that G is connected.

Our first reduction rule is Degree-1 Rule (Reduction Rule FVS.1 from

Section 5.5): If G contains a vertex of degree 1, then delete this vertex.

264 Euler’s formula

Let S be a (not necessarily optimal) feedback vertex set of G. It is

well known (see Notes) that there is a 2-approximation algorithm for

this problem on general graphs. Moreover, on planar graphs, for each

ε > 0 one can find in time f(1/ε)nO(1) a feedback vertex set whose size

is at most (1 + ε) the size of an optimal one.

We use Lemma 13.9 to find in polynomial time a partition of the

vertex set of G into sets {R0, R1, . . . , Rρ} such that

• both ρ and |R0| are in O(|S|),
• for each i ∈ {1, . . . , ρ}, G[Ri] is a forest in G, and

• for each i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0 and |NG(Ri)| ≤ 4.

Now, we start construction of the set M . The properties we want are

• |M | = O(k), and

• ifG has a minimum feedback vertex set of size k, thenG has a feedback

vertex set of size k which is a subset of M .

By (13.3), for each i ≥ 1, the set NG(Ri) consists of at most four

vertices. Because Ri induces a forest, every minimum feedback vertex

set of G contains at most four vertices from NG[Ri]. Our strategy now

is to enumerate all possible “configurations” that can occur when the

subgraph Gi induced by NG[Ri] contains at most four vertices from a

feedback vertex set. According to this information we identify “relevant”

vertices which should be in some optimum solution, and thus can be

deleted while decreasing the parameter.

For each i ∈ {1, 2, . . . , ρ}, we do the following. Let Gi = G[NG[Ri]].

For every X ⊆ NG(Ri) and partition {X1, . . . , X`}, ` ≤ |X| ≤ 4, of X,

we compute a minimum feedback vertex set F of Gi such that

(a) X = NG(Ri) \ F . In other words, the vertices of X are exactly the

vertices of NG(Ri) that are not from F ;

(b) For every 1 ≤ j ≤ `, there is a connected component of Gi − F

containing Xj . Moreover, for every j′ 6= j, the connected components

containing Xj′ and Xj are different.

Let us note that it can happen that for some X, either there is no

feedback vertex set satisfying condition (b), or the size of a minimum

feedback vertex set satisfying (b) is larger than 4. In both these cases,

the algorithm does nothing. For all computed feedback vertex sets of all

graphs Gi, we mark all vertices contained in these sets. Let M be the

set of marked vertices.

13.3 Planar Feedback Vertex Set 265

How large can M be? For each i ∈ {1, 2, . . . , ρ}, we try all possible

subsets X of NG(Ri). Moreover, for each subset X, we try all possible

partitions of X. Thus,

|M | ≤ ρ ·
4∑

p=1

p∑

q=0

(
p

q

)
Bq,

where Bq is the q-th Bell number, the number of partitions of a set with

q elements. In particular, B0 = 1, B1 = 1, B2 = 2, B3 = 5, and B4 = 15.

We thus arrive at

|M | ≤ ρ · (5 + 10 + 97) ≤ 3360|S|.

How long does it take to mark all vertices? Since every feedback vertex

set we are searching for is of size at most 4, even by making use of brute-

force trying all possible subsets of size at most 4, we mark all vertices in

polynomial time. By making use of dynamic programming over graphs

of bounded treewidth, the technique which will be explained in the next

chapters, it is possible to show that such a task can be performed in

time linear in n.

Finally, we add to M the set R0:

M := M ∪R0.

Thus,

|M | ≤ 3365|S|.

Next we show that there is always a solution contained in M .

Claim 13.11. A pair (G, k) is a yes-instance if and only if it contains

a feedback vertex set F of size at most k such that F ⊆M .

Proof of claim. Targeting towards a contradiction, let us assume that

there is a feedback vertex set F of G of size k, but there is no feedback

vertex set of size k using only vertices from M . Let us choose F having

the maximum number of vertices from M . There is Gi = G[NG[Ri]]

such that F uses some unmarked vertices of Gi. Let X = NG(Ri) \ F
and let {X1, . . . , X`} be the partition of X according to connectivity in

Gi − F . By this we mean that for every 1 ≤ j ≤ `, there is a connected

component of Gi−F containing Xj , and for every j′ 6= j, the connected

components containing Xj′ and Xj are different. We take a minimum

feedback vertex set Fi of Gi such that X = NG(Ri) \ Fi and such that

{X1, . . . , X`} is the partition of X according to connectivity in Gi −Fi.
By the choice of M , there is Fi consisting of only marked vertices.

266 Euler’s formula

v

u w

M

T

v

u

M

T

u w

M

T

u

M

T

Figure 13.2 Illustration for Reduction Rule FVS.13.

We want to show that F ′ = (F \ NG[Ri]]) ∪ Fi is a feedback vertex

set in G of size at most k. Since F ′ contains more marked vertices than

F , this will contradict the choice of F and prove the claim. If F ′ was

not a feedback vertex set, then G − F ′ contains a cycle C. This cycle

should contain some vertices of Gi and some vertices outside of Gi.

But because in Gi − F and in Gi − Fi the “connectivity” partitions

{X1, . . . , X`} are exactly the same, we can reroute the parts of C in Gi
avoiding F ∩NG[Ri], and thus obtain a cycle in G− F . The statement

that |F ′| ≤ k follows by noting that |Fi| ≤ |F ∩NG[Ri]|.

Let us note that by Claim 13.11, every connected component of G−M
is a tree. We also use Degree-2 Rule (Reduction Rule FVS.2) to eliminate

vertices of degree 2. Let us remind that in this rule for neighbors u,w

of a degree 2 vertex v, we delete v and add the edge uw if u and w

were not adjacent. If they were adjacent, we add a multiple uw edge.

Thus, after application of this rule multiple edges can occur. However,

by Claim 13.11, between vertices of G−M multiple edges cannot occur,

as then every feedback vertex set should contain a vertex outside M .

Moreover, we note that the resulting graph remains planar.

Now we are able to state our next reduction rule. Let us remark that

we are able to verify the safeness of this rule only because we managed

to identify the set of vertices M .

Reduction FVS.13 (Relevant Vertex Rule). Let T be a con-

nected component of G−M . If there is v ∈ M which is either adja-

cent to a vertex of T via a multiple edge or to at least two vertices of

T , then delete v. See Fig. 13.2. The new instance is (G− v, k − 1).

13.3 Planar Feedback Vertex Set 267

Claim 13.12. Reduction Rule FVS.13 is safe.

Indeed, if T contains vertices u,w adjacent to the same vertex v ∈M ,

then G contains a cycle with exactly one vertex from M , namely v.

Then by Claim 13.11, there is necessarily a solution of size k containing

v. Similar arguments apply to the case where v is adjacent to some vertex

of T via a multiple edge. We also remind that no connected component

of G−M contains multiple edges.

Claim 13.13. Let (G, k) be an irreducible instance of the problem, i.e.

such that none of the three reduction rules (Degree-1, Degree-2, and

Relevant Vertex Rules) can be applied to (G, k). Then, every connected

component of G−M has at least three neighbors in M .

Indeed, let T be a connected component of G−M . Thus T is a tree.

Because G is connected, T should have at least one neighbor in M . By

Degree-1 Rule, every leaf of T is adjacent to a vertex of M . Thus if T

has only one neighbor in M , it consists of one vertex but then it should

have been reduced either by Degree-1 Rule or by Relevant Vertex Rule.

If T has exactly two neighbors in M , then by Degree-1 Rule, it has at

most two leaves. Due to our degree-2 reduction (Reduction Rule FVS.2),

we cannot have vertices of degree 2 in T , and thus T consists of exactly

two vertices. Let u and v be the vertices of T . By Relevant Vertex Rule,

these vertices do not have common neighbors in M , hence these vertices

are of degree 2 in G and should have been eliminated by Degree-2 Rule.

Thus, T has at least three neighbors in M , and this concludes the proof

of Claim 13.13.

We are ready to bound the number of vertices in an irreducible in-

stance (G, k). Let T be a connected component of G −M . We cannot

apply Degree-1 Rule, thus every leaf of T is adjacent to a vertex in M .

By Degree-2 Rule, every vertex of degree 2 in T should be adjacent to

M . By Relevant Vertex Rule, vertices of T have no common neighbors

in M . This yields that the number of vertices of degree at most 2 in T

is at most the number of the vertices from M adjacent to the vertices of

T , which is exactly the number of edges from T to M . The number of

vertices of degree at least 3 in T does not exceed the number of leaves.

Thus the number of vertices in T is at most twice the number of edges

between M and T . Therefore, the number of vertices in V (G) \M does

not exceed twice the number of edges between M and V (G) \M .

To bound the number of edges between M and V (G) \ M , we use

Euler’s formula. Let T be the set of connected components of G −M .

268 Euler’s formula

Let us construct a graph G′ by contracting every tree T ∈ T of G−M
into a vertex vT . Because no pair of vertices of T have the same neighbor

in M , in the new graph G′ the degree of vT is exactly the number of

edges between T and M . Since G′ is planar, by Lemma 13.2, the number

of edges in G′ between {vT }T∈T and M does not exceed

2(|T |+ |M |).

Since degree of each vT is at least 3, by Lemma 13.3, we have that

|T | ≤ 2|M |.

Thus the number of edges in G between M and V (G) −M is at most

6|M |. Hence the number of vertices in V (G)−M is at most 12|M | and

the total number of vertices in the reduced graph G is upper bounded

by

13|M | ≤ 13 · 3365|S| = 43745|S|.

Since we can select S to be a feedback vertex set of size αk, for some

α ≤ 2, we obtain the linear kernel.

Let us look once again at the strategy employed in the proof of The-

orem 13.10. This viewpoint will be useful later to understand the idea

behind protrusion decompositions. First we constructed a partition of G,

{R0, R1, . . . , Rρ}, and then applied reduction rules. After the exhaustive

applications of all reduction rules, for each i ≥ 1, only a constant num-

ber of vertices remained in Ri. Indeed, for each i ≥ 1, there can be at

most

ψ =

4∑

p=1

p∑

q=0

(
p

q

)
Bq = 112

marked vertices. Thus each of the components of G − M has a con-

stant number of neighbors in M . Then, the applications of Degree-1 and

Degree-2 rules and the rule excluding marked vertices with at least two

neighbors in a tree force that the size of each tree in G −M is a con-

stant. Since every tree should have at least three neighbors in M , the

set of trees with the same (constant size) neighborhood in M is also a

constant. Thus each Ri is of constant size. In Chapter 15, these argu-

ments will be generalized to protrusion replacements in order to obtain

meta-theorems for planar kernels.

13.3 Planar Feedback Vertex Set 269

Exercises

Problem 13.1. Prove Euler’s formula: Let G be a connected plane graph with n
vertices, m edges and f faces. Then, n − m + f = 2. (Hint: Use induction on the
number of edges in a graph.)

Problem 13.2. Prove Lemma 13.2.

Problem 13.3. Show that Connected Vertex Cover admits a kernel of size
exponential in k.

Problem 13.4. Show that the following reduction rules are safe:

• If both adjacent vertices u, v have neighbors of degree 1, then all these neighbors
can be deleted after a new vertex of degree 2 adjacent to u and v is added.

• If a vertex of degree 2 is adjacent to the endpoints of an edge uv, then all vertices
of degree 1 adjacent to u and v can be removed.

Use these reduction rules to show that Edge Dominating Set on planar graphs
admits a kernel with 12k − 10 vertices.

Problem 13.5. Prove that Dominating Set (vc) (Dominating Set parameterized
by the size k of a minimum vertex cover) on planar graphs admits a linear kernel
with 16k vertices.

Bibliographic notes

One of the first results in the area of kernelization on planar graphs

was given by Alber et al. (2004a). They gave the first linear sized ker-

nel for the Dominating Set problem on planar graphs. The work of

Alber et al. (2004a) triggered an explosion of papers on kernelization of

problems on planar graphs. Combining the ideas of Alber et al. (2004a)

with problem specific data reduction rules, kernels of linear sizes were

obtained for a variety of parameterized problems (see Alber et al., 2006,

2004a; Bodlaender and Penninkx, 2008; Bodlaender et al., 2008; Chen

et al., 2007; Guo and Niedermeier, 2007b; Guo et al., 2006; Kanj et al.,

2011; Lokshtanov et al., 2011a; Moser and Sikdar, 2007). Specifically,

linear kernels for Feedback Vertex Set were given by Bodlaender

and Penninkx (2008); Abu-Khzam and Khuzam (2012); Xiao (2014) and

Bonamy and Kowalik (2016).

Our presentation of kernelization for connected vertex cover and edge

dominating set follows Wang et al. (2013). Kernels of O(k2) vertices for

Edge Dominating Set were given by Xiao et al. (2013) and Hagerup

(2012). Constant factor approximation algorithms for Feedback Ver-

tex Set are due to Bar-Yehuda et al. (1998) and Bafna et al. (1999).

Moreover, a PTAS (polynomial time approximation scheme) for Feed-

back Vertex Set on planar graphs is due to Demaine and Hajiaghayi

(2005).

270 Euler’s formula

Let us remark that in this chapter, the only property of planarity we

use is Euler’s formula. This implies, for example, that all the techniques

and results of this chapter can be easily generalized to graphs of bounded

genus.

Part TWO

META THEOREMS

14

Introduction to treewidth

Many NP-hard problems become polynomial time solvable on trees. This has

motivated researchers to look for families of graphs that have algorithmic prop-

erties similar to those of trees. In particular, the idea of being “tree-like” was

explored, leading to the notion of treewidth. In this chapter, we introduce

treewidth and prove some basic properties regarding it. We will use the no-

tion of treewidth to design generic kernelization procedures in the following

chapters.

In this chapter we will study a well-known graph parameter, called

treewidth. The treewidth of a graph G is an integer that measures how

close the graph is to being a tree: the lower the treewidth, the more

tree-like G is. Treewidth has found numerous applications in algorithms,

and has been re-discovered multiple times under different names, so it

is no surprise that it is a useful tool also for kernelization. Here we

take a minimalistic approach, and tell only the definition of treewidth

as well as the properties that are required to prove our kernelization

results. There is no disguising that the definition of tree decompositions

(and treewidth) is, at a first glance, strange and counter-intuitive. The

intuition behind the definition of treewidth is as follows. Suppose we

wanted to “draw” G inside a tree T . If G is not a tree itself then the

drawing has to self-intersect. Is it possible to draw G inside T without

the drawing self-intersecting a lot? To capture this intuition formally

we need to define what it means to draw G inside another graph, and

quantify how much such a drawing self-intersects.

The definition of drawing G inside another graph H works as follows.

We allow drawing a vertex v of G inside a non-empty connected subgraph

273

274 Introduction to treewidth

of H, since then we do not need to “lift the pencil” when drawing v.

Similarly, if u and v are adjacent in G, we want the drawing of u and

the drawing of v in H to overlap. The point is that we want to be able

to draw both u and v inside H without having to lift the pencil. This

leads to the following definition.

Definition 14.1. A model of a graph G in a graph H is a function

β : V (G)→ 2V (H) \ {∅} such that

• for every v ∈ V (G), H[β(v)] is connected,

• for every uv ∈ E(G), β(u) ∩ β(v) 6= ∅.
When measuring how much a model β of G in H self-intersects we

simply look at each vertex b ∈ V (H), and count the number of vertices

v ∈ V (G) such that b ∈ β(v).

Definition 14.2. A model β of G in H has width

max
b∈V (H)

|{v ∈ V (G) : b ∈ β(v)}| − 1.

One might wonder about the reason for the “−1” in the definition

of the width of a model. The argument is that if G contains even one

edge uv, then for any model β of G in H there must be a vertex b ∈ H
where b ∈ β(u) and b ∈ β(v). Thus, without the −1 term the width of

any model of a non-trivial graph G in any graph H would be at least

2, which is aesthetically displeasing. We are now ready to define tree

decompositions and treewidth.

Definition 14.3 (Tree decomposition). A tree decomposition of G is a

pair (T, β) where T is a tree and β is a model of G in T . The width of a

tree decomposition, ω(T, β), is the width of β.

In order to distinguish the vertices of the graph G and the vertices of

the tree T , we usually refer to the vertices of T as to nodes.

Definition 14.4 (Treewidth). The treewidth of a graph G is denoted by

tw(G) and is the minimum width ω(T, β) over all tree decompositions

(T, β) of G. An optimal tree decomposition of G is a tree decomposition

of G of width tw(G).

For a graph G and a model β of G in H, we can define the “inverse”

of β as follows. The function χ takes as input a vertex of H and returns

the set of vertices in G such that

χ(b) = {v ∈ V (G) : b ∈ β(v)}. (14.1)

14.1 Properties of tree decompositions 275

From (14.1) it follows that

β(v) = {b ∈ V (H) : v ∈ χ(b)}. (14.2)

Thus β uniquely defines χ and χ uniquely defines β.

The equations (14.1) and (14.2) immediately imply that β is a model

of G in T if and only if χ satisfies the following properties:

(i) for every v ∈ V (G), there exists b ∈ V (T) such that v ∈ χ(b),

(ii) for every v ∈ V (G), T [{b : v ∈ χ(b)}] is connected,

(iii) for every uv ∈ E(G), there exists b ∈ V (T) such that {u, v} ⊆ χ(b).

In the literature, tree decompositions are often defined using χ rather

than β. Specifically, a tree decomposition of G is a pair (T, χ) where T

is a tree and χ satisfies the three properties above. The width of the

decomposition is maxb∈V (T) |χ(b)| − 1. The sets χ(b) for b ∈ V (T) are

referred to as the bags of the decomposition.

We encourage the reader to verify that this definition of tree decompo-

sitions is indeed equivalent to Definition 14.3. To truly understand tree

decompositions it is crucial that one is able to freely translate between

the two definitions.

14.1 Properties of tree decompositions

Having defined tree decompositions and treewidth, it is insightful to play

around with the notion and prove a few simple properties. We start by

showing that by our definition, trees are tree-like.

Lemma 14.5. If G is a tree, then tw(G) ≤ 1.

Proof. Let T be the tree obtained from G by subdividing every edge. For

each vertex v of V (G), we set β(v) to contain the copy of v in T , as well

as all vertices in T that correspond to edges of G that are incident to v.

We claim that β is a model of G in T . Indeed, for every v we have that

β(v) is non-empty and that T [β(v)] is connected. Furthermore, for every

edge uv, the node b ∈ V (T) that corresponds to the edge uv satisfies

that b ∈ β(u) and b ∈ β(v). Finally, we need to argue that the width of

the model β is at most 1.

It is easier to analyze the width using the inverse χ rather than β. For

276 Introduction to treewidth

each vertex b ∈ V (T) that corresponds to a vertex v inG, χ(b) = {v}. For

each vertex b ∈ V (T) that corresponds to an edge uv of G, χ(b) = {u, v}.
Hence the width of the model is at most 1.

An important property of tree decompositions is that a subtree T ′

of the decomposition tree T naturally corresponds to a vertex subset

V ′ ⊆ V (G), and that the vertices in V ′ that have neighbors outside of

V ′ must “live in” vertices of T ′ with neighbors outside of T ′. This is

captured by the next lemma.

Definition 14.6. For a graph G and a vertex subset S ⊆ V (G) we

define ∂G(S) = {v ∈ S : NG(v) \ S 6= ∅}. We refer to ∂G(S) as the

boundary of S. When the graph G is clear from context, we omit the

subscript.

Definition 14.7. Let (T, χ) be a tree decomposition of G. For any

B ⊆ V (T) we define χ(B) =
⋃
b∈B χ(b).

Lemma 14.8. Let (T, χ) be a tree decomposition of G and suppose

B ⊆ V (T). Then ∂G(χ(B)) ⊆ χ(∂T (B)).

Proof. Consider a vertex u ∈ ∂G(χ(B)). There must exist an edge uv ∈
E(G) such that v /∈ χ(B). Let b be a vertex in V (T) such that {u, v} ⊆
χ(b), such a bag must exist by the definition of tree decompositions.

Since v /∈ χ(B) it follows that b /∈ B. We have that u ∈ χ(b) and

furthermore, since u ∈ χ(B) there is a b′ ∈ B such that u ∈ χ(b′). Let P

be the (unique) path from b′ to b in the tree T . By the “connectivity”

property of tree decompositions, u ∈ χ(a) for each a ∈ V (P). Let now

a be the last vertex on the path P that is in B. Since the path P ends

in b, which is not in B, it follows that a has a successor on the path P ,

and that this successor is not in B. But then a ∈ ∂T (B) and u ∈ χ(a)

yielding a ∈ χ(∂T (B)), completing the proof.

Another important property is that a set which is connected in the

graph must live in a connected subtree of the decomposition.

Definition 14.9. Let (T, β) be a tree decomposition of G. For any

C ⊆ V (G) we define β(C) =
⋃
v∈C β(v).

Lemma 14.10. Let (T, β) be a tree decomposition of G, and let S ⊆
V (G) be such that G[S] is connected. Then T [β(S)] is connected.

Proof. The proof is by induction on |S|. For |S| ≤ 1 the statement follows

from the connectivity requirement of tree decompositions. Suppose now

14.1 Properties of tree decompositions 277

the statement has been proved for all S with |S| = p−1, we prove it now

for any set S of size p. Consider any spanning tree of G[S] and let v be

a leaf of this spanning tree. Let u be the neighbor of v in the spanning

tree. Then G[S\{v}] is connected, and hence by the induction hypothesis

T [β(S \ {v})] is connected. We also have that T [β(v)] is connected and

that β(v) ∩ β(u) 6= ∅ by the definition of tree decompositions. Thus

T [β(S)] is also connected, concluding the proof.

An immediate consequence of Lemma 14.10 is that for any bag B =

χ(b) of a tree decomposition, the images of connected components of

G \ χ(b) can not intersect with more than one component of T \ b. We

formalize this in the following corollary, whose full proof is left as an

exercise.

Corollary 14.11. Let G be a graph and (T, χ) be a tree decomposition of

G. For any node b ∈ V (T) and any connected component C of G− χ(b)

there is a component CT of T − b such that β(C) ⊆ CT .

Next we inspect how some basic graph operations affect the treewidth

of the graph.

Lemma 14.12. For any vertex v ∈ V (G) we have tw(G) ≥ tw(G−v) ≥
tw(G)− 1.

Proof. Consider a tree decomposition (T, β) of G of width tw(G). The

same decomposition (with β restricted to V (G)\{v}) is a decomposition

of G−v of the same (or smaller) width. This proves tw(G) ≥ tw(G−v).

To prove tw(G − v) ≥ tw(G) − 1, we prove tw(G − v) + 1 ≥ tw(G).

Consider now a tree decomposition (T, β) of G−v. Setting β(v) = V (T)

gives a tree decomposition of G of width at most tw(G− v) + 1.

If one is truly pedantic, the proof of Lemma 14.12 is incomplete. In

particular, we need to verify that the constructed tree decompositions

actually satisfy the properties of tree decompositions, and it is a good

exercise to verify that they actually do. Next we inspect the effect of

deleting and contracting an edge. Let us remind that for a graph G

and its edge uv, we use notation G − uv to denote the graph obtained

from G by deleting edge uv and by G/uv the graph obtained from G by

contracting uv.

Lemma 14.13. For any edge uv ∈ E(G) we have tw(G) ≥ tw(G−uv) ≥
tw(G)− 1.

Proof. Consider a tree decomposition (T, β) of G of width tw(G). The

278 Introduction to treewidth

same decomposition is a decomposition of G − uv of the same width.

This proves tw(G) ≥ tw(G− v). Furthermore (G− uv)− v = G− v and

thus Lemma 14.12 yields tw(G− uv) ≥ tw(G− v) ≥ tw(G)− 1.

Lemma 14.14. For any edge uv ∈ E(G) we have tw(G) ≥ tw(G/uv) ≥
tw(G)− 1.

Proof. Let x be the new vertex resulting from the contraction of the

edge uv, and let (T, β) be a tree decomposition of G of width tw(G).

We make a tree decomposition (T, β′) of tw(G/uv) by setting β′(w) =

β(w) for w ∈ V (G) \ {u, v} and setting β′(x) = β(u) ∪ β(v). For each

w ∈ V (G) \ {u, v} we have that T [β′(w)] = T [β(w)] is a non-empty

connected subgraph of T . We also have that T [β′(x)] = T [β(u) ∪ β(v)]

is a non-empty connected subgraph of T because T [β(u)] and T [β(v)]

are connected, and β(u) ∩ β(v) 6= ∅ due to uv ∈ V (G). Hence (T, β′)
is a tree decomposition of G/uv. Next we consider the width of the

decomposition.

For every node b ∈ V (T) such that b /∈ β(u) ∪ β(v) we have that

|{w ∈ V (G/uv) : b ∈ β′(w)}| = |{w ∈ V (G) : b ∈ β(w)}|.
On the other hand, for every node b ∈ V (T) such that b ∈ β(u) ∪ β(v)

we have that

|{w ∈ V (G/uv) : b ∈ β′(w)}| = |({w ∈ V (G) : b ∈ β(w)} \ {u, v}) ∪ {x}|
≤ |{w ∈ V (G) : b ∈ β(w)}|.

This proves the tw(G) ≥ tw(G/uv) part of the lemma.

For the second inequality, Lemma 14.13 implies tw(G/uv) ≥ tw(G−v)

since one can obtain G − v from tw(G/uv) by deleting edges. Further,

tw(G− v) ≥ tw(G)− 1 by Lemma 14.12, completing the proof.

Recall that graph H is a minor of G if H can be obtained from G by

vertex deletions, edge deletions and edge contractions. Lemmata 14.12, 14.13

and 14.14 directly imply the following theorem.

Theorem 14.15. If H is a minor of G, then tw(H) ≤ tw(G).

14.2 Computing treewidth

We will now look at a simple algorithm for computing treewidth, namely

one that goes over all possible choices for (T, β). It turns out that even

getting this algorithm right is non-trivial, since it is conceivable that an

14.2 Computing treewidth 279

optimal tree decomposition (T, χ) of some input graph G requires T to

be exponentially large in |V (G)|. We show now that it is not the case.

Definition 14.16 (Simple tree decomposition). A tree decomposition

(T, χ) of G is called simple if there is no pair a, b of distinct nodes of T

such that χ(u) ⊆ χ(v).

We will show that for any graph G there is an optimal simple tree

decomposition, and that any simple tree decomposition (T, χ) of G must

satisfy |V (T)| ≤ |V (G)|. To that end we define a contraction operation

on tree decompositions. Let (T, χ) be a tree decomposition of G, ab ∈
E(T) and let T ′ = T/ab be the tree obtained from T by contracting ab.

Let also x be the node of T ′ resulting from the contraction of ab. Let

χ′(c) = χ(c) for all c ∈ V (T ′) \ {x}, and let χ′(x) = χ(a) ∪ χ(b).

Observation 14.17. (T ′, χ′) is a tree decomposition of G.

Proof. Every vertex of G appears in a bag of (T ′, χ′) since any vertex

that was in χ(a) or χ(b) is in χ′(x). For the same reason both endpoints

of every edge appear in some bag of (T ′, χ′). Furthermore, for every

vertex v ∈ V (G) we have that

T ′[{b ∈ V (T ′) : v ∈ χ′(b)}] = T [{b ∈ V (T) : v ∈ χ(b)}]/ab.

Thus for every vertex v ∈ V (G), the subgraph T ′[{b ∈ V (T ′) : v ∈
χ′(b)}] is connected.

Observation 14.17 naturally leads to the following definition. Let us

denote (T, χ)/ab = (T/ab, χ′), and call (T, χ)/ab the tree decomposition

obtained from (T, χ) by contracting ab.

Lemma 14.18. There is an algorithm that given a tree decomposition

(T, χ) of G, outputs in time O(|V (G)| + |V (T)|ω(T, χ)) a simple tree

decomposition (T ′, χ′) of G such that for every b′ ∈ V (T ′) there is a

b ∈ V (T) such that χ(b′) = χ(b).

Proof. The algorithm proceeds as follows; initially the algorithm sets

(T ′, χ′) = (T, χ). Then, as long as there exists an edge ab ∈ E(T ′) such

that χ′(a) ⊆ χ′(b), the algorithm changes (T ′, χ′) to (T ′, χ′)/ab. If no

such edge exists, the algorithm outputs (T ′, χ′).
Since every time an edge ab is contracted we have that χ′(a) ⊆ χ′(b),

it follows that the algorithm maintains the following property: For every

b′ ∈ V (T ′) there is a b ∈ V (T) such that χ(b′) = χ(b). Therefore,

all we need to prove is that the tree decomposition (T ′, χ′) is in fact

280 Introduction to treewidth

simple. Suppose not, and let a and b be distinct nodes in V (T) such

that χ′(a) ⊆ χ′(b). Let P be the unique path from a to b in the tree T

and let b′ be the first node on this path after a. It could be that b′ = b,

but b′ 6= a and also we know that ab′ ∈ E(T). In addition we know that

every vertex v ∈ V (G) such that v ∈ χ′(a) also satisfies v ∈ χ′(b). By

the connectivity property of tree decompositions we have that v must

be in the bag of all nodes on P , and specifically v ∈ χ′(b′). But then

χ′(a) ⊆ χ′(b′) for an edge ab′ ∈ E(T ′), contradicting that the algorithm

terminated. We conclude that (T ′, χ′) must be simple.

We remark that in the proof of Lemma 14.18 we did not argue that

the algorithm runs in time O(|V (G)| + |V (T)|ω(T, χ)). Indeed, a naive

implementation of the algorithm in Lemma 14.18 would run in time

O(|V (G)| + |V (T)|2ω(T, χ)) since we have to go over all edges of T ′

every time we look for an edge ab ∈ E(T ′) such that χ′(a) ⊆ χ′(b).
However, it is easy to see that it is enough to consider every edge once,

and we omit the proof.

Lemma 14.19. Any simple tree decomposition (T, χ) of G satisfies

|V (T)| ≤ |V (G)|.

Proof. Pick an arbitrary node r ∈ V (T) and consider T as a rooted tree

with r as the root. By the connectivity property of tree decompositions,

for every vertex v ∈ V (G) the set β(v) = {b : v ∈ χ(b)} induces a

connected subtree of T . Thus there is a unique node bv ∈ V (T) which is

the node of T closest to r out of all nodes in β(v). We say that v peaks

at bv. Each vertex v ∈ V (G) peaks at exactly one node bv in V (T).

We argue that for every node b ∈ V (T) there is a vertex v ∈ V (G)

that peaks at b. Suppose not. If b is the root r this implies that χ(b) = ∅,
contradicting that (T, χ) is simple. If b is not the root r then b has a

parent b′ which is closer to the root r. Since no vertex v ∈ V (G) peaks

at b it follows that χ(b) ⊆ χ(b′) contradicting that (T, χ) is simple.

We now have that every node b of V (T) has some vertex G that peaks

at it, and every vertex v of G peaks in exactly one node of T . Thus

|V (T)| ≤ |V (G)|.

Lemmata 14.18 and 14.19 imply the following theorem.

Theorem 14.20. Every graph G has an optimal simple tree decompo-

sition (T, χ) with |V (T)| ≤ |V (G)|.

Theorem 14.20 immediately proves that the problem where we are

given as input a graph G and integer k, and have to decide whether

14.2 Computing treewidth 281

tw(G) ≤ k, is in NP. A brute force enumeration of all trees on at most n

vertices and all functions χ : V (T)→ V (G) gives an algorithm with run-

ning time 2O(n2). However, it is known that a treewidth can be computed

in time O(1.7347n). For small values of k one can do much better: there

is an algorithm with running 2O(k3)n to decide whether an input graph

G has treewidth at most k. It is also known that if we want a constant-

factor approximation, this running time can be sped-up to 2O(k)n. The

current best polynomial-time approximation algorithm for treewidth has

ratio O(
√

log tw(G)). On minor-free graph classes things are a bit bet-

ter: For any fixed graph H there is a constant factor approximation

for treewidth on graphs excluding H as a minor. Specifically there is

a polynomial time 3
2 -approximation algorithm for treewidth on planar

graphs. In fact, it is not even known whether computing treewidth of

planar graphs exactly is polynomial time solvable or NP-complete. This

remains a challenging open problem in graph algorithms. Summarizing

all this, we get the following proposition.

Proposition 14.21 (Seymour and Thomas (1994); Bodlaender (1996);

Feige et al. (2008); Fomin et al. (2015a); Bodlaender et al. (2016a)). Let

G be an n-vertex graph and k be a positive integer. Then, the following

algorithms to compute treewidth exist.

• There exists an algorithm running in time O(1.7347n) to compute

tw(G).

• There exists an algorithm with running time 2O(k3)n to decide whether

an input graph G has treewidth at most k.

• There exists an algorithm with running time 2O(k)n that either decides

that the input graph G does not have treewidth at most k, or concludes

that it has treewidth at most 5k.

• There exists a polynomial time approximation algorithm with ratio

O(
√

log tw(G)) for treewidth.

• If G is a planar graph then there is a polynomial time approximation

algorithm with ratio 3
2 for treewidth. Furthermore, if G belongs to a

family of graphs that exclude a fixed graph H as a minor, then there

is a constant factor approximation for treewidth.

We remark that all the algorithms in this proposition also compute (in

the same running time) a tree decomposition of the appropriate width.

For example, the third algorithm either decides that the input graph G

does not have treewidth at most k or computes a tree decomposition of

width at most 5k.

282 Introduction to treewidth

14.3 Nice tree decompositions

It is often helpful, both in combinatorial arguments and for algorithms

on graphs of bounded treewidth, to assume that the tree decomposition

has a particular structure. We show that one can modify any simple tree

decomposition of G so that it also has this additional structure without

increasing the width of the decomposition. We start with the definition

of “nice” tree decomposition.

Definition 14.22 (Nice tree decomposition). A tree decomposition

(T, χ) of G is nice if the following conditions are satisfied.

(i) T is a rooted tree with root r.

(ii) χ(r) = ∅, and for every leaf ` of T , χ(`) = ∅.
(iii) Every node b in T has at most two children.

(iv) If b has two children, say b1 and b2, then χ(b) = χ(b1) = χ(b2).

(v) If b has one child b1 then |χ(b) \ χ(b1)|+ |χ(b1) \ χ(b)| ≤ 1.

Lemma 14.23. There is an algorithm that given a graph G and a simple

tree decomposition (T, χ) of G of width k, outputs a nice tree decompo-

sition (T ′, χ′) of G of width k in time O(nkO(1)). Furthermore, we have

|V (T ′)| ≤ 24(k + 2)n.

Proof. We start with considering T as an unrooted tree and setting

(T ′, χ′) = (T, χ). We then proceed to modify (T ′, χ′) in order for it to

have the desired properties. Throughout the process we will maintain

that (T ′, χ′) is a tree decomposition of G of width k. First we attach to

every leaf ` of T ′ another leaf `′ and set χ′(`′) = ∅. Then, we select an

arbitrary leaf of T ′, call it r, and root the tree T ′ at r. At this point

(T ′, χ′) is a tree decomposition of G satisfying properties (i) and (ii).

Further, |V (T ′)| ≤ 2n.

As long as T ′ has a node a ∈ V (T ′) with at least three children, we

proceed as follows. Let b1, b2, . . . , bp be the children of a. We make a new

node a′ and add it to T ′ in the following manner. The parent of a′ is

set to a, and for each child bi of a with i ≥ 2 we make a′ the parent

of bi instead. Finally we set χ′(a′) = χ′(a). This operation maintains

that (T ′, χ′) is a tree decomposition of G. Furthermore it decreases the

potential function
∑

v∈V (T ′)

max{d(v)− 3, 0}

by at least one, since the degree of a drops to 3 and the degree of a′ is

14.3 Nice tree decompositions 283

less than the degree of a was before the operation was applied. There is

one exception; if a is the root r and r has exactly 3 children then the

operation does not decrease the potential. However this can happen at

most once. Before the process starts the potential is at most
∑

v∈V (T ′)

max{d(v)− 3, 0} ≤
∑

v∈V (T ′)

d(v) = 2|V (T ′)| − 2 ≤ 4n− 2.

Since each step adds one node to the tree and decreases the poten-

tial by 1, except for the one step which does nothing to the potential,

the number of nodes in V (T ′) when the process terminates is at most

|V (T ′)| + 4n ≤ 6n. At this point (T ′, χ′) is a tree decomposition of G

satisfying properties (i), (ii), and (iii).

We now run a new process, aimed to make (T ′, χ′) satisfy property (iv)

as well. As long as there exists an edge ab ∈ E(T ′) with a the parent and

b the child, such that a has at least two children and χ′(a) 6= χ′(b), we

proceed as follows. We add a new node a′ to T ′, make a the parent of a′,
and change the parent of b to be a′. We set χ′(a′) = χ′(a). Then (T ′, χ′)
is still a tree decomposition of G satisfying properties (i), (ii) and (iii),

but the number of edges ab ∈ E(T ′) with a the parent and b the child,

such that a has at least two children and χ′(a) 6= χ′(b) decreases by one.

Hence, after at most 6n iterations, (T ′, χ′) is a tree decomposition of G

satisfying properties (i)–(iv), and |V (T)| ≤ 12n.

Finally, we run a process aimed at making (T ′, χ′) satisfy property (v).

As long as there exists an edge ab ∈ E(T ′) such that |χ′(a) \ χ′(b)| +
|χ′(b) \ χ′(a)| > 1, we proceed as follows. Without loss of generality

|χ′(a) \ χ′(b)| ≥ 1. Let u be a vertex in χ′(a) \ χ′(b). Make a new node

a′, remove the edge ab from T ′ and add the edges aa′ and a′b to T ′. Set

χ′(a′) = χ′(a) \ {u}. At this point (T ′, χ′) is still a tree decomposition

of G satisfying properties (i)–(iv). Additionally we removed one edge ab

which had positive contribution to the potential function
∑

pq∈E(T)

max
{
|χ′(p)χ′(q)|+ |χ′(q)χ′(p)| − 1, 0

}
,

and added two edges aa′ and a′b. The edge aa′ contributes 0 to the

potential and a′b contributes one less than ab did. Thus the poten-

tial decreases by one in each step. In the beginning each edge of T ′

contributes at most 2(k + 1) to the potential, so the process must ter-

minate after at most 12n · 2(k + 1) steps. At this point we have that

(T ′, χ′) is a tree decomposition of G satisfying properties (i)–(v) and

|V (T)| ≤ 24(k + 1)n+ 8n ≤ 24(k + 2)n as required.

284 Introduction to treewidth

The total number of steps in all of the processes described above is

O(kn) since each step adds a new node to T ′. Thus, to make the algo-

rithm run in the desired running time it is sufficient to make each step

of each process run in time kO(1), which is easy to do with appropriate

data structures.

In some situations not all of the properties of nice tree decompositions

are needed. We will say that a tree decomposition is semi-nice if it sat-

isfies all of the properties of nice decompositions except for the one that

the bag of the root should be empty. Clearly every nice decomposition

is also semi-nice.

Definition 14.24 (Semi-nice tree decomposition). A tree decomposi-

tion (T, χ) of G is semi-nice if it satisfies the conditions (i), (iii), (iv),

(v) of Definition 14.24, and for every leaf ` of T , χ(`) = ∅.

14.4 Dynamic programming

A nice property of trees is that many graph problems that are NP-hard

on general graphs are polynomial time solvable when the input graph is a

tree. Many algorithms on trees are based on dynamic programming, and

exploit the fact that trees are fully decomposable by vertex cuts of size

one. In some sense, graphs of treewidth k are exactly the graphs that are

fully decomposable by vertex cuts of size k. Thus it is natural to think

that some of the dynamic programming algorithms that work for trees

could be lifted to also work on graphs of bounded treewidth. This turns

out to be the case—with a few notable exceptions most problems that

are polynomial time solvable on trees are also polynomial time solvable

on graphs of bounded treewidth. We will now show how one can solve

many problems on graphs of bounded treewidth in time f(k)nO(1) if a

tree decomposition of width at most k is given as input. We will use

the Independent Set problem as an example (more examples can be

found in the exercises). Recall that an independent set in G is a set

S of vertices such that every pair of vertices in S are non-adjacent. In

the Independent Set problem, we are given as input a graph G and

integer t, and the task is to decide whether there exists an independent

set of size at least t. In the optimization version of the Independent

Set problem, the objective is to find a maximum size independent set

in G. We will study the optimization version of Independent Set in

this section.

14.4 Dynamic programming 285

For a rooted tree T and node b ∈ V (T), we will refer to the subtree

of T rooted at b by Tb. For a nice tree decomposition (T, β) of G and

b ∈ V (T), we define Vb = χ(V (Tb)). In other words, Vb is the set of

vertices of G which are contained in the bags of the subtree of T rooted

at b.

Consider now the following thought experiment. We fix a node b ∈
V (T). We want to find an optimal solution OPT ⊆ V (G) in two stages.

First we want to find OPT∩ Vb, and then we want to find OPT \ Vb. We

have two sets A ⊆ Vb and B ⊆ Vb. Are there any situations where we

can automatically conclude that B is a better candidate for OPT ∩ Vb
than A is? It turns out that we can. Let us define the following relation

≤b on subsets of Vb. (We remark that ≤b is not antisymmetric.)

Definition 14.25 (≤b relation for Independent Set). Let (T, χ) be

a nice tree decomposition of graph G, b be a node of T and A, B be

subsets of V (G). We say that A ≤b B if B ∩ χ(b) = A ∩ χ(b) and either

• A is not independent, or

• B is an independent set and |B| ≥ |A|.

As shown in the following lemma, ≤b expresses the preference of some

sets over the others.

Lemma 14.26. If A ≤b B and there exists an optimal solution OPT ⊆
V (G) such that OPT ∩ Vb = A, then (OPT \ Vb) ∪ B is also an optimal

solution to G.

Proof. Consider a maximum size independent set OPT ⊆ V (G) such

that OPT ∩ Vb = A. We claim that OPT′ = (OPT \ Vb) ∪ B is also a

maximum size independent set of G. First we have that

|OPT′| = |(OPT \ Vb) ∪B| = |OPT| − |A|+ |B| ≥ |OPT|,

so all we have to prove is that OPT′ is an independent set. Towards

a contradiction we suppose not, then there are two vertices u and v

in OPT′ such that uv ∈ E(G). If both u and v are in OPT \ Vb, then

uv /∈ E(G) because OPT is independent. Furthermore, since OPT is

independent it follows that A = OPT∩ Vb is independent, and therefore

A ≤b B yields that B is independent as well. Thus, if u and v are both

in B then uv /∈ E(G) as well. Hence one of them must be in OPT \ Vb
and the other in B. Without loss of generality u ∈ OPT \ Vb and v ∈ B.

Since v ∈ B it follows that v ∈ χ(V (Tb)), while u /∈ χ(V (Tb)). Since

uv ∈ E(G) it follows that v ∈ ∂G(χ(V (Tb))). Lemma 14.8 then yields

286 Introduction to treewidth

that v ∈ χ(∂T (V (Tb))), that is, v ∈ χ(b). But then v ∈ B∩χ(b) = A∩χ(b)

and hence v ∈ OPT. Now we have two vertices u and v, both in OPT,

such that uv ∈ E(G). This contradicts that OPT is independent.

Lemma 14.26 brings us to the following definition.

Definition 14.27 (Preference relation for Independent Set). A rela-

tion ≤b on subsets of Vb that (a) satisfies the properties of Lemma 14.26

and (b) such that A ≤b B (for independent sets) yields A ∩ χ(b) =

B ∩χ(b), is a preference relation. When A ≤b B, we say that B is better

than A.

At this point, let us remind that Independent Set is an example

of dynamic programming over a tree decomposition. The more abstract

form of a preference relation described in Definition 14.27 is a template

of what a preference relation should express for other problems as well.

Our algorithm for Independent Set will compute for each node

b ∈ V (T) a family Fb of “promising partial solutions”, which roughly

means that some set in Fb can be extended to an optimal solution. The

next definition captures the notion of Fb containing “promising partial

solutions”.

Definition 14.28. A family Fb of subsets of Vb is called good if for

any optimal solution OPT ⊆ V (G) there exists a set B ∈ Fb such that

B ∩ χ(b) = OPT ∩ χ(b) and (OPT \ Vb) ∪B is also an optimal solution.

Our algorithm will compute for each node b ∈ V (T) a good family

Fb of sets. Then the definition of “good” implies that some set S ∈ Fr
for the root r of T is in fact an optimal solution. Of course the running

time of the algorithm depends on the sizes of the families Fb, so we want

to keep |Fb| as small as possible. To that end we define the following

algorithm.

The algorithm reduce() takes as input the family Fb and outputs a

family F ′b ⊆ Fb. To compute F ′b it proceeds as follows. Initially F ′b = Fb,
and as long as there is a pair A,B ∈ F ′b such that A ≤b B, the algorithm

removes A from F ′b. When no such pair remains the algorithm returns

F ′b.

Definition 14.29. A family F of subsets of Vb is an antichain of ≤b if

there is no pair A,B ∈ F such that A ≤b B.

The family returned by reduce(Fb) is an antichain of ≤b. We gather

additional simple properties of reduce() in the next lemma.

14.4 Dynamic programming 287

Lemma 14.30. The algorithm reduce() has the following properties.

• reduce(Fb) runs in time O(|Fb|2nO(1)).

• The family F ′b returned by reduce(Fb) is an antichain of ≤b.
• If Fb is good, then F ′b is good.

Proof. The running time bound on reduce(Fb) follows from the fact

that we only need to check once for every pair A,B ∈ Fb whether A ≤b
B. The fact that F ′b is an antichain is an immediate consequence of the

definition of the algorithm—otherwise the algorithm would have reduced

F ′b further. All that remains to prove is that if Fb is good then F ′b is

good. Assume that Fb is good. Then, initially, when the algorithm sets

F ′b = Fb we have that F ′b is good. We proceed to prove that F ′b is still

good after i sets have been removed from it by reduce(). The proof is

by induction on i. We have already proved the statement for i = 0, so

what remains is the inductive step.

Assume now that F ′b is still good after i sets have been removed from

it, and let A be the next set to be removed from F ′b. We need to show

that F ′b remains good after A is removed. Suppose not, then there exists

an optimal solution OPT of G such that there is no set B ∈ F ′b \ {A}
such that OPT ∩ χ(b) = B ∩ χ(b) and (OPT \ Vb) ∪ B is an optimal

solution. Since F ′b is good before A is removed, there exists a set X ∈ F ′b
such that OPT ∩ χ(b) = X ∩ χ(b) and (OPT \ Vb) ∪ X is an optimal

solution. If X 6= A, then we have a contradiction since X ∈ F ′b \ {A}.
Thus X = A. But A was removed because there is a set B ∈ F ′b, B 6= A,

such that A ≤b B. But then, since ≤b is a preference relation it follows

that OPT ∩ χ(b) = B ∩ χ(b) and (OPT \ Vb) ∪B is an optimal solution.

This contradicts the choice of OPT, concluding the proof.

We are now ready to give the main part of the algorithm for Inde-

pendent Set. The algorithm will compute for each node b ∈ V (T) a

good family Fb. The algorithm processes all the nodes in a bottom up

manner—first it processes all the leaves, and then it repeatedly processes

a node b whose children have already been processed. The details of the

algorithm can be found in Algorithm 14.1.

We now prove that the algorithm performs as expected.

Lemma 14.31. For each b ∈ V (T) the family Fb produced by algorithm

ComputeGoodFamilies(G, (T, χ)) is a good family.

Proof. We prove that the i-th family computed by the algorithm is good,

by induction on i. First the algorithm computes the family Fb for every

288 Introduction to treewidth

Algorithm ComputeGoodFamilies(G, (T, χ)).
Input: A graph G and a semi-nice tree decomposition (T, χ) of G, with

|V (T)| ≤ O(kn).
Output: A good family Fb for each b ∈ V (T).

Mark all nodes of V (T) as unprocessed.
for every leaf b ∈ V (T) do

Fb := {∅}
Mark b as processed.

while V (T) has at least one unprocessed node do
Let b be a lowermost unprocessed node in V (T)
if b has two children b1 and b2 then
F?

b := {X1 ∪X2 : X1 ∈ Fb1 , X2 ∈ Fb2 and X1 ∩ χ(b) =
X2 ∩ χ(b)}

if b has exactly one child b1 then
F?

b := {X1 ∪ S : X1 ∈ Fb1 and S ⊆ χ(b) \ χ(b1)}

Fb := reduce(F?
b)

Mark b as processed.

Figure 14.1 Algorithm ComputeGoodFamilies

leaf b, and sets Fb := {∅}. Since (T, χ) is a nice tree decomposition of

G it follows that χ(b) = ∅ and therefore Vb = ∅. Thus, for any optimal

solution OPT of G, there is a set B ∈ Fb, namely B = ∅, such that

B ∩ χ(b) = OPT ∩ χ(b) = ∅ and (OPT \ Vb) ∪ B = OPT is an optimal

solution to G.

Assume now that families of the i first nodes processed by the algo-

rithm are all good, and consider the (i + 1)-st node b ∈ V (T) to be

processed. If b is a leaf, we have already shown that Fb is good, so as-

sume now that b is not a leaf. All the children of b have been processed.

The node b has one or two children in T , since (T, β) is a nice tree

decomposition. If b has one child b1 then Fb1 is good by the induction

hypothesis. Similarly if b has two children b1 and b2 then Fb1 and Fb2
are both good by the induction hypothesis. It suffices to show that, in

either case, the family F?b is good, since then the fact that Fb is good

follows directly from Lemma 14.30.

If b has two children b1 and b2, then

F?b := {X1 ∪X2 : X1 ∈ Fb1 , X2 ∈ Fb2 and X1 ∩ χ(b) = X2 ∩ χ(b)}.

We wish to prove that F?b is good. To that end, consider any optimal

14.4 Dynamic programming 289

solution OPT ⊆ V (G). Since Fb1 is good, there is a set X1 ∈ Fb1 such

that OPT1 = (OPT \ Vb1) ∪X1 is an optimal solution as well, and X1 ∩
χ(b) = OPT∩χ(b). Here we used that (T, χ) is a nice tree decomposition,

and that therefore χ(b1) = χ(b2) = χ(b). Similarly, since Fb2 is good,

there is a set X2 ∈ Fb2 such that OPT2 = (OPT1\Vb1)∪X2 is an optimal

solution, and X2 ∩ χ(b) = OPT1 ∩ χ(b). Consider the set X = X1 ∪X2.

The definition of F?b implies that X ∈ F?b , and OPT2 = (OPT\Vb)∪X is

an optimal solution as well. Finally X∩χ(b) = OPT∩χ(b). We conclude

that in this case F?b is good.

If b has one child b1, then

F?b := {X1 ∪ S : X1 ∈ Fb1 and S ⊆ χ(b) \ χ(b1)}.

We wish to prove that F?b is good. To that end, consider any optimal

solution OPT ⊆ V (G). Since Fb1 is good there is a set X1 ∈ Fb1 such

that OPT1 = (OPT \ Vb1) ∪ X1 is an optimal solution as well, and

X1 ∩ χ(b1) = OPT ∩ χ(b1). Let S = OPT ∩ (χ(b) \ χ(b1)), and observe

that S satisfies S = OPT1 ∩ (χ(b) \ χ(b1)) as well. Let X = X1 ∪ S, we

have that X ∈ Fb1 , OPT1 = (OPT \ Vb)∪X is an optimal solution, and

OPT ∩ χ(b) = S ∪ (X1 ∩ χ(b1) ∩ χ(b)) = X ∩ χ(B). Thus F?b is good in

this case as well, concluding the proof.

Next we give an upper bound on the running time of Algorithm 14.1

in terms of the width of the decomposition (T, χ) and the properties of

the relation ≤b.

Definition 14.32. For a graph G, tree decomposition (T, χ) of G and

a relation ≤b on subsets of Vb for each b ∈ V (T), we define, for each

b ∈ V (T), L(≤b) to be the size of the largest antichain of ≤b in 2Vb .

Furthermore, set L = maxb∈V (T) L(≤b).

Let us upper bound L for the relations ≤b we defined for Indepen-

dent Set.

Lemma 14.33. For the relations ≤b defined for Independent Set,

L ≤ 2k+2.

Proof. Consider an antichain X1, . . . , Xt of ≤b for a node b ∈ V (T).

If t > 2k+2 then there exist Xi, Xj and Xp such that Xi ∩ χ(b) =

Xj ∩ χ(b) = Xp ∩ χ(b). Then either at least two of these sets are inde-

pendent, or at least two are not independent. Suppose at least two are

independent, without loss of generality it is Xi and Xj . Further, without

290 Introduction to treewidth

loss of generality assume that |Xi| ≤ |Xj |. But then Xi ≤b Xj contra-

dicting that X1, . . . , Xt is an antichain of ≤b. The argument in the case

that two of Xi, Xj and Xp are not independent is identical.

In the definition of Algorithm 14.1 we required that the nice tree

decomposition (T, χ) only had O(kn) nodes in the decomposition tree.

The assumption is not really necessary, as the algorithm works just fine

even when the decomposition tree is large. The only reason we have

included it is that this allows us to easily state the running time of

Algorithm 14.1 in terms of k and n.

Lemma 14.34. Algorithm 14.1 terminates in L4nO(1) time.

Proof. Let M = maxb∈V (T) |Fb|. We prove that the running time of the

algorithm is upper bounded by M4 · nO(1). Since each family Fb is an

antichain of ≤b by Lemma 14.30, this yields M ≤ L, thereby proving

that the algorithm runs within the claimed running time.

The algorithm processes each of the O(kn) nodes of the decomposition

once. When it processes b and b has two children b1 and b2, the algorithm

constructs F?b in time |Fb1 | · |Fb2 | ·nO(1) = M2 ·nO(1). The construction

of F?b yields |F?b | ≤ M2. Thus computing Fb := reduce(F?b) takes

M4 · nO(1) time by Lemma 14.30.

If b has only one child b1 then the algorithm makes F?b in time |Fb1 | ·
2|χ(b)\χ(b1)| ·nO(1), which is upper bounded by O(MnO(1)) since (T, χ) is

a nice tree decomposition, and therefore |χ(b) \χ(b1)| ≤ 1. For the same

reason |F?b | = O(M), and hence, by Lemma 14.30 computing Fb :=

reduce(F?b) takes M2 · nO(1) time.

Lemmata 14.31, 14.33, and 14.34 immediately yield the following the-

orem for Independent Set.

Theorem 14.35. There is an algorithm that given a graph G and a nice

tree decomposition (T, χ) of G of width k, finds a maximum independent

set of G in time 16k · nO(1).

Proof. The algorithm computes a good family Fb for each node b ∈
V (T). Then it goes through all the sets in Fr for the root r of T . By

the definition of good families, one of these sets is a maximum size

independent set of G. The algorithm outputs an independent set in Fr of

maximum size. Correctness follows from Lemma 14.31, while the running

time bound follows from Lemmata 14.34 and 14.34.

Note that for every n-vertex graph G and subset U ⊆ V (G), it holds

14.4 Dynamic programming 291

that U is a vertex cover if and only if V (G)\U is an independent set. In

particular, G has a vertex cover of size at most k if and only if it contains

an independent set of size at least n− k. Due to this well-known duality

of vertex cover and independent set, we have the following corollary.

Corollary 14.36. There is an algorithm that given a graph G and a

nice tree decomposition (T, χ) of G of width k, finds a minimum vertex

cover of G in time 16k · nO(1).

Let us note that the running time of the algorithm provided in Theo-

rem 14.35 is not the best possible. It is possible to provide an algorithm

for Independent Set which runs in time 2k · kO(1) · n on tree decom-

positions of width k, see the Bibliographic Notes for this chapter for

further references.

14.4.1 Reasonable problems

At this point it is very instructive to go back and notice that there were

very few parts of the proof where we actually used the fact that we were

working with the Independent Set problem. The only things specific

to Independent Set that we used were as follows.

• Solutions are vertex subsets. This is used throughout the argument.

• We can check whether a vertex subset is a feasible solution in poly-

nomial time, and we can compare which of two feasible solutions is

better in polynomial time. This is only used at the very end, in the

proof of Theorem 14.35.

• The definition of the relation ≤b, and the proof of Lemma 14.26 that

we have a preference relation.

• The bound of Lemma 14.33 on the size of the longest antichain of ≤b.
We can now make an abstraction of the properties of Independent Set

that made the proof go through.

We will say that a graph problem is a vertex subset problem if feasible

solutions are vertex subsets. Our algorithm for Independent Set was

based on ≤b as preference relation. To define preference relation for

vertex subset problems, we use directly the properties of Lemma 14.26.

Here, maximization problems are handled as well.

Definition 14.37 (≤b relation for vertex subset problem Π). Let Π be

a vertex subset problem and let (T, χ) be a nice tree decomposition of

graph G, b be a node of T and A, B be subsets of V (G). We say that

A ≤b B if the following hold.

292 Introduction to treewidth

• If there exists an optimal solution OPT ⊆ V (G) of Π such that OPT∩
Vb = A, then (OPT \ Vb) ∪B is also an optimal solution to G.

• If A ≤b B, then A ∩ χ(b) = B ∩ χ(b).

We refer to such a relation ≤b as to a preference relation for Π and say

that B is better than A.

A vertex subset problem is reasonable if there exists a polynomial time

algorithm that verifies whether a given vertex subset is a feasible solu-

tion. We will say that a problem has polynomial time computable pref-

erence relations if there exists a polynomial time algorithm that given a

graph G, nice tree decomposition (T, β) of G, node b ∈ V (T) and two

sets A,B ⊆ Vb, computes whether A ≤b B for some preference relation

≤b. The notion of a good family is defined as in Definition 14.28 and the

antichain length of preference relations is L, as given in Definition 14.32.

Then as far as the problem has a polynomial time computable prefer-

ence relation, the algorithm reduce() has the properties provided by

Lemma 14.30.

Thus for polynomially time computable preference relations, the fol-

lowing lemma claims exactly the same as what Lemma 14.30 claimed

for Independent Set.

Lemma 14.38. Assume ≤b is a polynomial time computable preference

relation. Then the algorithm reduce() has the following properties.

• reduce(Fb) runs in time O(|Fb|2nO(1)).
• The family F ′b returned by reduce(Fb) is an antichain of ≤b.
• If Fb is good, then F ′b is good.

Thus on the way to prove Theorem 14.35 for Independent Set, we

also proved the following theorem for reasonable vertex subset problems.

Here, note that L (defined in Definition 14.32) depends on k.

Theorem 14.39. For any reasonable vertex subset problem Π that has

polynomial time computable preference relations, there is an algorithm

that given an n-vertex graph G and a nice tree decomposition (T, χ) of

width k, computes an optimal solution of Π in time L4 · nO(1).

In Section 14.4.2 we show how to apply Theorem 14.39 to give an

algorithm for Dominating Set on graphs of bounded treewidth, while

applications of Theorem 14.39 to other problems are discussed in the

exercises.

14.4 Dynamic programming 293

It is worth mentioning that Algorithm 14.1 runs in a bottom up fash-

ion, and that therefore one can run the algorithm on a rooted subtree of

the input decomposition tree. The algorithm will then compute a good

family for every bag of this subtree, and the bags that are not in the

subtree do not contribute to the running time of the algorithm.

Lemma 14.40. For any vertex subset problem that has polynomial time

computable preference relations, there is an algorithm that given a graph

G, a semi-nice tree decomposition (T, χ) of G and a node b ∈ V (T),

computes a good family Fb of subsets of Vb, such that |Fb| ≤ L(≤b).

The running time of the algorithm is upper bounded by L̂4
b · nO(1). Here

≤a is the polynomial time computable preference relation for every node

a ∈ V (T), and

L̂b = max
a∈V (Tb)

L(≤a).

Proof. The algorithm simply runs Algorithm 14.40 on all nodes in Tb
(the subtree rooted at b) and returns the computed family Fb. The

fact that Fb is good follows from Lemma 14.31. The upper bound on

the running time follows immediately from the proof of Lemma 14.34,

applied to all nodes in Tb rather than all the nodes of T .

At a first glance Lemma 14.40 looks useless—why would one want to

run an algorithm on half the graph when we could run it on the entire

graph? The point is that sometimes we have at hand a tree decomposi-

tion of the graph where not all the bags are small, but there are rooted

subtrees where all bags are small. Lemma 14.40 allows us to efficiently

“analyze” a subtree of the decomposition if all the bags in that subtree

are small, regardless of the size of the other bags in the decomposition.

Lemma 14.40 will be used in this way in Chapter 15 in order to give a

linear kernel for Dominating Set on planar graphs. Further, the intu-

ition behind Lemma 14.40 is at the core of the techiques discussed in

Chapter 16.

14.4.2 Dynamic programming for Dominating Set

Let us remind that dominating set in a graph is a vertex set S such

that N [S] = V (G). In the Dominating Set problem we are given as

input a graph G and integer t, and the task is to decide whether there

exists a dominating set of size at most t. This can be phrased as a vertex

subset problem where the feasible solutions are dominating sets and the

objective is to minimize the size of the feasible solution. Thus, in the

294 Introduction to treewidth

language of Theorem 14.39, Dominating Set is a reasonable vertex

subset problem.

If we are given a tree decomposition (T, χ) of the input graph G,

we can, for each b ∈ V (T), define a relation ≤b on subsets of Vb. Let

us remind that we use Tb to denote the subtree of T rooted at b and

Vb = χ(Tb). The relation ≤b is defined as follows.

Definition 14.41. For two subsets A and B of Vb, A ≤b B if

• χ(Tb) \ χ(b) ⊆ N [B] or χ(Tb) \ χ(b) * N [A],

• B ∩ χ(b) = A ∩ χ(b),

• N [B] ∩ χ(b) ⊇ N [A] ∩ χ(b), and

• |B| ≤ |A|.

It is easy to see that given A and B we can decide in polynomial time

whether A ≤b B. In other words, ≤b is polynomial time computable.

Next we show that ≤b is a preference relation.

Lemma 14.42. ≤b as defined in Definition 14.41 is a preference rela-

tion.

Proof. By definition of ≤b, if A ≤B B then A ∩ χ(b) = B ∩ χ(b). Thus

we need to prove that if A ≤b B and there exists an optimal solution

OPT ⊆ V (G) such that OPT ∩ Vb = A, then OPT′ = (OPT \ Vb) ∪ B is

also an optimal solution to G. First we have that

|OPT′| = |(OPT \ Vb) ∪B| = |OPT| − |A|+ |B| ≤ |OPT|,

so all we have to prove is that OPT′ is a dominating set. The definition

of ≤b implies that N [A] ∩ χ(Tb) ⊆ N [B] ∩ χ(Tb). Further, since the

only vertices in χ(Tb) with neighbors outside χ(Tb) are in χ(b) (recall

Lemma 14.8), and B ∩ χ(b) = A ∩ χ(b), it follows that N [A] ⊆ N [B].

But OPT′ = (OPT \A) ∪B, so

N [OPT] = N [OPT \A] ∪N [A]

= N [OPT′ \B] ∪N [A]

⊆ N [OPT′ \B] ∪N [B]

= N [OPT′].

Since OPT is a dominating set, so is OPT′.

Finally, in order to invoke Theorem 14.39 we need to bound the an-

tichain length L of the relations ≤b. Recall that for each b ∈ V (T), L(≤b)
is defined to be the length of the longest antichain of ≤b.

14.4 Dynamic programming 295

Lemma 14.43. For every b ∈ V (T), L(≤b) < 3|χ(B)|+1.

Proof. Consider an antichain A1, A2, . . . , A` of subsets of Vb and suppose

for contradiction that ` ≥ 3|χ(B)|+1. By the pigeonhole principle there

are three distinct sets Ap, Aq and Ar in this antichain such that

Ap ∩ χ(b) = Aq ∩ χ(b) = Ar ∩ χ(b)

and

N [Ap] ∩ χ(b) = N [Aq] ∩ χ(b) = N [Ar] ∩ χ(b).

Inspect whether χ(Tb)\χ(b) ⊆ N [Ap], χ(Tb)\χ(b) ⊆ N [Aq] and whether

χ(Tb) \ χ(b) ⊆ N [Ar]. For (at least) two of the three sets the answer to

this question is the same. Thus, without loss of generality, we have that

either both χ(Tb) \ χ(b) ⊆ N [Ap] and χ(Tb) \ χ(b) ⊆ N [Aq] or that

χ(Tb) \ χ(b) * N [Ap] and χ(Tb) \ χ(b) * N [Aq].

In either of these two cases, Ap and Aq satisfy the three first conditions

of both Ap ≤b Aq and Aq ≤b Ap. Thus, if |Ap| ≤ |Aq| then Aq ≤b Ap,
whereas if |Aq| ≤ |Ap| then Ap ≤b Aq. In either case, this contradicts

that A1, A2, . . . , A` is an antichain of ≤b.

Lemma 14.43 implies that if the width of the tree decomposition (T, χ)

is at most k, then the antichain length L of the relations ≤b is at most

3k+2. Thus Dominating Set is a reasonable vertex subset problem with

polynomial time computable preference relations of antichain length at

most 3k+2. By Theorem 14.39, there is an algorithm that given as input

a graph G, integer t and a nice tree decomposition (T, χ) of width at

most k, decides whether G has a dominating set of size at most t in

81k · nO(1) time.

Thus we have the following theorem.

Theorem 14.44. There is an algorithm that given a graph G and a nice

tree decomposition (T, χ) of G of width k, finds a minimum dominating

set of G in time 81k · nO(1).

As in the case with Independent Set in Theorem 14.35, the running

time of the algorithm provided in Theorem 14.44 is not optimal, and

Dominating Set can be solved in time 3k·kO(1)n on graphs of treewidth

k, see the Bibliographic notes for references.

296 Introduction to treewidth

14.5 Treewidth and MSO2

The approach we developed in Section 14.4 for solving Independent

Set and Dominating Set on graphs of bounded treewidth can be used

for many other problems. In this section we briefly discuss a general

description of properties of a problem that make it amenable to dynamic

programming over tree decompositions. This description is in the form

of Monadic Second-Order logic on graphs, or MSO2. In this section we

define MSO2 and state Courcelle’s theorem. Our presentation here is

taken from (Cygan et al., 2015, Section 7.4). Up to very small changes,

the following section is a copy-paste from there.

14.5.1 Monadic second-order logic on graphs

The logic we are about to introduce is called MSO2. Instead of providing

immediately the formal description of this logic, we first give an example

of an MSO2 formula in order to work out the main concepts. Consider

the following formula conn(X), which verifies that a subset X of vertices

of a graph G = (V,E) induces a connected subgraph.

conn(X) = ∀Y⊆V [(∃u∈X u ∈ Y ∧ ∃v∈X v /∈ Y)

⇒(∃e∈E ∃u∈X ∃v∈X inc(u, e) ∧ inc(v, e) ∧ u ∈ Y ∧ v /∈ Y)].

Translation of this formula into English is

For every subset of vertices Y , if X contains both a vertex from Y and

a vertex outside of Y , then there exists an edge e whose endpoints u, v

both belong to X, but one of them is in Y and the other is outside of Y .

One can easily see that this condition is equivalent to the connectivity

of G[X]: the vertex set of G cannot be partitioned into Y and V (G) \ Y
in such a manner that X is partitioned nontrivially and no edge of G[X]

crosses the partition.

As we see in this example, MSO2 is a formal language of expressing

properties of graphs and objects inside these graphs, such as vertices,

edges, or subsets of them. A formula ϕ of MSO2 is nothing else but a

string over some mysterious symbols, which we shall decode in the next

few paragraphs. One may think that a formula defines a program that

can be run on an input graph, similarly as, say, a C++ program can be

run on some text input. A C++ program is just a sequence of instruc-

tions following some syntax, and an MSO2 formula is just a sequence

of symbols constructed using a specified set of rules. A C++ program can

14.5 Treewidth and MSO2 297

be run on multiple different inputs, and may provide different results

of the computation. Similarly, an MSO2 formula may be evaluated in

different graphs, and it can give different outcomes. More precisely, an

MSO2 formula can be true in a graph, or false. The result of an applica-

tion of a formula to a graph will be called the evaluation of the formula

in the graph.

Similarly to C++ programs, MSO2 formulas have variables which rep-

resent different objects in the graph. Generally, we shall have four types

of variables: variables for single vertices, for single edges, for subsets of

vertices, and for subsets of edges; the last type was not used in formula

conn(X). At each point of the process of evaluation of the formula,

every variable is evaluated to some object of appropriate type.

Note that a formula can have “parameters”: variables that are given

from “outside”, whose properties we verify in the graph. In the conn(X)

example such a parameter is X, the vertex subset whose connectivity is

being tested. Such variables will be called free variables of the formula.

Note that in order to properly evaluate the formula in a graph, we need

to be given the evaluation of these variables. Most often, we will assume

that the input graph is equipped with evaluation of all the free variables

of the considered MSO2 formula, which means that these evaluations

are provided together with the graph.

If we already have some variables in the formula, we can test their

mutual interaction. As we have seen in the conn(X) example, we can

for instance check whether some vertex u belongs to some vertex subset

Y (u ∈ Y), or whether an edge e is incident to a vertex u (inc(u, e)).

These checks can be combined using standard Boolean operators such as

¬ (negation, logical NOT), ∧ (conjunction, logical AND), ∨ (disjunction,

logical OR), ⇒ (implication).

The crucial concept that makes MSO2 useful for expressing graph

properties are quantifiers. They can be seen as counterparts of loops in

standard programming languages. We have two types of quantifiers, ∀
and ∃. Each quantifier is applied to some subformula ψ, which in the

programming language analogy is just a block of code bound by the

loop. Moreover, every quantifier introduces a new variable over which it

iterates. This variable can be then used in the subformula.

Quantifier ∀ is called the universal quantifier. Suppose we write a for-

mula ∀v∈V ψ, where ψ is some subformula that uses variable v. This for-

mula should be then read as “For every vertex v in the graph, ψ holds.”

In other words, quantifier ∀v∈V iterates through all possible evaluations

of variable v to a vertex of the graph, and for each of them it is checked

298 Introduction to treewidth

whether ψ is indeed true. If this is the case for every evaluation of v,

then the whole formula ∀v∈V ψ is true; otherwise it is false.

Quantifier ∃, called the existential quantifier, works sort of similarly.

Formula ∃v∈V ψ should be read as “There exists a vertex v in the graph,

such that ψ holds.” This means that ∃v∈V iterates through all possible

evaluations of variable v to a vertex of the graph, and verifies whether

there is at least one for which ψ is true.

Of course, here we just showed examples of quantification over vari-

ables for single vertices, but we can also quantify over variables for single

edges (e.g., ∀e∈E/∃e∈E), vertex subsets (e.g., ∀X⊆V /∃X⊆V), or edge sub-

sets (e.g., ∀C⊆E/∃C⊆E). Standard Boolean operators can be also used

to combine larger formulas; see for instance our use of the implication

in formula conn(X).

Syntax and semantics of MSO2. Formulas of MSO2 can use four

types of variables: for single vertices, single edges, subsets of vertices,

and subsets of edges. The subscript 2 in MSO2 exactly signifies that

quantification over edge subsets is also allowed. If we forbid this type

of quantification, we arrive at a weaker logic MSO1. The vertex/edge

subset variables are called monadic variables.

Every formula ϕ of MSO2 can have free variables, which often will

be written in parentheses besides the formula. More precisely, whenever

we write a formula of MSO2, we should always keep in mind what

variables are assumed to be existent in the context in which this formula

will be used. The sequence of these variables is called the signature

over which the formula is written;1 following our programming language

analogy, this is the environment in which the formula is being defined.

Then variables from the signature can be used in ϕ as free variables.

The signature will be denoted by Σ. Note that for every variable in the

signature we need to know what is its type.

In order to evaluate a formula ϕ over signature Σ in a graph G, we

need to know how the variables of Σ are evaluated in G. By ΣG we will

denote the sequence of evaluations of variables from Σ. Evaluation of

a single variable x will be denoted by xG. Graph G and ΣG together

shall be called the structure in which ϕ is being evaluated. If ϕ is true

in structure 〈G,ΣG〉, then we shall denote it by

〈G,ΣG〉 |= ϕ,

1 For the sake of simplicity, our presentation of notions such as signature is slightly
non-compliant with the definitions from model theory.

14.5 Treewidth and MSO2 299

which should be read as “Structure 〈G,ΣG〉 is a model for ϕ.”

Formulas of MSO2 are constructed inductively from smaller subfor-

mulas. We first describe the smallest building blocks, called atomic for-

mulas.

• If u ∈ Σ is a vertex (edge) variable and X ∈ Σ is a vertex (edge) set

variable, then we can write formula u ∈ X. The semantics is standard:

the formula is true if and only if uG ∈ XG.

• If u ∈ Σ is a vertex variable and e ∈ Σ is an edge variable, then we

can write formula inc(u, e). The semantics is that the formula is true

if and only if uG is an endpoint of eG.

• For any two variables x, y ∈ Σ of the same type, we can write formula

x = y. This formula is true in the structure if and only if xG = yG.

Now that we know the basic building blocks, we can start to cre-

ate larger formulas. As described before, we can use standard Boolean

operators ¬, ∧, ∨, ⇒ working as follows. Suppose that ϕ1, ϕ2 are two

formulas over the same signature Σ. Then we can write the following

formulas, also over Σ.

• Formula ¬ϕ1, where 〈G,ΣG〉 |= ¬ϕ1 if and only if 〈G,ΣG〉 2 ϕ1.

• Formula ϕ1∧ϕ2, where 〈G,ΣG〉 |= ϕ1∧ϕ2 if and only if 〈G,ΣG〉 |= ϕ1

and 〈G,ΣG〉 |= ϕ2.

• Formula ϕ1∨ϕ2, where 〈G,ΣG〉 |= ϕ1∨ϕ2 if and only if 〈G,ΣG〉 |= ϕ1

or 〈G,ΣG〉 |= ϕ2.

• Formula ϕ1 ⇒ ϕ2, where 〈G,ΣG〉 |= ϕ1 ⇒ ϕ2 if and only if 〈G,ΣG〉 |=
ϕ1 implies that 〈G,ΣG〉 |= ϕ2.

Finally, we can use quantifiers. For concreteness, suppose we have a

formula ψ over signature Σ′ that contains some vertex variable v. Let

Σ = Σ′ \ {v}. Then we can write the following formulas over Σ:

• Formula ϕ∀ = ∀v∈V ψ. Then 〈G,ΣG〉 |= ϕ∀ if and only if for every

vertex vG ∈ V (G), it holds that 〈G,ΣG, vG〉 |= ψ.

• Formula ϕ∃ = ∃v∈V ψ. Then 〈G,ΣG〉 |= ϕ∃ if and only if there exists

a vertex vG ∈ V (G) such that 〈G,ΣG, vG〉 |= ψ.

Similarly, we can perform quantification over variables for single edges

(∀e∈E/∃e∈E), vertex subsets (∀X⊆V /∃X⊆V), and edge subsets (∀C⊆E/∃C⊆E).

The semantics is defined analogously.

Observe that in formula conn(X) we used a couple of notation “hacks”

that simplified the formula, but were formally not compliant to the syn-

tax described above. We namely allow some shorthands to streamline

300 Introduction to treewidth

writing formulas. Firstly, we allow simple shortcuts in the quantifiers.

For instance, ∃v∈X ψ is equivalent to ∃v∈V (v ∈ X) ∧ ψ and ∀v∈X ψ is

equivalent to ∀v∈V (v ∈ X)⇒ ψ. We can also merge a number of similar

quantifiers into one, e.g., ∃X1,X2⊆V is the same as ∃X1⊆V ∃X2⊆V . An-

other construct that we can use is the subset relation X ⊆ Y : it can be

expressed as ∀v∈V (v ∈ X) ⇒ (v ∈ Y), and similarly for edge subsets.

We can also express the adjacency relation between two vertex variables:

adj(u, v) = (u 6= v) ∧ (∃e∈E inc(u, e) ∧ inc(v, e)). Finally, we use x 6= y

for ¬(x = y) and x /∈ X for ¬(x ∈ X). The reader is encouraged to use

his or her own shorthands whenever it is beneficial.

Examples. Let us now provide two more complicated examples of graph

properties expressible in MSO2. We have already seen how to express

that a subset of vertices induces a connected graph. Let us now look at 3-

colorability. To express this property, we need to quantify the existence

of three vertex subsets X1, X2, X3 which form a partition of V , and

where each of them is an independent set.

3colorability = ∃X1,X2,X3⊆V partition(X1, X2, X3)∧
indp(X1) ∧ indp(X2) ∧ indp(X3).

Here, partition and indp are two auxiliary subformulas. Formula partition

has three vertex subset variablesX1, X2, X3 and verifies that (X1, X2, X3)

is a partition of the vertex set V . Formula indp verifies that a given sub-

set of vertices is independent.

partition(X1, X2, X3) = ∀v∈V [(v ∈ X1 ∧ v /∈ X2 ∧ v /∈ X3)

∨(v /∈ X1 ∧ v ∈ X2 ∧ v /∈ X3)

∨(v /∈ X1 ∧ v /∈ X2 ∧ v ∈ X3)];

indp(X) = ∀u,v∈X ¬adj(u, v).

Second, let us look at Hamiltonicity: we would like to write a formula

that is true in a graph G if and only if G admits a Hamiltonian cycle. For

this, let us quantify existentially a subset of edges C that is supposed to

comprise the edges of the Hamiltonian cycle we look for. Then we need

to verify that (a) C induces a connected graph, and (b) every vertex of

V is adjacent to exactly two different edges of C.

hamiltonicity = ∃C⊆E connE(C) ∧ ∀v∈V deg2(v, C).

Here, connE(C) is an auxiliary formula that checks whether the graph

14.5 Treewidth and MSO2 301

(V,C) is connected (using similar ideas as for conn(X)), and deg2(v, C)

verifies that vertex v has exactly two adjacent edges belonging to C:

connE(C) = ∀Y⊆V [(∃u∈V u ∈ Y ∧ ∃v∈V v /∈ Y)

⇒ (∃e∈C ∃u∈Y ∃v/∈Y inc(u, e) ∧ inc(v, e))];

deg2(v, C) = ∃e1,e2∈C [(e1 6= e2) ∧ inc(v, e1) ∧ inc(v, e2)∧
(∀e3∈C inc(v, e3)⇒ (e1 = e3 ∨ e2 = e3))].

14.5.2 Courcelle’s theorem

In the following, for a formula ϕ by ||ϕ|| we denote the length of the

encoding of ϕ as a string.

Theorem 14.45 (Courcelle’s theorem, Courcelle (1990)). Assume that

ϕ is a formula of MSO2 and G is an n-vertex graph equipped with

evaluation of all the free variables of ϕ. Suppose, moreover, that a tree

decomposition of G of width t is provided. Then there exists an algorithm

that verifies whether ϕ is satisfied in G in time f(||ϕ||, t) · n, for some

computable function f .

The proof of Courcelle’s theorem is beyond the scope of this book,

and we refer to other sources for a comprehensive presentation. As we

have already seen, the requirement that G be given together with its tree

decomposition is not necessary, since an optimal tree decomposition of

G can be computed within the same complexity bounds.

Recall that in the previous section we constructed formulas 3colorability

and hamiltonicity that are satisfied in G if and only if G is 3-colorable

or has a Hamiltonian cycle, respectively. If we now apply Courcelle’s

theorem to these constant-size formulas, we immediately obtain as a

corollary that testing these two properties of graphs is fixed-parameter

tractable when parameterized by treewidth.

Let us now focus on the Vertex Cover problem: given a graph

G and integer k, we would like to verify whether G admits a vertex

cover of size at most k. The natural way of expressing this property

in MSO2 is to quantify existentially k vertex variables, representing

vertices of the vertex cover, and then verify that every edge of G has

one of the quantified vertices as an endpoint. However, observe that the

length of such a formula depends linearly on k. This means that a direct

application of Courcelle’s theorem gives only an f(k, t)·n algorithm, and

302 Introduction to treewidth

not an f(t) · n algorithm as was the case for the dynamic-programming

routine of Corollary 14.36.

Therefore, we would rather have the following optimization variant of

the theorem. Formula ϕ has some free monadic (vertex or edge) variables

X1, X2, . . . , Xp, which correspond to the sets we seek in the graph. In

the Vertex Cover example we would have one vertex subset variable

X that represents the vertex cover. Formula ϕ verifies that the variables

X1, X2, . . . , Xp satisfy all the requested properties; for instance, that

X indeed covers every edge of the graph. Then the problem is to find

an evaluation of variables X1, X2, . . . , Xp that minimizes/maximizes the

value of some arithmetic expression α(|X1|, |X2|, . . . , |Xp|) depending on

the cardinalities of these sets, subject to ϕ(X1, X2, . . . , Xp) being true.

We will focus on α being an affine function, that is, α(x1, x2, . . . , xp) =

a0 +
∑p
i=1 aixi for some a0, a1, . . . , ap ∈ R.

The following theorem states that such an optimization version of

Courcelle’s theorem indeed holds.

Theorem 14.46 (Arnborg et al. (1991)). Let ϕ be an MSO2 formula

with p free monadic variables X1, X2, . . . , Xp, and let α(x1, x2, . . . , xp)

be an affine function. Assume that we are given an n-vertex graph G to-

gether with its tree decomposition of width t, and suppose G is equipped

with evaluation of all the free variables of ϕ apart from X1, X2, . . . , Xp.

Then there exists an algorithm that in time f(||ϕ||, t) · n finds the mini-

mum (maximum) value of α(|X1|, |X2|, . . . , |Xp|) for sets X1, X2, . . . , Xp

for which ϕ(X1, X2, . . . , Xp) is true, where f is some computable func-

tion.

To conclude our Vertex Cover example, we can now write a sim-

ple constant-length formula vcover(X) that verifies that X is a vertex

cover of G: vcover(X) = ∀e∈E ∃x∈X inc(x, e). Then we can apply The-

orem 14.46 to vcover and α(|X|) = |X|, and infer that finding the

minimum cardinality of a vertex cover can be done in f(t) · n time, for

some function f .

Note that both in Theorem 14.45 and in Theorem 14.46 we allow the

formula to have some additional free variables, whose evaluation is pro-

vided together with the graph. This feature can be very useful whenever

in the considered problem the graph comes together with some prede-

fined objects, e.g., terminals in the Steiner Tree problem or specific

vertices which should be contained in a dominating set. For example, we

can easily write an MSO2 formula BWDominate(X,B,W) for vertex

set variables X,B, and W , which is true if and only if X is the subset of

14.5 Treewidth and MSO2 303

B and dominates all vertices from W . Then we can apply Theorem 14.46

to minimize the cardinality of X subject to BWDominate(X,B,W)

being true, where the vertex subsets B,W are given together with the

input graph.

Another strengthening of Courcelle’s theorem is done by extending

the power of MSO2. In the extended version of MSO2 we have a new

feature which allows to test the cardinality of a set is equal to q modulo

r, where q and r are integers such that 0 ≤ q < r and r ≥ 2. Such

an extension of the MSO2 is called the counting monadic second-order

logic (CMSO2). This CMSO2 is essentially MSO2 with the following

atomic formula for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

The name counting for that type of logic is a bit misleading, because it

cannot really count. For example, we cannot express in this logic that a

graph G contains a cycle of length at least |V (G)|/2. What CMSO2 re-

ally does, it counts modulo some integer. For example, the property that

a graph contains a cycle of even length is expressible in CMSO2. Cour-

celle’s theorem and its extensions (Theorem 14.45 and Theorem 14.46)

hold for CMSO2 as well.

To conclude, let us deliberate briefly on the function f in the bound on

the running time of algorithms provided by Theorems 14.45 and 14.46.

Unfortunately, it can be proved that this function has to be nonele-

mentary; in simple words, it cannot by bounded by a folded c times

exponential function for any constant c. Generally, the main reason why

the running time must be so high is the possibility of having alternat-

ing sequences of quantifiers in the formula ϕ. Slightly more precisely,

we can define the quantifier alternation of a formula ϕ to be the max-

imum length of an alternating sequence of nested quantifiers in ϕ, i.e.,

∀ ∃∀ ∃ . . . (we omit some technicalities in this definition). Then it can

be argued that formulas of quantifier alternation at most q give rise

to algorithms with at most c-times exponential function f , where c de-

pends linearly on q. However, tracing the exact bound on f even for

simple formulas ϕ is generally very hard, and depends on the actual

proof of the theorem that is used. This exact bound is also likely to be

much higher than optimal. For this reason, Courcelle’s theorem and its

variants should be regarded primarily as classification tools, whereas de-

signing efficient dynamic-programming routines on tree decompositions

requires “getting your hands dirty” and constructing the algorithm ex-

plicitly.

304 Introduction to treewidth

14.6 Obstructions to bounded treewidth

A tree decomposition of G of small width is often very useful for de-

signing algorithms, as it often reveals the true structure of the graph

G. But how do graphs of large treewidth look, and how can we certify

that the treewidth of the graph is large without just going through all

possibilities for tree decompositions of small width? In this section we

investigate obstructions to small treewidth, that is, structures inside G

that certify that the treewidth of G is big. We start with the easiest such

example.

Lemma 14.47. The clique Kh on h > 0 vertices has treewidth exactly

h− 1.

Proving Lemma 14.47 is left as an exercise. Since Theorem 14.15 yields

that minors of G have treewidth at most tw(G), it follows immediately

that the treewidth of G is lower bounded by the size of the largest clique

minor in G.

Corollary 14.48. If G contains Kh as a minor, then tw(G) ≥ h− 1.

A natural question is whether the converse of Corollary 14.48 could

hold, that is, whether every graph of treewidth at least h must contain

a clique on at least h vertices as a minor. This is not true, and one

can discover strong evidence for this without having to explicitly con-

struct a graph with treewidth k but no Kk minor. Since the problem

of deciding whether an input graph G has treewidth at most k is NP-

complete, deciding whether G has treewidth at least k is coNP-complete.

If the converse of Corollary 14.48 held true, then we could use this to

give a witness that the treewidth of G is at least k—every graph of

treewidth at least k would have a Kk minor, and this Kk minor would

serve as a witness (by Corollary 14.48) that tw(G) ≥ k. This would

put a coNP-complete problem into NP, proving NP = coNP, which is

considered very unlikely. In fact, almost all of the known kernelization

lower bounds, and all of the bounds covered in Part THREE are proved

under an assumption which is slightly stronger than NP6=coNP. Later in

this section we will see an example of graphs which violate the converse

of Corollary 14.48 in the strongest possible way; they exclude even the

clique K5 as a minor, but can have arbitrarily large treewidth.

Since a graph of bounded treewidth can be “completely decomposed”

by separators of small size, one would expect that it is possible to remove

few vertices from the graph to leave connected components that are all

14.6 Obstructions to bounded treewidth 305

significantly smaller than the original graph. Our next lemma is a slight

strengthening of this statement. For a nonnegative weight function on

the vertices of G, say w : V (G) → R≥0, we define the weight of a

vertex set to be the sum of the weights of the vertices in the set, namely

w(S) =
∑
v∈S w(v).

Lemma 14.49 (Balanced Separators). For any graph G of treewidth

k, there is a vertex set B of size at most k+ 1 such that each connected

component C of G − B satisfies w(C) ≤ w(V (G))
2 . Furthermore there is

a linear time algorithm that, given a graph G and a tree decomposition

(T, χ) of G of width k, outputs a vertex b̂ ∈ V (T) such that B = χ(b̂)

has this property.

Proof. We describe an algorithm that, given G and (T, χ), finds b̂. For

any edge ab ∈ E(T), T − ab has two connected components. Let the

component containing a be T aba and the other be T abb . We define V aba =⋃
c∈V (Taba) χ(c) \ χ(b) and V abb =

⋃
c∈V (Tabb) χ(c) \ χ(a). The algorithm

orients the edge ab towards a if w(V aba) > w(V abb), towards b if w(V aba) <

w(V abb), and otherwise arbitrarily. A naive algorithm that computes

w(V aba) and w(V abb) from scratch for each edge ab ∈ E(T) would run

in polynomial, but not linear time. A linear time algorithm is covered in

the exercises.

Since T has no cycles, the orientation of T is acyclic. Since every

directed acyclic graph has a sink (a vertex with no out-neighbors), T has

a node b̂ such that all edges incident to b̂ are oriented towards b̂. We claim

now that B = χ(b̂) satisfies the statement of the lemma. Consider any

connected component of G−χ(b̂). By Corollary 14.11, we have that any

connected component C must satisfy C ⊆ V ab̂a for some edge ab̂ ∈ E(T).

But then w(C) ≤ w(V ab̂a) and w(V ab̂a) ≤ w(V ab̂
b̂

) since the edge ab̂ is

oriented towards b̂. Because V ab̂a and V ab̂
b̂

are disjoint, it follows that

w(V ab̂a) + w(V ab̂
b̂

) ≤ w(V (G)), and hence w(C) ≤ w(V ab̂a) ≤ w(V (G))
2 as

required. After having found the orientation all that is needed to identify

b̂ is to find a sink in the orientation of T , which clearly can be done in

linear time. This concludes the proof.

A useful consequence of Lemma 14.49 is the following lemma.

Lemma 14.50. For any graph G of treewidth k and weight function

w : V (G)→ R≥0 there is a partition of V (G) into L, S and R such that

max{w(L), w(R)} ≤ 2w(V (G))

3
,

306 Introduction to treewidth

there is no edge from L to R, and |S| ≤ k + 1. Furthermore there is

a linear time algorithm that, given a graph G and a tree decomposition

(T, χ) of G of width k, outputs such a partition.

Proof. The algorithm applies Lemma 14.49 and sets S to be the set B

returned by Lemma 14.49. In particular, each connected component C

of G− S satisfies that w(C) ≤ w(S)
2 . If there are at most two connected

components, put one of them into L and the other (if it exists) into R.

Since all components have weight at most w(S)
2 , the statement of the

lemma is satisfied.

Suppose now there are at least three components in G−S. Let C1 be

of the largest weight, C2 be of the second largest weight and C3 be of

the third largest weight component of G − S, breaking ties arbitrarily.

The algorithm starts by setting L = C1 and R = C2, sets C3 aside

and considers every other component C of G − S one by one. When C

is considered it is inserted into the set among L and R that has least

weight. After all the components (except C3) have been processed in this

manner, the algorithm inserts C3 into L or R, whichever is the smallest

at the time. Clearly |S| ≤ k+ 1 and there are no edges from L to R; we

need only to prove that max{w(L), w(R)} ≤ 2w(V (G))
3 .

Let L′ andR′ be L andR as they were right before C3 was inserted into

either set L or R. We show that max{w(L′), w(R′)} ≤ w(V (G))
2 . Suppose

that w(L′) ≤ w(R′). Consider the last component C that was added

to R, not counting C3. Let L? and R? be L and R as they were right

before C was inserted into R. Since C was inserted into R, we have that

w(R?) ≤ w(L?) at the time. Since w(C3) ≥ w(C) it holds that w(R? ∪
C) ≤ w(L?∪C3) and w(R?∪C)+w(L?∪C3) ≤ w(V (G)) since R?∪C and

L? ∪C3 are disjoint. But then w(R′) = w(R? ∪C) ≤ w(V (G))
2 , and since

we assumed that w(L′) ≤ w(R′) it follows that max{w(L′), w(R′)} ≤
w(V (G))

2 . The case when w(L′) > w(R′) is identical.

Suppose now that C3 is inserted into R. Then it holds that w(R′) ≤
w(L′), and since C3 has not yet been processed it follows that w(R′) ≤
w(V (G))−w(C3)

2 . But then w(R) ≤ w(V (G))+w(C3)
2 . But w(C3) ≤ w(V (G))

3

because C1 and C2 have at least the same weight as C3. This yields

w(R) ≤ w(V (G))+w(C3)
2 ≤ 2w(V (G))

3 . On the other hand w(L) = w(L′) ≤
w(V (G))

2 , completing the proof. The case where C3 is inserted into L is

symmetric.

We can use Lemma 14.50 to define a witness ofG having large treewidth.

Definition 14.51. A vertex set X ⊆ V (G) is called well-linked if for

14.6 Obstructions to bounded treewidth 307

every pair X1, X2 of disjoint subsets of X there are min{|X1|, |X2|}
vertex disjoint paths in G with one endpoint in X1 and the other in X2.

Even though we will use well-linked sets as “witnesses” for G having

high treewidth, they are not witnesses in the usual “NP” sense—it is

coNP-complete to decide whether a given set X in G is well-linked. Still

one can check this in time O(2|X| · |X| ·n) by trying every partition of X

into X1 and X2 and computing the maximum flow from X1 to X2. In-

deed, the following observation follows directly from Menger’s theorem,

by which the maximum number of vertex-disjoint paths between two

non-adjacent vertices equals the size of a minimum cut that disconnects

them.

Observation 14.52. A set X is well-linked if and only if there do

not exist a partition of X into X1 and X2 and an X1-X2 separator

S ⊆ V (G) with |S| < min{|X1|, |X2|} (that is, a set S of size smaller

than min{|X1|, |X2|}) such that no component of G − S contains both

a vertex of X1 and a vertex of X2).

Lemma 14.50 immediately implies that a graph of treewidth at most

k can not contain a large well-linked set.

Lemma 14.53. If G contains a well-linked set X with |X| ≥ 6(k + 2),

then tw(G) > k.

Proof. Suppose for contradiction that a graph G of treewidth at most

k contains a well-linked set X with |X| ≥ 6(k + 2). Define a weight

function w : V (G) → Z+ that assigns 1 to vertices of X and 0 to all

other vertices. It follows from Lemma 14.50 that there is a partitioning

of V (G) into L, S and R such that |S| ≤ k+ 1, there are no edges from

L to R, and max{|L ∩ X|, |R ∩ X|} ≤ 2|X|
3 . Without loss of generality

|L ∩X| ≤ |R ∩X|. Then we have that |L ∩X| ≥ |X|3 − (k + 1) ≥ k + 2

and |R∩X| ≥ |L∩X| ≥ k+ 2. Let X1 = L∩X and X2 = R∩X. Since

X is well-linked there are k+2 vertex disjoint paths from X1 to X2. But

each such path must have non-empty intersection with S, contradicting

that |S| ≤ k + 1.

In the beginning of this section we promised a construction of graphs

without K5 as a minor of arbitrarily large treewidth. It turns out that

constructing such a graph is quite simple, while proving that the treewidth

of this graph is large is more difficult—probably the easiest way to prove

this (without the use of characterizations not defined in this book) is

to invoke Lemma 14.53. The k × k-grid �k is a graph with vertex

308 Introduction to treewidth

set {(x, y) : 1 ≤ x, y ≤ k}. Here x and y are always integers, so �k
has exactly k2 vertices. Two vertices (x, y) and (x′, y′) are adjacent if

|x − x′| + |y − y′| ≤ 1. Thus the graph �k is planar, and as the name

suggests, looks like a k times k grid drawn in the plane. It is easy to

see (and it follows from the classic theorem of Kuratowski-Wagner that

every planar graph excludes complete graph K5 and complete bipartite

graph K3,3 as minors) that �k excludes K5 as a minor. In the exercise

section you will be asked to prove the following facts.

• �k has a tree decomposition of width k.

• �k contains a well-linked set X of size k.

The second point, together with Lemma 14.50 implies that the treewidth

of the k × k-grid is at least k
6 − 2. It is in fact possible (but rather

complicated) to show that the treewidth of a grid is exactly k.

Proposition 14.54 (Robertson and Seymour (1986b)). For every k >

1, tw(�k) = k.

Since �k has treewidth exactly k and excludes K5 as a minor, this

shows that clique minors are not always sufficient as witnesses of the

treewidth of G being large. On the other hand, if G contains �k as a

minor, we know that tw(G) ≥ k. Is the converse true, i.e does every

graph of treewidth at least k contain �k as a minor? Of course not, as

the clique Kh has treewidth exactly h and does not contain any grids

larger than �√h as a minor. However, in contrast to cliques, every graph

of large treewidth does contain a large grid as a minor. This is known

as the Excluded Grid Minor Theorem.

Theorem 14.55 (Excluded Grid Minor). There exists a constant c > 0

such that if tw(G) = k then G contains �c·k1/20 as a minor and does

not contain �k+1 as a minor.

A weaker variant of Theorem 14.55 which only guarantees the exis-

tence of a grid of size Ω(5
√

log n) was given by Robertson and Seymour.

This was later improved to Ω(3
√

log n) by Kawarabayashi and Kobayashi.

It was open for many years whether a polynomial relationship could be

established between the treewidth of a graph G and the size of its largest

grid minor. In 2013, Chekuri and Chuzhoy established for the first time

such a polynomial relationship. Later, Chuzhoy proved Theorem 14.55

(see Bibliographic Notes).

For a planar graph G it is possible to get a much tighter relationship

14.6 Obstructions to bounded treewidth 309

between the treewidth of G and the size of the largest grid minor that

G contains.

Theorem 14.56 (Planar Excluded Grid Minor Robertson et al. (1994);

Gu and Tamaki (2012)). For any G excluding H as a minor, such that

tw(G) ≥ 9
2 t, G contains �t as a minor. Furthermore there exists a poly-

nomial time algorithm that given G either outputs a tree decomposition

of G of width 9
2 t or a �t minor.

By saying that an algorithm outputs a �t minor, we mean that the

algorithm outputs a sequence of edge contractions, and vertex and edges

deletions that transform the input graph G to the grid �t. Alternatively,

the output can be defined to be a minor model of �t in G, that is, a

partition of a subset U ⊆ V (G) into parts that induce connected graphs,

with a bijection mapping the vertices of �t to these parts such that if

two vertices u, v in �t are adjacent, then there exist x ∈ ϕ(u) and

y ∈ ϕ(v) that are adjacent. Observe that in Theorem 14.55 the size of

the grid minor is a polynomial in the treewidth while in Theorem 14.55

it is linear. Theorem 14.56 heavily relies on the graph G being planar.

It is possible to give such “linear grid minor” theorems for more general

classes of graphs, namely any class which excludes a fixed graph H as a

minor.

Theorem 14.57 (Kawarabayashi and Kobayashi (2012); Demaine and

Hajiaghayi (2008b)). For any graph H, there exists a constant h such

that for any G excluding H as a minor, such that tw(G) ≥ t, G contains

�ht as a minor. Furthermore there exists a polynomial time algorithm

that given G either outputs a tree decomposition of G of width t or a

�ht minor.

In the next chapter we will use a variant of Theorem 14.56 which relies

on contractions rather than minors. For this we will define a new family

of graphs which will play the role of grids. For an integer k ≥ 0 the graph

Γk is obtained from the grid �k by adding, for every 1 ≤ x ≤ k − 1,

2 ≤ y ≤ k the edge (x, y), (x + 1, y − 1), and making the vertex (k, k)

adjacent to all vertices with x ∈ {1, k} or y ∈ {1, k}. The graph Γ6 is

depicted in Figure 14.2.

Observe that every face of Γk has size 3 (specifically, it is a triangle),

therefore adding any edge to Γk results in a graph that is non-planar.

Furthermore it is quite easy to start with a grid �3(k+1) and contract it

to a Γk. We leave it as an exercise to the reader to prove the following

theorem.

310 Introduction to treewidth

Figure 14.2 The graph Γ6.

Theorem 14.58. If G is planar and tw(G) ≥ 13.5(k + 1) then G con-

tains Γk as a contraction. Furthermore there exists a polynomial time

algorithm that given G either outputs a tree decomposition of G of width

13.5(k + 1) or a Γk contraction.

Just as it is possible to extend the Planar Excluded Grid Minor The-

orem to minor free classes, it is possible to extend Theorem 14.58 to

classes excluding a fixed graph H as a minor. However, this extension

does not work for every choice of graph H. A graph H is apex if there

exists a vertex v ∈ V (H) such that H − v is planar. For example, the

clique K5 on 5 vertices is apex. It is possible to lift Theorem 14.58 to

classes of graphs excluding an apex graph H as a minor.

Theorem 14.59 (Fomin et al. (2011b)). For any apex graph H there

exists a constant h such that for any G excluding H as a minor, such

that tw(G) ≥ t, G contains Γht as a contraction. Furthermore there

exists a polynomial time algorithm that given G either outputs a tree

decomposition of G of width t or a Γht contraction.

Theorem 14.59 is tight in the following sense. Consider the graph �̂k
obtained from �k by adding a new vertex u and making u adjacent to all

other vertices. The graph �̂k is apex, and tw(�̂k) = k+ 1. Furthermore

any contraction of �̂k will contain a universal vertex, so �̂k does not

contain any Γh, h > 3 as a contraction. Thus any minor closed class

14.6 Obstructions to bounded treewidth 311

which does exclude any apex graph will contain, for every k, a graph of

treewidth at least k and excluding all Γh, h > 3 as contractions.

Exercises

Problem 14.1. Prove Corollary 14.11.

Problem 14.2. Prove Lemma 14.12.

Problem 14.3. Show that the algorithm described in Lemma 14.18 runs in time
O(|V (G)|+ |V (T)|ω(T, χ)).

Problem 14.4. Prove Lemma 14.47.

Problem 14.5 (A). Find an example showing that the bound O(k|V (G)|) on the
number of nodes of a nice tree decomposition cannot be strengthened to O(|V (G)|).

Problem 14.6 (l). Show that the treewidth of a graph G is equal to the maximum
treewidth of its connected components.

Problem 14.7. Prove that every clique of a graph is contained in some bag of its
tree decomposition. Infer that tw(G) ≥ ω(G)− 1, where ω(G) denotes the maximum
size of a clique in G.

Problem 14.8 (l). What is the treewidth of (a) a complete graph; (b) a complete
bipartite graph; (c) a forest; (d) a cycle?

Problem 14.9 (l). Show that the treewidth of a graph G is equal to the maximum
treewidth of its biconnected components.

Problem 14.10 (A). Prove that a graph has treewidth at most 2 if and only if it
does not contain K4 as a minor.

Problem 14.11. A graph G is outerplanar if it can be drawn in the plane with no
edge crossings, such that all vertices are incident to the outer face. Prove that for
any outerplanar graph G, tw(G) ≤ 2. Are there graphs of treewidth 2 that are not
outerplanar?

Problem 14.12 (l). Prove that the treewidth of a simple graph cannot increase
after subdividing any of its edges. Show that in the case of multigraphs the same
holds, with the exception that the treewidth can possibly increase from 1 to 2.

Problem 14.13. A graph G is called d-degenerate if every subgraph of G contains
a vertex of degree at most d. Prove that graphs of treewidth k are k-degenerate.

Problem 14.14. Let G be an n-vertex graph of treewidth at most k. Prove that
the number of edges in G is at most kn.

Problem 14.15 (A). For a graph G given together with its tree decomposition of

width t, construct in time tO(1)n a data structure such that for any two vertices
x, y ∈ V (G), it is possible to check in time O(t) if x and y are adjacent. You should
not use any results on hashing, hash tables, etc.

Problem 14.16. Show that the following problems can be solved in time f(k)·nO(1)

on an n-vertex graph given together with its tree decomposition of width at most k:

• Odd Cycle Transversal,
• MaxCut,

312 Introduction to treewidth

• q-Coloring,
• Feedback Vertex Set,
• Hamiltonian Path and Longest Path,
• Hamiltonian Cycle and Longest Cycle,
• Chromatic Number,
• Cycle Packing,
• Connected Vertex Cover,
• Connected Dominating Set,
• Connected Feedback Vertex Set.

Problem 14.17. List Coloring is a generalization of Vertex Coloring: given a
graph G, a set of colors C, and a list function L : V (G) → 2C (that is, a subset
of colors L(v) for each vertex v), the task is to assign a color c(v) ∈ L(v) to each
vertex v ∈ V (G) such that adjacent vertices receive different colors. Show that on an

n-vertex graph G, List Coloring can be solved in time nO(tw(G)).

Problem 14.18. Show that for a fixed graph H, the property “graph G does not
contain H as a minor” is expressible in MSO2.

Problem 14.19. We define a k-tree inductively. A clique on k+1 vertices is a k-tree.
A new k-tree G can be obtained from a smaller k-tree G′ by adding a new vertex
and making it adjacent to k vertices of G′ that form a clique in G′. Show that every
k-tree is a chordal graph of treewidth k. Prove that for every graph G and integer k,
G is a subgraph of a k-tree if and only if tw(G) ≤ k.

Problem 14.20. Show that every maximal treewidth k-graph G, i.e., a graph such
that adding any missing edge to G increases its treewidth, is a k-tree.

Problem 14.21. Give a linear time algorithm to compute set B described in
Lemma 14.49.

Problem 14.22. Prove the following.

• �k has a tree-decomposition of width k.
• �k contains a well linked set X of size k.

Problem 14.23. Prove Theorem 14.58 assuming Theorem 14.56.

Problem 14.24. An n-vertex graph G is called an α-edge-expander if for every set
X ⊆ V (G) of size at most n/2 there are at least α|X| edges of G that have exactly
one endpoint in X. Show that the treewidth of an n-vertex d-regular α-edge-expander
is Ω(nα/d) (in particular, linear in n if α and d are constants).

Problem 14.25 (A). LetH be a planar graph. Show that there is a constant cH such
that the treewidth of every H-minor-free graph is at most cH . Show that planarity
requirement in the statement of the exercise is crucial, i.e., that K5-minor-free graphs
can be of any treewidth.

Problem 14.26. Prove the following version of the classic result of Lipton and
Tarjan on separators in planar graphs. For any planar n-vertex graph G and W ⊆
V (G), there is a set S ⊆ V (G) of size at most 9

2

√
n+ 1 such that every connected

component of G− S contains at most
|W |

2
vertices of W .

Bibliographic notes

The treewidth of a graph is a fundamental graph parameter. It was

introduced by Halin (1976) and rediscovered by Robertson and Sey-

14.6 Obstructions to bounded treewidth 313

mour (1984, 1986a,b) and, independently, by Arnborg and Proskurowski

(1989). Courcelle’s theorem is from Courcelle (1992, 1990), and Menger’s

theorem is from Menger (1927). For a more in-depth coverage, we refer

to surveys such as (Bodlaender, 2006) and (Cygan et al., 2015, Chap-

ter 7). Our presentation of the definition of treewidth is inspired by Reed

(1997).

Fomin et al. (2015a) gives an algorithm to compute the treewidth of

G with running time O(1.7347n). For small values of k one can do much

better. In particular, Bodlaender (1996) gave a 2O(k3)n time algorithm

to decide whether an input graph G has treewidth at most k. There also

exists an algorithm with running time 2O(k)n that either decides that

the input graph G does not have treewidth at most k, or concludes that

it has treewidth at most 5k + 4 (Bodlaender et al., 2016a). The current

best polynomial-time approximation algorithm for treewidth by Feige

et al. (2008) has ratio O(
√

log tw(G)), and it is known that treewidth

is hard to approximate within any constant factor in polynomial time

under the Small Set Expansion conjecture (Wu et al., 2014). On minor-

free graph classes things are a bit better; for any fixed graph H there

is a constant factor approximation for treewidth on graphs excluding H

as a minor. Specifically, on planar graph there is a polynomial time 3
2

approximation algorithm for treewidth (Seymour and Thomas, 1994),

as well as a linear time constant factor approximation algorithm for

treewidth (Kammer and Tholey, 2016). In fact, it is not even known

whether computing treewidth of planar graphs exactly is polynomial

time solvable or NP-complete. This remains a challenging open problem

in graph algorithms.

A weaker variant of Theorem 14.55 which only guarantees the exis-

tence of a grid of size Ω(5
√

log n) was given by Robertson and Seymour

(1986b). This was later improved to Ω(3
√

log n) by Kawarabayashi and

Kobayashi (2012), and by Leaf and Seymour (2012). It was open for

many years whether a polynomial relationship could be established be-

tween the treewidth of a graph G and the size of its largest grid minor.

Chekuri and Chuzhoy (2016) established for the first time such a poly-

nomial relationship. Later, Chuzhoy proved Theorem 14.55 in (Chuzhoy,

2015, 2016).

A thorough exposition of dynamic programming algorithms on graph

of bounded treewidth, in particular the algorithm of running times 2k ·
kO(1) ·n for Independent Set can be found in the book (Cygan et al.,

2015). An algorithm of running time 3k · nO(1) for Dominating Set is

based on subset convolution. With more ideas, it is possible to implement

314 Introduction to treewidth

the subset convolution for Dominating Set to run in time 3k · kO(1) ·n
(van Rooij et al., 2009).

15

Bidimensionality and protrusions

Bidimensionality provides a general explanation why many problems admit

polynomial and linear kernels on planar and other classes of graphs. Roughly

speaking, a problem is bidimensional if the solution value for the problem on

a k × k-grid is Ω(k2), and contraction/removal of edges does not increase the

solution value. In this chapter we introduce the theory of bidimensionality, and

show how bidimensionality can be used to decompose a graph into a specific type

of decomposition called protrusion decomposition. Protrusion decompositions

will be used in the following chapter for obtaining meta-kernelization results.

In this chapter we show how to use protrusion decomposition to obtain a linear

kernel for Dominating Set on planar graphs.

Many NP-complete graph problems remain NP-complete even when

the input graph is restricted to be planar. Nevertheless, many such prob-

lems become significantly easier. For example, consider the Dominating

Set problem. Here the input is a graph G, and the task is to find a set

S as small as possible such that N [S] = V (G). In the decision variant,

an integer k is provided and the task is to determine whether such a set

of size at most k exists. On general graphs Dominating Set admits no

kernel of size f(k) for any f unless FPT = W[1], no 2o(n) time algorithm

under the Exponential Time Hypothesis, and no o(log n)-approximation

algorithm unless P =NP. On planar graphs Dominating Set admits a

linear kernel, a 2O(
√
k) + O(n) time algorithm, and a polynomial time

approximation scheme, that is, a (1 + ε) approximation algorithm for

every fixed ε > 0.

The “bidimensionality” framework introduced by Demaine et al. (2005)

allows us to simultaneously explain the existence of linear kernels, subex-

315

316 Bidimensionality and protrusions

ponential time parameterized algorithms, and polynomial time approxi-

mation schemes for a number of problems on planar graphs. The frame-

work also allows to lift these algorithms to more general classes of graphs,

namely, classes of graphs excluding some fixed graph H as a minor. In

this chapter and the next, we will describe a “stripped down” version

of bidimensionality sufficient to give linear kernels and subexponential

time parameterized algorithms for problems on planar graphs. We will

not describe how bidimensionality is useful for designing approximation

algorithms, and only outline how to lift the kernelization results from

planar graphs to more general classes of graphs.

In this chapter, we will prove the graph decomposition theorems that

are at the core of bidimensionality, and showcase how these are useful

by giving a linear kernel for the Dominating Set problem on planar

graphs.

15.1 Bidimensional problems

We will restrict our attention to vertex or edge subset problems. A vertex

subset problem Π is a parameterized problem where the input is a graph

G and an integer k; the parameter is k. Let φ be a computable function

that takes as input a graph G and a set S ⊆ V (G), and outputs true

or false. The interpretation of φ is that it defines the space of feasible

solutions S for a graphG, by returning a Boolean value denoting whether

S is feasible or not. For example, for the Dominating Set problem we

have that φ(G,S) = true if and only if N [S] = V (G).

For a function φ, we define two parameterized problems, called

vertex-subset problems: φ-Minimization and φ-Maximization. In both

problems, the input consists of a graph G and a parameter k. φ-

Minimization asks whether there exists a set S ⊆ V (G) such that

|S| ≤ k and φ(G,S) = true. Similarly, φ-Maximization asks whether

there exists a set S ⊆ V (G) such that |S| ≥ k and φ(G,S) = true.

Edge subset problems are defined similarly, with the only difference

being that S is a subset of E(G) rather than V (G).

Let us remark that the definition of vertex/edge subset problems also

captures many problems which, at a first glance, do not look as if they

could be captured by this definition. One example is the Cycle Pack-

15.1 Bidimensional problems 317

ing problem. Here, the input is a graph G and an integer k, and the

task is to determine whether there exist k cycles C1, . . . , Ck in G that

are pairwise vertex-disjoint. This is a vertex subset problem because

G has k pairwise vertex-disjoint cycles if and only if there exists a set

S ⊆ V (G) of size at least k such that φ(G,S) is true, where φ(G,S) is

defined as follows.

φ(G,S) = ∃V ′ ⊆ V (G), E′ ⊆ E(G) such that

• S ⊆ V (G),

• each connected component of G′ = (V ′, E′) is a cycle,

• and each connected component of G′ contains exactly

one vertex of S.

This definition may seem a bit silly, since checking whether φ(G,S) is

true for a given graph G and set S is NP-complete. In fact, this problem

is considered to be more difficult than Cycle Packing. Nevertheless,

this definition shows that Cycle Packing is a vertex subset problem,

which will allow us to give a linear kernel for Cycle Packing on planar

graphs in the next chapter.

For any vertex or edge subset minimization problem Π, we have that

(G, k) ∈ Π implies that (G, k′) ∈ Π for all k′ ≥ k. Similarly, for a vertex

or edge subset maximization problem, we have that (G, k) ∈ Π implies

that (G, k′) ∈ Π for all k′ ≤ k. Thus the notion of “optimality” is well

defined for vertex and edge subset problems.

Definition 15.1. For a φ-Minimization problem Π, we define

OPTΠ(G) = min{k : (G, k) ∈ Π}.

If there is no k such that (G, k) ∈ Π, then we put OPTΠ(G) = +∞.

For a φ-Maximization problem Π, we define

OPTΠ(G) = max{k : (G, k) ∈ Π}.

If there is no k such that (G, k) ∈ Π, then we put OPTΠ(G) = −∞.

For many problems it holds that contracting an edge cannot increase

the size of the optimal solution. We will say that such problems are

contraction-closed. Formally, we have the following definition.

Definition 15.2 (Contraction-closed problem). A vertex/edge subset

problem Π is contraction-closed if for any graph G and edge uv ∈ E(G),

OPTΠ(G/uv) ≤ OPTΠ(G).

318 Bidimensionality and protrusions

We are now ready to give the definition of bidimensional problems. In

this definition we use the graph Γk, which was defined in Section 14.6.

Definition 15.3 (Bidimensional problem). A vertex-subset problem Π

is bidimensional if it is contraction-closed, and there exists a constant

c > 0 such that OPTΠ(Γt) ≥ ct2 for every t > 0.

There are other kinds of bidimensionality which are not considered in

this book. The problem we call bidimensional in this book are usually

called contraction-bidimensional in the literature.

It is usually quite easy to determine whether a problem is bidimen-

sional. Take for example Independent Set. Contracting an edge can

never increase the size of a maximum independent set, so the problem

is contraction-closed. Furthermore, in Γk, the vertex set

{(x, y) : (x+ y) ≡ 0 mod 2} \ {(k, k)}

forms an independent set of size at least k2

2 − 1. Thus Independent

Set is bidimensional.

In Section 14.4, we gave an algorithm for Independent Set running

in time 2O(t)nO(1), if a tree decomposition of the input graph G of width

t is given as input. We can use this algorithm, together with the fact that

Independent Set is bidimensional, in order to give a subexponential

parameterized algorithm for Independent Set on connected planar

graphs. First we give a simple but powerful decomposition lemma that

works for any bidimensional problem.

Lemma 15.4 (Parameter-treewidth bound). Let Π be contraction-bidi-

mensional problem. Then there exists a constant αΠ such that for any

planar connected graph G, tw(G) ≤ αΠ ·
√
OPTΠ(G). Furthermore,

there exists a polynomial time algorithm that given G, produces a tree-

decomposition of G of width at most αΠ ·
√
OPTΠ(G).

Proof. Consider a bidimensional problem Π, and a connected planar

graph G. By Theorem 14.58, G contains Γbtw(G)/27c as a contraction.

Since Π is bidimensional, it follows that there exists a constant c > 0

such that OPTΠ(Γk) ≥ ck2. Since Π is contraction-closed, it then follows

that OPTΠ(G) ≥ cb tw(G)
27 c2. Taking the square root on both sides and

multiplying both sides by an appropriate constant yields the lemma.

In the proof of Lemma 15.4 we used the connectivity of G only in the

call to Theorem 14.58. In Problem 15.2 we shall see that the condition

that G is connected is in fact necessary.

15.2 Separability and treewidth modulators 319

We can use Lemma 15.4 to give a parameterized algorithm for Inde-

pendent Set on connected planar graphs as follows. On input (G, k)

construct a tree-decomposition of G of width at most αΠ ·
√
OPTΠ(G).

If the width of this decomposition is at least αΠ

√
k, then OPTΠ(G) ≥ k

and the algorithm returns “yes”. Otherwise, the algorithm finds a max-

imum size independent set in G using the algorithm from Section 14.4

in time 2O(
√
k)nO(1).

In the above argument, the only properties of Independent Set

that we used were that the problem is bidimensional and that it has

an efficient algorithm on graphs of bounded treewidth. Thus the same

argument goes through (with different constants) for any bidimensional

problem that has an efficient algorithm on bounded treewidth graphs.

We have the following result.

Theorem 15.5 (Demaine et al. (2005)). Let Π be a bidimensional

problem such that there exists an algorithm for Π with running time

2O(t)nO(1) when a tree decomposition of the input graph G of width t

is supplied as input. Then Π is solvable in time 2O(
√
k)nO(1) on planar

connected graphs.

The proof of Theorem 15.5 is identical to the algorithm we described

for Independent Set.

15.2 Separability and treewidth modulators

We now restrict our attention to problems Π that are somewhat well-

behaved in the sense that whenever we have a small separator in the

graph that splits the graph in two parts, L and R, the intersection |X∩L|
of L with any optimal solution X to the entire graph is a good estimate

of OPTΠ(G[L]). This restriction allows us to prove decomposition the-

orems which are very useful for giving kernels. Similar decomposition

theorems may also be used to give approximation schemes, but we do

not cover this topic here.

Let us recall that for a subset of vertices L of a graph, we use ∂(L)

to denote the border of L, that is, the set of vertices of L adjacent to

vertices outside L. In other words, the vertices in ∂(L) separate L\∂(L)

from the remaining part of the graph.

Definition 15.6 (Separability). Let f : N ∪ {0} → Q+ ∪ {0} be a

function. We say that a vertex subset problem Π is f -separable if for any

320 Bidimensionality and protrusions

graph G and subset L ⊆ V (G) such that |∂(L)| ≤ t, it holds that

|OPTΠ(G) ∩ L| − f(t) ≤ OPTΠ(G[L]) ≤ |OPTΠ(G) ∩ L|+ f(t).

Problem Π is called separable if there exists a function f such that Π is

f -separable. Sometimes, when function f(t) is linear, i.e. f(t) = β · t for

some β > 0, we call the problem linear-separable.

Thus for a separable problem Π, for every induced subgraph G[L] of a

graph G, the number of vertices in the optimal solution on G[L] is within

an additive factor depending only on the size of the border of L from the

number of vertices of the global optimal solution contained in L. The

abbreviation (c · t)-separable stands for f -separable where f : Z→ Z is

the function that for all t ∈ Z assigns c · t.
For example, Vertex Cover is separable. Indeed, if S is a vertex

cover of G, then the set S∩L is also a vertex cover of G[L]. Moreover, if

SL is a vertex cover of G[L], then the set (S \L)∪ ∂(L)∪SL is a vertex

cover of G. Thus,

|S ∩ L| − t ≤ |SL| ≤ |S ∩ L|.

Similarly, it can be shown Independent Set, Dominating Set or

Connected Dominating Set are separable, and this is left as an

exercise (see also Problem 15.3).

A nice feature of separable bidimensional problems is that it is possible

to extend Lemma 15.4 to disconnected graphs, since the issue of different

connected components influencing the value of the optimal solution in a

complex way disappears.

Lemma 15.7 (Parameter-treewidth bound for separable problems). Let

Π be bidimensional and separable problem. Then there exists a constant

αΠ such that for any planar graph G, tw(G) ≤ αΠ ·
√
OPTΠ(G). Fur-

thermore, there exists a polynomial time algorithm that given G, produces

a tree-decomposition of G of width at most αΠ ·
√
OPTΠ(G).

Proof. The border ∂(C) of every connected component C of the graph

G is an empty set. Thus, because Π is separable, there exists a constant

c such that for any graph G and connected component C of G, it holds

that

OPTΠ(G[C]) ≤ |OPTΠ(G) ∩ C|+ c ≤ OPTΠ(G) + c.

By Lemma 15.4, we can find in polynomial time a tree decomposition

of G[C] of width at most αΠ ·
√
OPTΠ(G) + c. The lemma is proved by

15.2 Separability and treewidth modulators 321

increasing the constant αΠ appropriately, and joining the tree decompo-

sitions of the connected components of G to form a tree-decomposition

of G.

It might seem strange that it is possible to give, in one shot, subexpo-

nential time algorithms, approximation schemes and kernels for a wide

range of seemingly different problems. One of the reasons why this is

possible is the existence of “canonical” bidimensional problems. We say

that a set S ⊆ V (G) is a treewidth-η-modulator if tw(G − S) ≤ η. We

will consider the following problems, with one problem for every integer

η ≥ 0. In the Treewidth-η Modulator problem, the input is a graph

G and an integer k ≥ 0, and the question is whether there is a set S

such that |S| ≤ k and tw(G− S) ≤ η.

It is a good exercise to prove that for every η ≥ 0, the Treewidth-η

Modulator problem is bidimensional and separable (see Problem 15.4).

We will show that the Treewidth-η Modulator problems are canon-

ical bidimensional problems in the following sense.

Lemma 15.8. For any ε > 0, β > 0, and bidimensional (β · t)-separable

problem Π, there exists an integer η ≥ 0 such that any planar graph G

has a treewidth-η-modulator S of size at most ε ·OPTΠ(G).

Proof. Let αΠ be the constant from Lemma 15.7. In particular, there

exists a polynomial time algorithm that, given a planar graph G, pro-

duces a tree-decomposition of G of width at most αΠ ·
√
OPTΠ(G). Set

α = max(αΠ, 1). Further, if β < 1 then Π is t-separable, and so we may

assume without loss of generality that β ≥ 1.

We now define a few constants, and set η based on α, β and ε. The

reason why these constants are defined the way they are will become

clear during the course of the proof.

• Set γ = 4αβ,
• set δ = 10γ(2ε+ 1),
• set k0 = (60γ)2 · (1 + 1

ε2), and observe that k0 satisfies 2
3k0 + γ

√
k0 ≤

k0 − 1 and 0 ≤ ε
3k0 − δ

√
1
3k0, and finally

• set η = α ·
√
k0.

By Lemma 15.7, any graph G such that OPTΠ(G) ≤ k0 has treewidth

at most α ·
√
k0 = η. Then, G has a treewidth-η-modulator of size 0. To

deal with larger values of OPTΠ(G), we prove by induction on k that

for any k ≥ 1
3k0, any planar graph G such that OPTΠ(G) ≤ k has a

treewidth-η-modulator of size at most εk − δ
√
k. In the base case, we

322 Bidimensionality and protrusions

consider any k such that 1
3k0 ≤ k ≤ k0. Recall that by Lemma 15.7, any

graph G such that OPTΠ(G) ≤ k0 has a treewidth-η-modulator of size

0, and

0 ≤ ε1

3
k0 − δ

√
1

3
k0 ≤ εk − δ

√
k

by the choice of k0. In the last inequality, we used that the function εk−
δ
√
k is monotonically increasing from the first point where it becomes

positive.

For the inductive step, let k > k0 and suppose that the statement is

true for all values below k. We prove the statement for k. Consider a

planar graph G such that OPTΠ(G) ≤ k. By Lemma 15.7, the treewidth

of G is at most tw(G) ≤ α ·
√
k. By Lemma 14.50 applied to the weight

function which assigns 1 to vertices of OPTΠ(G) and 0 to all other

vertices, V (G) has a partition into L, S and R such that |S| ≤ α ·√
k+1, max |L ∩OPTΠ(G)|, |R ∩OPTΠ(G)| ≤ 2

3 |OPTΠ(G)| and there

are no edges from L to R. Since L and R are disjoint, there exists a

fraction 1
3 ≤ a ≤ 2

3 such that |L ∩ OPTΠ(G)| ≤ a|OPTΠ(G)| and

|R ∩OPTΠ(G)| ≤ (1− a)|OPTΠ(G)|.
Consider now the graph G[L ∪ S]. Since L has no neighbors in R (in

G) and Π is separable, it follows that

OPTΠ(G[L ∪ S]) ≤ |OPTΠ(G) ∩ (L ∪ S)|+ β|S|
≤ ak + (α

√
k + 1) + β(α

√
k + 1)

= ak + (α
√
k + 1)(β + 1) ≤ ak + γ

√
k.

Here the last inequality follows from the assumption that k > k0 ≥ 1 and

the choice of γ. Since k > k0, the properties of k0 imply that 2
3k+γ

√
k ≤

k − 1. Further ak + γ
√
k ≥ 1

3k0 since a ≥ 1
3 . Thus we may apply the

induction hypothesis to G[L ∪ S] and obtain a treewidth-η-modulator

ZL of G[L ∪ S], such that

|ZL| ≤ ε(ak + γ
√
k)− δ

√
ak + γ

√
k

≤ ε(ak + γ
√
k)− δ

√
k
√
a.

An identical argument, applied toG[R∪S], yields a treewidth-η-modulator

ZR of G[R ∪ S] such that

|ZR| ≤ ε
(

(1− a)k + γ
√
k
)
− δ
√
k
√

1− a.

We now make a treewidth-η-modulator Z of G as follows. Let Z =

ZL ∪ S ∪ ZR. The set Z is a treewidth-η-modulator of G because every

15.2 Separability and treewidth modulators 323

connected component of G−Z is a subset of L or R, and ZL and ZR are

treewidth-η-modulators for G[L∪ S] and G[R ∪ S] respectively. Finally,

we bound the size of Z:

|Z| ≤ |ZL|+ |ZR|+ |S|

≤ ε(ak + γ
√
k)− δ

√
k
√
a+ ε

(
(1− a)k + γ

√
k
)
− δ
√
k
√

1− a+ γ
√
k

≤ εk − δ
√
k
(√

1− a+
√
a
)

+
√
kγ(2ε+ 1)

≤ εk − δ
√
k +
√
k

(
γ(2ε+ 1)− δ

10

)

≤ εk − δ
√
k.

In the transition from the third line to the fourth line, we used that√
1− a+

√
a ≥ 11

10 for any a between 1
3 and 2

3 .

Finally, we observe that the statement of the lemma follows from

what has just been proved. If OPTΠ(G) ≤ k0 then G has a treewidth-

η-modulator of size 0 ≤ ε · OPTΠ(G). If OPTΠ(G) > k0, then G has

a treewidth-η-modulator of size at most ε · OPTΠ(G) − δ
√
OPTΠ(G).

This completes the proof.

Lemma 15.8 is quite powerful, but has the significant drawback that

it is not constructive, in the sense that it heavily relies on an unknown

optimum solution in order to find the treewidth modulator. Thus it is not

clear how to compute a treewidth-η-modulator of appropriate size when

given G as input. This is mostly an issue when designing approximation

schemes based on bidimensionality. For the purposes of kernelization

we will be able to circumvent this problem without making Lemma 15.8

constructive. Another issue with Lemma 15.8 is that the constants in the

lemma are quite big. Thus a natural question is whether it is possible

to prove constructive variants of Lemma 15.8 for particular choices of

problem Π and constant ε. We do this now for the Dominating Set

problem.

Lemma 15.9. Let Π be the Dominating Set problem. There is a poly-

nomial time algorithm that, given a connected planar graph G, outputs

a set S such that

• |S| ≤ 6 ·OPTΠ(G),

• G[S] is connected,

• N [S] = V (G), and

• tw(G− S) ≤ 2.

324 Bidimensionality and protrusions

For the proof of Lemma 15.9 we will need a claim about the relation

between dominating sets and connected dominating sets in G. A set S is a

connected dominating set if S is a dominating set and G[S] is connected.

The proof of the following claim is given as an exercise (see Problem

15.5).

Claim 15.10. There is a polynomial time algorithm that given as input

a connected graph G and a dominating set X of G, computes a connected

dominating set S of G such that X ⊆ S and |S| ≤ 3|X|.

Proof of Lemma 15.9. The Dominating Set problem admits a polyno-

mial time 2-approximation algorithm on planar graphs. (In fact, Dom-

inating Set even admits a polynomial time approximation scheme on

planar graphs, but for our purposes 2-approximation is sufficient.) We

compute a dominating set X of size at most 2 ·OPTΠ(G). We then use

Claim 15.10 to compute a connected dominating set S of G of size at

most 3|X| ≤ 6 ·OPTΠ(G).

We now show that tw(G−S) ≤ 2. Pick a vertex v ∈ S, and consider a

plane embedding of G such that v is on the outer face. This embedding

also yields an embedding of G − S. Suppose that we wanted to add S

back into G − S to form G. Since G[S] is connected, all vertices of S

must be inserted in the same face of G−S. But v is on the outer face of

G, so all vertices of S are to be re-inserted into the outer face of G− S.

Since S is a dominating set, it follows that each vertex in G − S must

be incident to the outer face of G− S, and hence G− S is outerplanar.

We showed in Problem 14.11 that the treewidth of outerplanar graphs

is at most 2. This concludes the proof.

15.3 Protrusion decompositions

Lemma 15.8, or Lemma 15.9 in the case of Dominating Set, allows

us to identify a relatively small vertex set, which we call a treewidth

modulator, such that the remaining graph has a tree decomposition of

constant width. However, in order to get a kernel we need a decompo-

sition which controls the interaction between the treewidth modulator

and the remaining part of the graph.

We start from the definition of protrusion, the notion playing impor-

tant role in this and the following chapter. Recall that the boundary of

a vertex set X in a graph G is the set ∂(X) of vertices in X that have

at least one neighbor outside of X.

15.3 Protrusion decompositions 325

Definition 15.11 (Protrusion). For integer t > 0, a t-protrusion in a

graph G is a vertex set X such that tw(G[X]) ≤ t and |∂(X)| ≤ t.

In other words, while the size of X can be large, the treewidth of

G[X] as well as the number of boundary vertices of X is bounded by

a constant t. Let us note that in the definition of protrusion we do not

require graph G[X] to be connected.

Definition 15.12 (Protrusion decomposition). For integers α, β, and t,

an (α, β, t)-protrusion decomposition of G is a tree-decomposition (T, χ)

of G such that the following conditions are satisfied.

• T is a rooted tree with root r and |χ(r)| ≤ α,

• for every node v ∈ V (T) except r, we have |χ(v)| ≤ t,
• and r has degree at most β in T .

Thus the size of the root bag r of T is at most α and all other bags are

of size at most t. Moreover, T − r has at most β connected components,

and for every connected component B of T − r, the set of vertices χ(B),

which is the set of vertices of G contained in bags of B, is a t-protrusion

in G.

For kernelization purposes, we will search for an (α, β, t)-protrusion

decomposition with α and β being of order k and t a small constant.

We will show that in planar graphs, a treewidth-η-modulator S can be

used to get a (α, β, t)-protrusion decomposition of G, where t is some

function of η. The main idea of the proof is to first construct a protrusion

decomposition in which α and t are controlled, while β is not, and then

to observe that in planar graphs β is upper bounded by O(α).

Lemma 15.13. If a planar graph G has a treewidth-η-modulator S, then

G has a set Z ⊇ S, such that

• |Z| ≤ 4(η + 1)|S|+ |S|,
• each connected component of G−Z has at most 2 neighbors in S and

at most 2η neighbors in Z \ S.

Furthermore, given G, S and a tree decomposition (T, χ) of G − S, Z

can be computed in polynonial time.

Proof. Root the tree T at an arbitrary root node r. For a node v ∈ VT , let

Tv be the subtree of T rooted at v. We will iteratively mark some nodes in

the decomposition tree T . Initially, the set M0 of marked nodes is empty.

In the i-th iterative step, we let vi be the lowermost node in T such that

some connected component Ci of G[χ(Tvi −Mi−1)] has at least three

326 Bidimensionality and protrusions

neighbors in S. We mark vi, or, more formally, we set Mi = Mi−1∪{vi}.
The process stops when every component C of G[χ(T−Mi)] has at most

2 neighbors in S. Since |Mi| = i, the process must stop after at most

t ≤ |V (T)| iterations.

We now show that the process has to stop after only 2|S| iterations. To

that end, consider the sequence of components C1, C2, . . . , Ct encoun-

tered during the execution. We will prove that if j > i, then Cj ∩Ci = ∅.
Suppose not, and let x ∈ Ci ∩ Cj . Observe that vj /∈ V (Tvi), since this

would contradict the choice of vi and vj in the process—in particular,

this would mean that vj is lower than vi although i < j. Furthermore,

Cj ∩χ(vj) 6= ∅, since vj is the lowermost node in T such that some con-

nected component Cj of G[χ(Tvj −Mj−1)] has at least three neighbors

in S. The vertex x cannot be in χ(vi) since vi ∈ Mi and Cj is disjoint

from χ(Mi). Thus there exists a node u ∈ V (Tvi), u 6= vi, such that

x ∈ χ(u). But then χ−1(Cj) contains a node outside Tvi (namely vj)

and a node inside Tvi (namely u). Thus χ−1(Cj) must also contain vi
implying that Cj ∩χ(vi) is non-empty. But we have already argued that

this set must be empty, a contradiction. Thus Ci ∩ Cj = ∅.
Next we argue that t ≤ 2|S|. Consider the graph G′ obtained from

G[S ∪ C1 ∪ C2 . . . ∪ Ct] by contracting each Ci into a single vertex ci.

Note that G′ is a minor of G, and therefore G′ is planar. Further, every

vertex ci has at least 3 neighbors in S (since Ci has at least 3 neighbors

in S). Thus, by Lemma 13.3, we have that t ≤ 2|S|.
Let us remind that in Section 9.3.3 we defined the least common an-

cestor closure operation. We apply this operation here. At this point we

set M = LCA-Closure(Mt) and Z = S ∪ χ(M). By Lemma 9.28, we

have that |Z| ≤ 4(η + 1)|S| + |S|. Furthermore, each component C of

G− Z has at most 2 neighbors in S by the construction of Mt. Finally

χ−1(C) ⊆ V (T) \M . The connected component of T −M that contains

χ−1(C) has at most 2 neighbors in M by Lemma 9.27. Thus C has at

most 2η neighbors in Z \ S. The existential proof above can directly be

turned into a polynomial time algorithm for computing Z.

Next we show how to turn the output of Lemma 15.13 into a protrusion

decomposition of G.

Lemma 15.14. If a planar graph G has a treewidth-η-modulator S,

then G has a ((4(η + 1) + 1)|S|, (20(η + 1) + 5)|S|, 3η + 2)-protrusion

decomposition, such that S is contained in the bag of the root node of

the protrusion decomposition. Furthermore, there is a polynomial time

15.3 Protrusion decompositions 327

algorithm that given G, S, and a tree decomposition (T, χ) of G − S of

width at most η, computes such a protrusion decomposition of G.

Proof. By making use of Lemma 15.13, we construct a set Z with S ⊆ Z,

such that |Z| ≤ 4(η + 1)|S| + |S|, and each connected component of

G−Z has at most 2 neighbors in S, and at most 2η neighbors in Z \S.

Group the components into groups with the same neighborhood in S.

More precisely, let C1, . . . , Ct be the connected components of G − Z.

Define sets X1, . . . , X` with the following properties. For each i ≤ t,

there is exactly one j ≤ ` such that Ci ⊆ Xj , and for all j′ 6= j we have

Ci ∩ Xj′ = ∅. Furthermore, for all i, i′ and j, it holds that Ci ⊆ Xj

and Ci′ ⊆ Xj if and only if N(Ci) = N(Cj). The definition of the sets

X1, . . . , X` immediately gives a way to compute them from C1, . . . , Ct.

For each i ≤ ` we make a tree decomposition (Ti, χi) of G[Xi∪N(Xi)]

by starting with the tree decomposition (T, χ) of G − S, removing all

vertices not in Xi from all bags of the decomposition, turning this into

a nice tree decomposition of G[Xi] using Lemma 14.23 and, finally, in-

serting N(Xi) into all bags of the decomposition. The width of (Ti, χi)

is at most η + |N(Xi)| ≤ 3η + 2.

We now make a tree decomposition (T̂ , χ̂) which is to be our protrusion

decomposition. The tree T̂ is constructed from T1, . . . , T` by adding a

new root node r and connecting r to an arbitrary node in each tree Ti.

We set χ̂(r) = Z and for each node a ∈ V (T̂) that is in the copy of Ti
in T̂ we set χ̂(a) = χi(a). It is easy to verify that (T̂ , χ̂) is indeed a tree

decomposition of G and that every node a ∈ V (T) except for r satisfies

|χ(a)| ≤ 3η + 2. Thus (T̂ , χ̂) is a ((4(η + 1) + 1)|S|, `, 3η + 2)-protrusion

decomposition of G. To prove the statement of the lemma it is sufficient

to show that ` ≤ (20(η + 1) + 5)|S|.
Since the neighborhoods of the sets X1, . . . , X` are distinct there are

at most |Z| ≤ (4(η + 1) + 1)|S| sets Xi such that |N(Xi)| = 1. By

Lemma 13.2, there are at most 2|Z| − 4 ≤ (8(η+ 1) + 2)|S| sets Xi such

that |N(Xi)| = 2. Finally, by Lemma 13.3, there are at most 2|Z| −
4 ≤ (8(η + 1) + 2)|S| sets Xi such that |N(Xi)| ≥ 3. It follows that

` ≤ 5|Z| ≤ (20(η + 1) + 5)|S|, as claimed.

Let us remind that by Lemma 15.8, for any bidimensional linear-

separable problem Π, there exists an integer η ≥ 0 such that every planar

graph G has a treewidth-η-modulator S of size at most ε · OPTΠ(G).

Combining this with Lemma 15.14, we have the following theorem.

Theorem 15.15. For any bidimensional linear-separable problem Π,

328 Bidimensionality and protrusions

there exists a constant ` such that every planar graph G admits an (` ·
OPTΠ(G), ` ·OPTΠ(G), `)-protrusion decomposition.

Let us note that if Π is a minimization problem, then for every yes-

instance (G, k) of Π, we have that k ≥ OPTΠ(G) and hence G admits a

(` · k, ` · k, `)-protrusion decomposition. If Π is a maximization problem,

then for every k ≤ OPTΠ(G), (G, k) is a yes-instance of Π. Then for

every parameter k > 0 such that G does not admit a (` · k, ` · k, `)-
protrusion decomposition, we have that (G, k) is a yes-instance of Π.

15.4 Kernel for Dominating Set on planar graphs

We will now show how to use protrusion decompositions in order to

obtain a linear kernel for Dominating Set on planar graphs. Recall

that a dominating set is a vertex set S such that N [S] = V (G), and the

Dominating Set problem asks to find a dominating set of size at most

k in the input graph. The kernel heavily relies on dynamic programming

over graphs of bounded treewidth, so we encourage the reader to refresh

the contents of Section 14.4 and 14.4.2 before proceeding. Before starting

to describe the kernel, we need to define nice protrusion decompositions.

For each node a ∈ V (T), we define T̂a to be the subtree of T̂ rooted at

a, and χ̂a to be the restriction of χ̂ to Ta. Then, for each node a of the

tree T̂ we have that (T̂a, χa) is a tree decomposition of G[χ̂(Ta)].

Let us recall that a tree decomposition is semi-nice, see Definition 14.24,

if it satisfies all of the properties of nice decompositions except for the

one that the bag of the root should be empty.

Definition 15.16. A protrusion decomposition (T̂ , χ̂) of G is a nice

protrusion decomposition if for every non-root node a of T̂ , (T̂a, χa) is

a semi-nice tree decomposition of G[χ̂(Ta)].

Just as it is possible to turn any tree decomposition into a nice tree

decomposition of the same width, one can make any protrusion decom-

position nice.

Lemma 15.17. There is an algorithm that given a graph G and an

(α, β, γ)-protrusion decomposition (T̂ , χ̂) of G, outputs a nice (α, β, γ)-

protrusion decomposition (T̂ ′, χ̂′) of G in time O((n+ |V (T)|)O(1)).

The proof of Lemma 15.17 is almost identical to the proof of Lemma 14.23

and left as an exercise (see Problem 15.6).

15.4 Kernel for Dominating Set on planar graphs 329

Our kernel for planar Dominating Set is based on the following

ideas.

Given a planar graph G, suppose that we found a vertex subset Z of

size O(k) such that if G contains a dominating set of size at most k,

then there is also some dominating set S ⊆ Z of size at most k. If we

have such a set Z, then we can obtain a linear kernel as follows. First, we

apply a reduction rule that deletes edges whose both endpoints are not

in Z. Since Z contains a dominating set of size k, the reduced instance

G′ is equivalent to G. In the graph G′, the set Z is a vertex cover and

we already know that Dominating Set (vc) on planar graphs admits

a linear kernel (see Problem 13.5).

So to obtain a kernel, it is sufficient to find such a set Z. We

achieve this as follows. We construct in polynomial time a nice

(O(k),O(k),O(1))-protrusion decomposition of G. Then to compute the

desired set Z of size O(k) we will use the dynamic programming algo-

rithm for Dominating Set described in Section 14.4.2, but stop the

computation before arriving at the root of the decomposition.

We start with the description of how we compute a set Z of size O(k)

such that there exists a minimum dominating set of G which is fully

contained in Z.

Given an input (G, k) to Dominating Set, we apply Lemma 15.9

on G. If the output treewidth-2-modulator S of Lemma 15.9 has size

more than 6k, this implies that G cannot have a dominating set of size

at most k, and we may safely return “no”. If |S| ≤ 6k, then we apply

Lemma 15.14 on S, and obtain a (78k, 390k, 8)-protrusion decomposition

(T̂ , χ̂) of G. Using Lemma 15.17, we can transform (T̂ , χ̂) into a nice

(78k, 390k, 8)-protrusion decomposition of G in polynomial time.

Next, we will use the dynamic programming algorithm for Dominat-

ing Set described in Section 14.4.2, but stop the computation before

arriving at the root of the decomposition. More precisely, we will ap-

ply Lemma 14.40 on the tree decomposition (T̂ , χ̂) using the preference

relation ≤b defined in Section 14.4.2. We apply Lemma 14.40 for each

child b of the root r of T̂ . Because all bags of (T̂ , χ̂) other than the root

have size at most 8, Lemma 14.40 yields that in polynomial time we can

compute, for every child b of the root r, a good family Fb of subsets of

χ(T̂b), such that |Fb| ≤ 38+2 = 59049.

Let Q be the set of children of r in T̂ . We define a vertex set Z as

330 Bidimensionality and protrusions

follows.

Z = χ̂(r) ∪
⋃

b∈Q

⋃

A∈Fb,|A|≤9

A.

Clearly |Z| = O(k), since χ(r) ≤ 78k, |Q| ≤ 370k, and for each b ∈ Q we

have |Fb| ≤ 59049. Tallying up, we have that |Z| ≤ k(78 + 370 · 59049 ·
9) = 196633248k. Our aim is to show that there exists a minimum size

dominating set which is fully contained in Z. Towards this goal we begin

with the following observation.

Observation 15.18. For each child b of the root r of T̂ , χ̂(b) is a

dominating set for G[χ̂(Tb)].

Proof. Since we constructed the protrusion decompositin (T̂ , χ̂) by ap-

plying Lemma 15.14 to a connected dominating set S of G, it follows

that χ̂(r) is a dominating set of G. By the properties of tree decom-

positions, all the vertices in χ̂(r) that have neighbors in χ̂(Tb) lie in

χ̂(r) ∩ χ̂(b) ⊆ χ̂(b). It follows that every vertex not in χ̂(Tv) \ χ̂(b) has

a neighbor in χ̂(b), completing the proof.

The next lemma is an immediate consequence of Observation 15.18.

Lemma 15.19. For every minimum size dominating set X of G and

every child b of the root r in T̂ , |X ∩ χ̂(T̂b)| ≤ 9.

Proof. Suppose for contradiction that there is some minimum size domi-

nating setX ofG and child b of the root r in T̂ such that |X∩χ̂(T̂b)| ≥ 10.

Let X ′ = (X \ χ̂(T̂b))∪ χ̂(b). We have that |X ′| = |X|−|χ̂(T̂b)|+ |χ̂(b)| ≤
|X| − 10 + 9 < |X|. We will show that X ′ is also a dominating set of G,

contradicting the minimality of X.

By Observation 15.18, we have that χ̂(T̂b) ⊆ N [X ′]. Since the only

vertices in χ̂(T̂b) with neighbors outside χ̂(T̂b) are in ˆχ(b), we conclude

that N [X∩ χ̂(T̂b)] ⊆ N [X ′∩ χ̂(T̂b)]. Furthermore, X \ χ̂(T̂b) = X ′ \ χ̂(T̂b)

and therefore N [X \ χ̂(T̂b)] = N [X ′ ∩ χ̂(T̂b)]. To conclude,

V (G) = N [X] = N [X ∩ χ̂(T̂b)] ∪N [X \ χ̂(T̂b)]

⊆ N [X ′ ∩ χ̂(T̂b)] ∪N [X ′ \ χ̂(T̂b)]

⊆ N [X ′].

Thus X ′ is a dominating set, yielding the desired contradiction.

At this point we know that any optimal dominating set should not

have a large intersection with ˆχ(b) for any child b of r, and that for any

b we can modify the optimal solution so that its intersection with χ̂(T̂b)

15.4 Kernel for Dominating Set on planar graphs 331

will be in Fb and have size at most 9. To prove that we can end up with

an optimum dominating set that is a subset of Z, we need to be able to

make all of these modifications simultaneously.

Lemma 15.20. G has a minimum size dominating set X such that

X ⊆ Z.

Proof. Out of all minimum size dominating sets of G, let X be a domi-

nating set minimizing |X \Z|. Suppose for contradiction that X \Z 6= ∅.
Since χ̂(r) ⊆ Z, there exists a child b of r such that (X \Z)∩ χ̂(T̂b) 6= ∅.
Consider the good family Fb. Since the family is good, there exists a set

A ∈ Fb such that X ′ = (X \ χ̂(T̂b)) ∪ A is also a minimum dominating

set of G. Since X ′ ∩ χ̂(T̂b) = A and X ′ is a minimum size dominating

set, Lemma 15.19 implies that |A| ≤ 9, and that therefore, A ⊆ Z. But

then when modifying X into X ′ we remove at least one vertex not in Z,

and only add vertices in Z. Thus |X ′ \ Z| < |X \ Z|, contradicting the

choice of X.

Lemma 15.20 leads to a very simple and powerful reduction rule.

Reduction Rule 15.1. Remove all edges with both endpoints in V (G)\
Z.

To see that Rule 15.1 is safe, note that removing an edge can only

turn a yes-instance into a no-instance, never the other way around. On

the other hand, we know by Lemma 15.20 that if G has a dominating set

of size at most k, then it has a dominating set X of size at most k such

that X ⊆ Z. Removing edges whose both endpoints are not in Z will

never remove any edges incident to X. Thus X stays a dominating set

even after Rule 15.1 has been applied. After Rule 15.1 has been applied

exhaustively, Z is a vertex cover of G of size at most 196633248k. We

can summarize the discussion so far in the following lemma.

Lemma 15.21. There is a polynomial time algorithm that given as

input a planar graph G and integer k, outputs a subgraph G′ of G and

a vertex cover Z of G′ of size at most 196633248k. The graph G′ has a

dominating set of size at most k if and only if G has.

Armed with Lemma 15.21, we can now directly apply to G′ the kernel

from Problem 13.5 for Dominating Set (vc) on planar graphs (Dom-

inating Set parameterized by vertex cover). This yields the following

theorem.

332 Bidimensionality and protrusions

Theorem 15.22. Dominating Set (vc) on planar graphs admits a

kernel with 16 · 196633248k = 3146131968k vertices.

The main components of the kernel for Dominating Set in Theo-

rem 15.22 were a proof of the existence of an (O(k),O(k),O(1))-protrusion

decomposition, as well as a dynamic programming algorithm for Domi-

nating Set on graphs of bounded treewidth. Combining Lemmata 15.8

and 15.14, it is possible to get such protrusion decompositions for all

bidimensional, O(t)-separable problems. Further, many problems ad-

mit efficient dynamic programming algorithms on graphs of bounded

treewidth. Is it possible to make these ideas work for many problems

simultaneously? The next chapter is all about achieving this goal.

Exercises

Problem 15.1. Of the following problems, which are contraction-bidimensional?

• Dominating Set;
• Odd Cycle Transversal;
• MaxCut;
• q-Coloring;
• Feedback Vertex Set;
• Independent Dominating Set;
• Hamiltonian Path and Longest Path;
• Hamiltonian Cycle and Longest Cycle;
• Chromatic Number;
• Cycle Packing;
• Connected Vertex Cover;
• Connected Dominating Set;
• Connected Feedback Vertex Set.

Problem 15.2. (i) Make a vertex-subset maximization Π such that

OPT?
Π(G) = max (0, is(G)− 2 · isolated(G))

where is(G) returns the size of the maximum independent set of G and isolated(G)
returns the number of vertices in G of degree 0.

(ii) Prove that the problem Π is contraction-bidimensional.
(iii) For every k ≥ 0, construct a graph G such that OPT?

Π(G) = 0 and tw(G) ≥ k.

Problem 15.3. Which of the problems from Problem 15.1 are separable?

Problem 15.4. Prove that for every η ≥ 0, the Treewidth-η Modulator problem
is contraction-bidimensional and separable.

Problem 15.5. Prove Claim 15.10.

Problem 15.6. Prove Lemma 15.17.

15.4 Kernel for Dominating Set on planar graphs 333

Bibliographic notes

Many problems that admit no polynomial kernel on general graphs, ad-

mit linear kernels on sparse classes of graphs, including planar graphs.

More than a decade ago, Alber et al. (2004b) proposed a linear ker-

nel for Dominating Set on planar graphs. This breakthrough led to a

flurry of research of linear kernels for problems on planar graphs, such as

Feedback Vertex Set by Bodlaender and Penninkx (2008), Cycle

Packing (Bodlaender et al., 2008), Induced Matching (Kanj et al.,

2011; Moser and Sikdar, 2007), Full-Degree Spanning Tree (Guo

et al., 2006) and Connected Dominating Set (Lokshtanov et al.,

2011a). To generalize these results, it was shown by Guo and Nieder-

meier (2007b) that problems satisfying a certain “distance property”

admit a linear kernel on planar graphs. Bodlaender et al. (2009a) sub-

sumed this result by obtaining a meta-theorem for problems admitting

linear kernels on planar graphs, or more generally, on bounded-genus

graphs. Later, this was further extended in (Fomin et al., 2010) for bidi-

mensional problems on H-minor free graphs and apex-minor-free graphs.

Such meta-theorems, based on protrusion decompositions, are the sub-

ject of the next chapter.

For Dominating Set specifically, it is known that on general graphs,

this problems has no kernel of size f(k) for any f unless FPT = W[1], (see

Downey and Fellows, 1999). Under the Exponential Time Hypothesis,

Dominating Set admits 2o(n) time algorithm, (see e.g. Lokshtanov

et al., 2011b), and it admits no polynomial time o(log n)-approximation

unless P =NP (Feige, 1998),. On the positive side, on planar graphs, in

addition to the linear kernel mentioned above, Dominating Set admits

a 2O(
√
k) + O(n) time algorithm, see (Alber et al., 2002), as well as a

polynomial time approximation scheme (see e.g. Baker, 1994).

Bidimensionality was first introduced by Demaine et al. (2005); see

also surveys (Demaine and Hajiaghayi, 2008a; Dorn et al., 2008). Be-

sides kernelization, the framework could be used to obtain parameter-

ized subexponential as well as efficient polynomial-time approximation

schemes (EPTASes). For kernelization algorithms based on bidimen-

sional arguments we refer to (Fomin et al., 2012b, 2010, 2012a). Applica-

tions for designing EPTASes are discussed in (Demaine and Hajiaghayi,

2005; Fomin et al., 2011a, 2018).

The notion of separability, in slightly different form, was introduced

by Demaine and Hajiaghayi (2005). Lemma 15.8 about Treewidth-

η Modulator of bidimensional problems is from (Fomin et al., 2010,

334 Bidimensionality and protrusions

2018). Protrusions and protrusion decompositions were introduced by

Bodlaender et al. (2009a), see also (Bodlaender et al., 2016b). The def-

inition of protrusion decomposition is from (Bodlaender et al., 2016b)

and it slightly differs the one we give in this book. There for integers

α, β, and t, an (α, β, t)-protrusion decomposition of G was defined as a

partition of V (G) into sets R0, R1, . . . , Rβ , such that the size of R0 is

at most α, and each of the sets NG[Ri], 1 ≤ i ≤ β, is a t-protrusion

and N(Ri) ⊆ R0. Up to constants, these definitions are equivalent, in a

sense that an (α, β, t)-protrusion decomposition from this book is also an

(α, β, t)-protrusion decomposition from (Bodlaender et al., 2016b), while

an (α, β, t)-protrusion decomposition from (Bodlaender et al., 2016b) is

also an (α, β, 2t)-protrusion decomposition from this book.

16

Surgery on graphs

In this chapter, we discuss a general kernelization technique of graph surgery.

We find a large protrusion, cut it from the graph and attach a smaller protru-

sion. First, we set up the conditions whose satisfaction enables us to apply the

technique; in particular, we discuss the notion of a finite integer index. Then,

we present a general reduction rule that finds a large protrusion and replaces

it by a smaller one. This rule leads to the establishment of meta-theorems

concerning kernelization. In most parts of the book we neglected the analysis

of running times of kernelization algorithms, being satisfied that the running

times are polynomial in the input size. In this chapter we make an excep-

tion and spend a significant amount of efforts to obtain linear running times.

The techniques discussed here are fundamental and can be used as subroutines

for many kernelization algorithms, thus finding the best possible polynomial

dependence for them is an important task.

In this chapter we formalize the approach described below, and apply

it to give linear kernels for a wide range of problems on planar graphs.

For many problems, whenever there is a constant size separator in

a graph, the left side of the separator may only “affect” the right side

of it in a constant number of ways. For each of the (constant number

of) possible ways that the left side could affect the right side, we could

store a single representative “left side” graph that would affect the right

side in exactly that way. If an input instance can be separated to a left

side and a right side by a constant size separator, we could proceed as

follows. First, we “analyze” the left part of the instance and determine

335

336 Surgery on graphs

in which way (out of the constant number of possibilities) it affects the

rest of the graph. We then retrieve the representative “left hand side”

graph which would affect the rest of the instance in the same way. Then

we “replace” the left part of the instance with the representative graph.

Because the part of the graph we deleted affects the graph in exactly the

same way as the representative graph we inserted, this is a safe reduction

rule. If the left hand side of the instance before the reduction rule had

more vertices than the representative we replace it with, the reduction

rule makes the input instance smaller. We think of such reduction rules

as performing surgery on the input graph–parts of the graph are cut

away and replaced with smaller gadgets that effectively have the same

function as the part that was cut away.

To deploy the strategy outlined above, first we need to formalize what

exactly we mean by two different “left hand side” graphs affecting the

rest in the same way”. It turns out that the right definition is that of

finite integer index, first defined by Bodlaender and van Antwerpen-de

Fluiter (2001) in the late 1990’s. Indeed it turns out that every separable

(see Definition 15.6) CMSO-optimization problem (see Definition 16.1)

has finite integer index. Thus, the outlined strategy applies to all such

problems.

The definition of finite integer index leads in a natural way to the

existence of a constant size set of “representative” left hand side graphs,

such that any left hand side graph affects the rest of the graph in ex-

actly the same way as one of the representatives. However, we need our

kernelization algorithms to know a set of representatives. We will get

around this problem in the following way: because the set of representa-

tive left hand side graphs is a constant size set of constant size graphs,

we will only show existence of kernelization algorithms, and assume that

the set of representatives is hard-coded in the source code of the kernel-

ization algorithm. Thus, the kernelization theorems in this chapter are

non-constructive in the following way: they state that a kernelization al-

gorithm exists for a number of problems, but there is no way to deduce

the (source code of the) algorithm from the theorem. Similarly, we know

that the sizes of the obtained kernels are linear but the functions hid-

den in the O-notation are determined non-constructively and we cannot

derive bounds on the kernel sizes from the proof.

The next step is to “analyze” the left side of the instance, namely to

Surgery on graphs 337

determine in which way it affects the rest of the graph and retrieve the

representative left hand side graph that affects the rest of the instance

in the same way. Notice that so far all we have required of the input

graph in order to apply our strategy is the existence of a small separator

in the graph. However, any constant degree vertex v gives rise to such

a small separator: the neighbors of v form a separator that splits G

into a right side, namely v, and a left side containing everything else.

If we were able to “analyze” in polynomial time the left hand side of

the instance and replace it with a constant size representative, then

the reduced instance would have constant size and we could solve the

problem in polynomial time by brute-forcing the reduced instance. Thus,

for NP-hard problems (that remain NP-hard even on instances that

contain at least one vertex of constant degree) we do not hope to analyze

all possible “left hand side graphs” in polynomial time. Instead we focus

on left hand side graphs that for some reason are easy to analyze. Here we

will only consider protrusions—left hand side graphs that have constant

treewidth. protrusion

Recall that the boundary of a vertex set X in a graph G is the set

∂(X) of vertices in X that have at least one neighbor outside of X. An

r-protrusion in a graph G is a vertex set X such that tw(G[X]) ≤ r and

|∂(X)| ≤ r. Thus, for any (α, β, η)-protrusion decomposition (T̂ , χ̂) of

G, and child b of the root r of T̂ , χ(T̂b) is an (η + 1)-protrusion in G.

For problems that have finite integer index, protrusions are the perfect

candidates for “left hand side” graphs. Indeed, we will (essentially) show

that for any problem that has finite integer index, one can in linear

time “analyze” a protrusion and produce the representative left hand

side graph that is equivalent to it. Doing this exhaustively results in an

instance where for some constant η, there are no η-protrusions of super-

constant size. In Chapter 15 we showed that for bidimensional and O(t)-

separable problems on planar graphs, every non-trivial instance can be

decomposed such that all but O(OPT) vertices are in one of O(OPT)

protrusions. It follows that a reduced instance must have size upper

bounded by O(OPT).

Definition 16.1 (CMSO-optimization problem). A vertex/edge subset

problem with feasibility function φ is a CMSO-optimization problem if

there exists a CMSO sentence ψ such that φ(G,S) = true if and only

if (G,S) |= ψ.

Now we can state the main result of this chapter.

338 Surgery on graphs

Theorem 16.2. Every bidimensional, O(t)-separable CMSO-

optimization problem admits a linear kernel on planar graphs.

For example, the problems in the next corollary are bidimensional,

O(t)-separable CMSO-optimization problems, see Problem 15.1 and 16.1.

Thus we have that

Corollary 16.3. The following problems

• Vertex Cover, Feedback Vertex Set, and more generally, Treewidth-

η Modulator,

• Dominating Set,

• Connected Dominating Set,

• Connected Vertex Cover, and

• Connected Feedback Vertex Set

admit linear kernels on planar graphs.

This chapter is devoted to proving Theorem 16.2 using the strategy

described above. The protrusion replacing technique is very general and

can be applied to many problems. Due to this we also spend a significant

amount of space to describe efficient algorithms computing protrusions.

Combined with additional ideas, this will bring us to kernelization algo-

rithms that run in linear time.

16.1 Boundaried graphs and finite integer index

Our strategy calls for replacing the “left hand side” of a separator in a

graph by a different “left hand side” that is equivalent to it. The part

that is being replaced lives inside our input instance G. However, prior to

being inserted into G, the part that we insert into G exists independently

of any graph. We now set up the formalism to talk about “left hand side”

graphs that live in the wild without any “right hand side” to accompany

them. We call such objects boundaried graphs.

Definition 16.4 (Boundaried graphs). A boundaried graph is a graph G

with a set B ⊆ V (G) of distinguished vertices and an injective labelling

λ from B to the set Z+. The set B is called the boundary of G and the

16.1 Boundaried graphs and finite integer index 339

2

5

3

2

5

3

8 1

4
1G 2G

Figure 16.1 Gluing two boundaried graphs.

vertices in B are called boundary vertices or terminals. Given a bound-

aried graph G, we denote its boundary by δ(G), we denote its labelling

by λG, and we define its label set by Λ(G) = {λG(v) | v ∈ δ(G)}. Given

a finite set I ⊆ Z+, we define FI to denote the class of all boundaried

graphs whose label set is I. Similarly, we define F⊆I =
⋃
I′⊆I FI′ . We

also denote by F the class of all boundaried graphs. Finally we say that

a boundaried graph is a t-boundaried graph if Λ(G) ⊆ {1, . . . , t}.

Attaching two boundaried graphs together along the boundary yields

a normal (non-boundaried) graph, as defined below (see Fig. 16.1).

Definition 16.5 (Gluing by ⊕). Let G1 and G2 be two boundaried

graphs. We denote by G1⊕G2 the graph (not boundaried) obtained by

taking the disjoint union of G1 and G2 and identifying equally-labeled

vertices of the boundaries of G1 and G2. In G1 ⊕ G2 there is an edge

between two labeled vertices if there is an edge between them in G1 or

in G2.

Definition 16.6. Let G = G1 ⊕ G2 where G1 and G2 are boundaried

graphs. We define the glued set of Gi as the set Bi = λ−1
Gi

(Λ(G1) ∩
Λ(G2)), i = 1, 2.

Let G be a class of (not boundaried) graphs. By slightly abusing no-

tation we say that a boundaried graph belongs to a graph class G if the

underlying graph belongs to G.

340 Surgery on graphs

Finite integer index We are using boundaried graphs as our notion

of “left hand side graph”. Next we need to define what it means for

two left hand side graphs to “affect the rest of the graph in the same

way”. The definition of “affecting the rest in the same way” depends

on the problem that we are working with, For example, two boundaried

graphs that are equivalent when working with Vertex Cover may not

be equivalent for Dominating Set and vice versa. For technical reasons

this definition needs an extended notion of parameterized problems that

allows the parameter value to be negative, but where either all instances

with negative parameter value are “yes” instances, or all such instances

are “no” instances. The reason for this technicality will become clear in

Lemma 16.11.

Definition 16.7 (Extended parameterized problem). An extended pa-

rameterized problem Π is a subset of Σ∗ × Z, such that either (i) for all

I, k with k < 0 we have (I, k) ∈ Π, or (ii) for all I, k with k < 0 we

have (I, k) /∈ Π. In case (i) Π is called a positive extended parameter-

ized problem; in case (ii) Π is called a negative extended parameterized

problem. An extended parameterized problem Π′ agrees with a parame-

terized problem Π if Π′ ∩ (Σ∗×N) = Π. For a parameterized problem Π

there are exactly one positive extended parameterized problem Π+ and

exactly one negative extended parameterized problem Π− that agrees

with Π. These are called the positive and negative extensions of Π, re-

spectively.

The reason that instances (G, k) ∈ Π are called “yes” instances of Π

is that parameterized problems Π are often defined as the set of pairs

(G, k) for which the answer to some question is yes. For example, does G

contain an independent set of size at least k? Does G have a vertex cover

of size at most k? For such questions, involving “at least k” or “at most

k”, the answer is monotone – if G has an independent set of size at least

k, it also has an independent set of size at least k−1 (but not necessarily

one of size k + 1). If G has a vertex cover of size at most k, it also has

one of size at most k + 1, but not necessarily one of size k − 1. For this

reason, for some problems (typically maximization problems) it is more

natural to interpret all instances with negative parameter value as “yes”

instances, while for others (typically minimization problems) it is more

natural to interpret all instances with negative parameter value as “no”

instances. Indeed, every graph has an independent set of size at least −1,

but no graph has a vertex cover of size at most −1. The positive and

negative extensions of a parameterized problem are meant to capture this

16.1 Boundaried graphs and finite integer index 341

difference. Thus, for (the decision version of) maximization problems we

will typically consider their positive extension, while for minimization

problems we will consider their negative extension.

We are now ready to define what it means for two left hand side graphs

to affect the rest of the graph in the same way.

Definition 16.8 (Canonical equivalence on boundaried graphs). Let

Π be an extended parameterized graph problem whose instances are

pairs of the form (G, k). Given two boundaried graphs G1, G2 ∈ F , we

say that G1 ≡Π G2 if Λ(G1) = Λ(G2) and there exists a transposition

constant c ∈ Z such that

∀(F, k) ∈ F × Z, (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that the relation ≡Π is an equivalence relation (you are asked

to prove this in Exercise 16.2). Observe that c could be negative in

the above definition. This is the reason we extended the definition of

parameterized problems to include negative parameters also.

Notice that two boundaried graphs with different label sets belong to

different equivalence classes of ≡Π . Hence for every equivalence class C
of ≡Π there exists some finite set I ⊆ Z+ such that C ⊆ FI . We are now

in position to define what it means that for a problem Π, for every fixed

boundary size, there are only finitely many essentially different (with

respect to ≡Π) left hand side graphs with that boundary size.

Definition 16.9 (Finite Integer Index). An extended parameterized

graph problem Π whose instances are pairs of the form (G, k) has Finite

Integer Index (or simply has FII), if and only if for every finite I ⊆ Z+,

the number of equivalence classes of ≡Π that are subsets of FI is finite.

A parameterized graph problem Π whose instances are pairs of the form

(G, k) has FII if either its positive extension or its negative extension

has FII.

In Exercise 16.3, it is asked to show that the number of equivalence

classes above depends only on |I|.
For problems Π that have FII, it is natural to use the following re-

duction rule. Suppose that the input graph G can be decomposed as

G = G1 ⊕ F , where G1 is “simple” and F is “difficult”. If the “simple”

part G1 is really large, one could hope to replace G1 by something that

affects the rest in the same way. Specifically, if we have at hand G2 such

that G1 ≡Π G2 and |V (G2)| < |V (G1)|, then by Equation 16.1 there

342 Surgery on graphs

exists a c ∈ Z such that (G1⊕F, k) ∈ Π⇔ (G2⊕F, k+ c). Then we can

replace the instance (G, k) with the equivalent instance (G2 ⊕ F, k+ c).

There are several issues to be overcome with the above approach.

Where do we take the graph G2 from? How do we compute the constant

c? What if the constant c is positive–then our reduction rule increases

the parameter value k, which, if left unchecked could ruin a kernelization

algorithm. We will handle all of these issues, starting with the last one.

Next we show that we can always find a set of potential replacement

graphs G2 that have negative value of c with every other graph in the

same equivalence class of ≡Π.

Definition 16.10 (Progressive representatives). Let Π be an extended

parameterized graph problem whose instances are pairs of the form

(G, k) and let C be some equivalence class of ≡Π. We say that J ∈ C is

a progressive representative of C if for every H ∈ C there exists c ∈ Z−,
such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π⇔ (J ⊕ F, k + c) ∈ Π. (16.1)

The following lemma guaranties the existence of a progressive repre-

sentative for each equivalence class of ≡Π.

Lemma 16.11. Let Π be an extended parameterized graph problem

whose instances are pairs of the form (G, k). Then each equivalence class

of ≡Π has a progressive representative.

Proof. We only consider the case when Π is a negative extended param-

eterized problem. In other words, every instance of Π with a negative

valued parameter is a no-instance. The case when Π is a positive ex-

tended parameterized problem is left to the reader as Exercise 16.4.

Let C be an equivalence class of ≡Π. We distinguish two cases:

Case 1. Suppose first that for every H ∈ C, every F ∈ F , and every inte-

ger k ∈ Z it holds that (H⊕F, k) 6∈ Π. Then we set J to be an arbitrary

chosen graph in C and c = 0. In this case, it is obvious that (16.1) holds

for every (F, k) ∈ F × Z.

Case 2. Suppose now that for some H0 ∈ C, F0 ∈ F , and k0 ∈ Z it holds

that that (H0⊕F0, k0) ∈ Π. Among all such triples, choose the one where

the value of k0 is minimized. Since every instance of Π with a negative

valued parameter is a no-instance, it follows that k0 is well defined and

is non-negative. We claim that H0 is a progressive representative.

16.2 Which problems have finite integer index? 343

Let H ∈ C. As H0 ≡Π H, there is a constant c such that

∀(F, k) ∈ F × Z, (H ⊕ F, k) ∈ Π⇔ (H0 ⊕ F, k + c) ∈ Π.

It suffices to prove that c ≤ 0. Assume for a contradiction that c > 0.

Then, by taking k = k0 − c and F = F0, we have that

(H ⊕ F0, k0 − c) ∈ Π⇔ (H0 ⊕ F0, k0 − c+ c) ∈ Π.

Since (H0⊕F0, k0) ∈ Π it follows that (H⊕F0, k0−c) ∈ Π contradicting

the choice of H0, F0, k0.

Lemma 16.11 implies that for every extended parameterized problem

Π “the set of progressive representatives” is well defined.

Definition 16.12 (The progressive representatives of Π). Let Π be an

extended parameterized problem. For each I ⊆ Z+, we define SI to be a

set containing exactly one progressive representative of each equivalence

class of ≡Π that is a subset of FI . We also define S⊆I =
⋃
I′⊆I SI′ .

16.2 Which problems have finite integer index?

It takes some practice to get used to Definition 16.9. In this section

we give an example of how to show that a concrete problem has finite

integer index, an easy to use sufficient condition for a problem to have

finite integer index, and an example of how to show that a concrete

problem does not have finite integer index.

Independent Set has finite integer index. Consider the Indepen-

dent Set problem—here (G, k) is a yes instance if G contains an in-

dependent set of size at least k. In order to prove that Independent

Set has finite integer index, we consider the positive extension of it,

for which we need to prove that for every finite I ⊆ Z+, the number of

equivalence classes of ≡Π that are subsets of FI is finite. In plain words,

for every fixed boundary (size) the number of equivalence classes of ≡Π

is finite. We will show that the number of equivalence classes is bounded

by (|I|+ 1)2|I| .

The proof idea is to define a signature function ζG : 2I → Z for each

boundaried graph G ∈ FI , and then to show that the signature function

satisfies the following two properties.

344 Surgery on graphs

(i) For every boundaried graph G ∈ FI it holds that maxS⊆I ζG(S) −
minS⊆I ζG(S) ≤ |I|.

(ii) For every pair G1, G2 ∈ FI , if there exists an integer c∗ (that depends

on G1 and G2) such that for every S ⊆ I, ζG1(S) = ζG2(S) + c∗, then

G1 ≡Π G2.

It is an easy exercise to show that the two facts together imply that the

number of equivalence classes is bounded by (|I| + 1)2|I| (see Exercise

16.5). We now proceed to execute this plan.

Given a boundaried graph G ∈ FI we define the signature function

ζG : 2I → Z as follows. Each subset S ⊆ I can be thought of as a set of

labels of vertices in δ(G). Hence λ−1
G (S) maps S to the set of boundary

vertices of G whose label set is S.

Consider now the largest independent set J in G such that the inter-

section J ∩ δ(G) of the independent set with the boundary is contained

in λ−1
G (S). The signature function ζG maps S to |J |. We define ζG as

follows.

ζG(S) = max
J
|J |,

where the maximum is taken over all independent sets J in G such that

J ∩ δ(G) ⊆ λ−1
G (S). We now prove the first point of our plan.

Lemma 16.13. For every boundaried graph G ∈ FI it holds that

max
S⊆I

ζG(S)−min
S⊆I

ζG(S) ≤ |I|.

Proof. Let ` be the size of the largest independent set X of G \ δ(G).

Since X ∩ δ(G) = ∅ we have that X ∩ δ(G) ⊆ λ−1
G (S) for every choice

of S ⊆ I. Therefore, minS⊆I ζG(S) ≥ `. Further, let Y be a largest

independent set of G, irrespective of Y ∩δ(G). We have that |Y | ≤ `+|I|,
because otherwise Y \ δ(G) would be larger than X, contradicting the

choice of X. Since Y is a largest independent set of G it holds that

maxS⊆I ζG(S) ≤ |Y | ≤ `+ |I|. The claim follows.

Next we prove the second point of our plan.

Lemma 16.14. For every pair G1, G2 ∈ FI , if there exists an integer

c∗ (that depends on G1 and G2) such that for every S ⊆ I, ζG1(S) =

ζG2
(S) + c∗, then G1 ≡Π G2.

Proof. We recall the definition of ≡Π. We have that G1 ≡Π G2 if

Λ(G1) = Λ(G2) and there exist a c ∈ Z such that

∀(F, k) ∈ F × Z, (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

16.2 Which problems have finite integer index? 345

The first condition holds because Λ(G1) = Λ(G2) = I. For the second

condition we will prove that it holds with c = c∗. We now prove the

forward direction of the implication.

Let (F, k) ∈ F×Z be such that (G1⊕F, k) ∈ Π. We need to prove that

(G2⊕F, k+c) ∈ Π. Note that k might be negative, but this will not affect

our arguments since we look at the positive extension of the problem.

When Π is the Independent Set problem, this means that G1⊕F has

an independent set J1 of size at least k, and we need to prove that G2⊕F
has an independent set J2 of size at least k+c. Let S = λG1

(J1∩δ(G1)).

Since J1 ∩ V (G1) is an independent set with λG1
(J1 ∩ δ(G1)) ⊆ S it

follows that ζG1(S) ≥ |J1 ∩ V (G1)|. By assumption we have that

ζG2(S) = ζG1(S) + c ≥ |J1 ∩ V (G1)|+ c.

Let J∗2 be an independent set in G2 that witnesses the value of ζG2(S).

Specifically, let J∗2 be an independent set in G2 such that |J∗2 | = ζG2
(S)

and λG2(J∗2 ∩ δ(G2)) ⊆ S.

We set J2 = J∗2∪(J1\V (G1)). It is easy to see that J2 is an independent

set in G2 ⊕ F : indeed J∗2 and (J1 \ V (G1)) are both independent sets.

Thus an edge uv between two vertices of J2 must have one endpoint

u in (J1 \ V (G1)) and the other endpoint v in J∗2 . If v ∈ δ(G2) then

λ(v) ∈ S by the choice of J∗2 . However, in F there are no edges with

one endpoint in (J1∩V (F))\ δ(F) = J1 \V (G1) and the other endpoint

in δ(F) being some vertex with a label in S, contradicting the existence

of the edge uv. If v /∈ δ(G2) then v ∈ V (G1)\ δ(G1), again contradicting

the existence of the edge uv because G1 ⊕ F does not have any edges

with one endpoint in V (G1) \ δ(G1) and the other in V (F) \ δ(F). This

proves that J2 is indeed an independent set. Finally

|J2| = |J∗2 |+ |J1 \ V (G1)| ≥ |J1 ∩ V (G1)|+ c+ |J1 \ V (G1)| = |J1|+ c.

This completes the forward direction of the implication. The proof of the

backwards direction is identical with the roles of G1 and G2 reversed,

and every +c changed to −c.
Theorem 16.15. Independent Set has finite integer index.

Proof. For every boundaried graph G ∈ FI define its truncated signature

ζ̂G : 2I → Z such that for every S ⊆ I, ζ̂G(S) = ζG(S)−minS⊆I ζG(S).

By Lemma 16.13 we have that ζ̂G(S) ∈ {0, 1, . . . , |I|}, and that there-

fore there can be at most (|I|+ 1)
2|I|

different truncated signatures. By

Lemma 16.14 two boundaried graphs with the same truncated signa-

ture are equivalent (with respect to ≡Π for the positive extension of

346 Surgery on graphs

the problem). Hence the number of equivalence classes of ≡Π is at most

(|I|+ 1)
2|I|

, completing the proof.

Separable CMSO-optimization problems. An astute reader can

notice the similarity between the proof of Theorem 16.15 and a proof that

Independent Set parameterized by treewidth is FPT. Specifically, the

signature function ζG together with Lemma 16.14 can be used to give

a dynamic programming algorithm for Independent Set on graphs of

treewidth. To prove that Independent Set has finite integer index it

is sufficient to complement Lemma 16.14 by a proof that the minimum

and maximum value of the signature differ only by |I|.
It turns out that the proof of Theorem 16.15 can be carried over to a

host of CMSO-optimization problems, see Definition 16.1.

In particular, we have the following sufficient condition.

Theorem 16.16 (Fomin et al. (2016a)). Every separable CMSO-optimiza-

tion problem has FII.

Independent Dominating Set does not have Finite Integer In-

dex. Let us consider the negative extension of Independent Domi-

nating Set (the positive case is left as an exercise). In order to show

that it does not have FII, we exhibit a set of boundaried graphs G with

the same label set {1, 2} such that

• no two graphs in G belong to the same equivalence class of ≡Π, and

• for every ` ∈ N, the set G will include a unique graph G`.

The second condition shows that G is infinite, and hence the first con-

dition implies that the number of equivalence classes of ≡Π is infinite.

We construct the graph G` as follows. We define the boundary of G`
to contain exactly two vertices, u and v, where the label of u is 1 and

the label of v is 2, and we insert an edge between u and v. In addition,

we add ` new vertices that are leaves adjacent to v. This completes the

description of G`.

Let us pick some integers `, `′ ∈ N with ` < `′, and show that G`
and G`′ are not equivalent. To this end, suppose by way of contradiction

that these two graphs are equivalent, and let c be the corresponding

transposition constant. We denote F2 = G2`′ , and we define F1 to be

the boundaried graph F2 where the labels of the two boundary vertices

are swapped.

On the one hand, in the graph G` ⊕ F1, the minimum size of an

16.3 A general reduction rule 347

independent dominating set is ` + 1, and in the graph G`′ ⊕ F1 it is

`′ + 1. Since G` and G`′ are equivalent, for any (F, k) ∈ F × Z, it

holds that (G` ⊕ F, k) ∈ Π ⇔ (G`′ ⊕ F, k + c) ∈ Π. In particular, it

holds that (G` ⊕ F1, ` + 1) ∈ Π ⇔ (G`′ ⊕ F1, ` + 1 + c) ∈ Π. Because

(G` ⊕ F1, ` + 1) ∈ Π, and (G`′ ⊕ F1, r) /∈ Π for any integer r < `′ + 1

(since we consider the negative extension), we have that c ≥ `′ − ` ≥ 1.

On the other hand, in the graph G` ⊕ F2, the minimum size of an

independent dominating set is 1, and in the graph G`′ ⊕ F2 it is also

1. Moreover, it holds that (G` ⊕ F2, 0) ∈ Π ⇔ (G`′ ⊕ F, c) ∈ Π. Since

(G`⊕F2, 0) /∈ Π, we have that (G`′⊕F, c) /∈ Π. However, (G`′⊕F, r) ∈ Π

for any integer r ≥ 1, and since c ≥ 1, we have reached a contradiction.

We thus conclude that no two graphs in G belong to the same equivalence

class of ≡Π.

16.3 A general reduction rule

In this section we provide a reduction rule for graph problems that have

FII. Informally, this reduction rule does the following.

• Find a large protrusion.

• Replace it by a smaller one.

Of course, there are a lot of questions hidden under the carpet with

this generic reduction rule. First of all, why does this rule imply a kernel?

How to find a protrusion efficiently? How to replace one protrusion by

a smaller one efficiently, and why will such a replacement work? In this

section we uncover the hidden parts of the puzzle and when finally all the

parts are assembled together, we obtain linear linear kernels for many

parameterized problems on planar graphs.

Replacing a protrusion. We start from the procedure of replacing a

large protrusion by a smaller one. Let c be some constant and suppose

that we have a t-protrusion X of size c which we want to replace by a

smaller protrusion. We do not know how to implement such a replace-

ment efficiently when the size of X can be arbitrarily large. The following

lemma says that we can always extract from X a protrusion of constant

size which is still larger than c.

348 Surgery on graphs

Lemma 16.17. If a graph G contains a t-protrusion X where |X| > c >

0, then it also contains a (2t+ 1)-protrusion Y ⊆ X where c < |Y | ≤ 2c.

Moreover, given a tree-decomposition of G[X] of width at most t, a tree

decomposition of Y of width at most 2t can be found in O(|X|) steps.

Proof. If |X| ≤ 2c, we are done. Assume that |X| > 2c and let (T, χ)

be a nice tree-decomposition of G[X], rooted at some, arbitrary chosen,

node r of T. Given a node x of the rooted tree T, we denote by Tx the

subtree of T rooted at x. We also define Vx = χ(V (Tx)), which is the

set of vertices of X contained in the bags of the nodes corresponding to

x and its descendants.

Let B ⊆ V (T) be the set of nodes of T such that for every x ∈ B,

|Vx| > c. In other words, for every x ∈ B the total number of vertices

of G contained in the bags of the nodes corresponding to x and its

descendants, is more than c. As |X| > 2c, B is a non-empty set. We

choose b to be a member of B whose descendants in T do not belong to B.

The choice of b and the fact that T is a binary tree ensure that c < |Vb| ≤
2c. Note that we obtain the upper bound 2c rather than 2c+ t because

(T, χ) is nice. We define Y = ∂G(X) ∪ Vb and observe that (Tb, χ
′),

where χ′ is the restriction of χ on nodes of Tb, is a tree decomposition

of G[Y]. As |∂G(X)| ≤ t, the width of this tree decomposition is at

most 2t. Moreover, it holds that ∂G(Y) ⊆ ∂G(X) ∪ χ(b), therefore Y is

a (2t+ 1)-protrusion of G.

We are ready to prove the main reduction lemma about replacing

protrusions.

Lemma 16.18 (Protrusion Replacement Lemma). Let Π be a problem

that has FII. Then for every t ∈ Z+, there exists a c ∈ Z+ (depending

on Π and t), and an algorithm that, given an instance (G, k) of Π and a

t-protrusion X in G with |X| > c, outputs in O(|G|) steps an equivalent

instance (G∗, k∗) of Π where |V (G∗)| < |V (G)| and k∗ ≤ k.

Proof. Recall that by F⊆[2t+1] we denote the set of boundaried graphs

with label sets from {1, . . . , 2t+1} and by S⊆[2t+1] a set of (progressive)

representatives for ≡Π for graphs from F⊆[2t+1]. Let

c = max
{
|V (Y)| : Y ∈ S⊆[2t+1]

}
.

Our algorithm has in its source code hard-wired a table that stores for

each boundaried graph GY in F⊆[2t+1] on at most 2c vertices a bound-

aried graph G′Y ∈ S⊆[2t+1] and a constant µ ≤ 0 such that GY ≡Π G′Y .

16.3 A general reduction rule 349

Specifically, for every pair (F, k) ∈ F × Z, we have

(GY ⊕ F, k) ∈ Π ⇐⇒ (G′Y ⊕ F, k + µ) ∈ Π. (16.2)

The existence of such a constant µ ≤ 0 is guaranteed by the fact that

S⊆[2t+1] is a set of progressive representatives (see Lemma 16.11). Thus

the size of the table is bounded by some constant f(c), which is roughly

proportional to the number of non-isomorphic labelled graphs on 2c

vertices.

We now apply Lemma 16.17 and find in G[X] a (2t + 1)-protrusion

Y of G such that c < |Y | ≤ 2c. We split G into two boundaried graphs

GY = G[Y] and GR = G− (Y \∂(Y)) as follows. Both GR and GY have

boundary ∂(Y). Since |∂(Y)| ≤ 2t + 1, we may label the boundaries of

GY and GR with labels from {1, . . . , 2t + 1} such that G = GY ⊕ GR.

As c < |V (GY)| ≤ 2c the algorithm can look up in its table and find a

G′Y ∈ S⊆[2t+1] and a constant µ such that GY ≡Π G′Y and GY , G′Y and

µ satisfy (16.2). The algorithm outputs

(G∗, k∗) = (G′Y ⊕GR, k + µ).

Since |V (G′Y)| ≤ c < |V (GY)| and k∗ ≤ k + µ ≤ k it remains to argue

that the instances (G, k) and (G∗, k∗) are equivalent. However, this is

directly implied by (16.2).

Now, we consider the running time. By Lemma 16.17, the new pro-

trusion Y can be found in O(X) steps. Splitting G into two graphs can

be done in O(|G|) steps. The time required to look up in the table a

representative equivalent to Y is proportional to the size of the table

and thus requires a constant number of steps. Here we crucially use the

fact that the size of Y does not exceed a constant. Finally, the gluing

operation G′Y ⊕ GR can be done in a number of steps proportional to

the number of edges of G.

Finding a protrusion. Given a graph G and integers t and c, how to

find a t-protrusion X whose size is between c and 2c, if there is any?

First, how to identify that a given set X is a t-protrusion? Following

the definition, we have to verify that the size of its boundary and its

treewidth do not exceed t. We can do it in time O(|G|) as follows. We

construct the graph G[X] in time O(|G|) and run the algorithm of Bod-

laender (1996), see Proposition 14.21, to decide whether the treewidth

of G[X] is at most t in time O(|X|). Finally we check in time O(|G|)
whether ∂(X) is of size at most t by going through the vertices of X

and counting how many of them have a neighbor outside X.

350 Surgery on graphs

Since at the end we are looking for a t-protrusion whose size is between

c+1 and 2c for some constant c, we can try all possible vertex subsets of

such sizes and check in time O(n) whether each of the guessed set is a t-

protrusion. Running this brute-force approach on an n-vertex graph will

bring us to an algorithm of running time nO(c), which is polynomial.

By making use of Lemma 16.17, we can invoke a better strategy: Go

through all possible boundary sets S of a t-protrusion. More precisely,

we have the following lemma.

Lemma 16.19. Given an n-vertex graph G and integers t, c > 0, there

is an algorithm that in time nO(t) either finds a (4t+1)-protrusion of size

between c+ 1 and 2c, or concludes correctly that G has no t-protrusion

of size more than c.

Proof. For a vertex set S of size at most t we denote by CS the family

of vertex sets of the connected components of G−S such that for every

C ∈ CS the treewidth of G[C ∪ S] is at most t. Let XS be the set of

vertices that are either in S or in some of the vertex sets of CS . Note

that ∂(XS) ⊆ S and that the treewidth of G[XS] is at most 2t. Hence

the set XS is a 2t-protrusion. Moreover, every t-protrusion X in G is

contained in XS for S = ∂(X).

Our algorithm goes through every vertex subset S of size at most t,

constructs the set XS (this construction can be done in O(n) time by

checking whether the treewidth of each subgraph G[C∪X] is at most t).

If for each set S the size of the constructed protrusion does not exceed c,

we conclude that G has no t-protrusion of size more than c. Otherwise,

if for some S we found a 2t-protrusion XS of size more than c, we use

Lemma 16.17 to construct a (4t+1)-protrusion of size between c+1 and

2c.

The running time of this algorithm is dominated by the number of

times we have to guess sets S, which is nO(t).

Let us note that the running time nO(t) in the lemma is not optimal.

We explain later how to improve it significantly.

Meta-kernel: putting things together. Let us recall the definition

of the protrusion decomposition of a graph. For integers α, β, and t, an

(α, β, t)-protrusion decomposition of G is a rooted tree-decomposition

(T, χ) of G such that the degree of the root is at most β, the root bag is

of size α, and all other bags are of size at most t. Hence, the vertex set

of G can be partitioned into sets R0, R1, . . . , Rβ , such that the size of R0

16.3 A general reduction rule 351

is at most α, and each of the sets NG[Ri], 1 ≤ i ≤ β, is a t-protrusion

and N(Ri) ⊆ R0.

We need the following simple lemma which says that if a graph has a

protrusion decomposition and is of a large size, then it should contain a

sufficiently large protrusion.

Lemma 16.20. For every c, t, k > 0, a graph G with (t · k, t · k, t)-
protrusion decomposition and more than (t · k)(c + 1) vertices contains

a t-protrusion of size at least c+ 1.

Proof. Let (T, χ) be a (t · k, t · k, t)-protrusion decomposition of G. For

the root r of T we have |χ(r)| ≤ t · k. The remaining vertices of the

graph are contained in at most t · k t-protrusions. Thus at least one of

these t-protrusions should contain at least
⌈

(t · k)(c+ 1) + 1− t · k
t · k

⌉
= c+ 1

vertices.

Now all is set to prove the kernelization meta-theorem.

Theorem 16.21. Every bidimensional linearly-separable problem Π that

has FII admits a kernel of linear size. The running time of the kernel-

ization algorithm is polynomial, where the exponent of the polynomial

depends on the problem Π only.

Proof. On an instance (G, k) of a bidimensional linearly-separable prob-

lem Π that has FII and for constants c, t and ` we run the following

algorithm.

For the input (G, k) apply the protrusion-finder algorithm from

Lemma 16.19 on G.

• If the algorithm finds a (4t + 1)-protrusion X of size between c + 1

and 2c, apply the protrusion-replacing algorithm from Lemma 16.18

and obtain an equivalent instance (G∗, k∗) of Π. Restart the algorithm

with new the input (G := G∗, k := k∗).
• If the algorithm reports that G has no t-protrusion, then

– If G has more than ` · k vertices, and Π is a minimization problem,

then report that (G, k) is a no-instance.

– If G has more than ` · k vertices, and Π is a maximization problem,

then report that (G, k) is a yes-instance.

352 Surgery on graphs

– If G has at most ` · k vertices, then output (G, k).

The algorithm runs in polynomial time: by Lemma 16.18, at every

recursive call we decrease the number of vertices in the input graph. Thus

on an n-vertex graph we make at most n recursive calls. For each call the

algorithm computes a (4t+1)-protrusion, which by Lemma 16.19 can be

done in time nO(t), and then replaces protrusion, which by Lemma 16.18,

takes O(n) steps.

What remains is to argue that it is possible to select constants c, t and

` such that the algorithm works correctly. We select these constants as

follows.

By Theorem 15.15, there is a constant x, depending on Π only, such

that G has a (x ·OPTΠ(G), x ·OPTΠ(G), x)-protrusion decomposition.

We select t = x.

Lemma 16.18 guarantees that there is a constant y, depending on Π

and t only, such that for every graph G with a (4t+1)-protrusion of size

between y and 2y and an integer k, the instance (G, k) can be reduced to

an equivalent instance (G∗, k∗) of Π, where the graph G∗ has less vertices

than G and k∗ ≤ k. We select c = y. Finally we define ` = t(c+ 1).

The algorithm halts when it cannot select a (4t + 1)-protrusion of

size more than c. By Lemma 16.19, this happens only when G has no

t-protrusion of size at least c + 1. Suppose that the number of vertices

in G is at least ` · k + 1. We claim that k < OPTΠ(G). Indeed, if

k ≥ OPTΠ(G), then graph G has a (t·k, t·k, t)-protrusion decomposition

and by Lemma 16.20, should contain a t-protrusion of size at least c+1,

which is a contradiction.

But when k < OPTΠ(G) and Π is a minimization problem, then (G, k)

is a no-instance. Similarly, if Π is a maximization problem, then (G, k)

is a yes-instance.

Finally, if the size of G is at most ` · k, the algorithm outputs (G, k).

Hence the described algorithm is a kernel of linear size.

Combined with Theorem 16.16, Theorem 16.21 implies the following

corollary, which is exactly Theorem 16.2.

Corollary 16.22. Every bidimensional linearly-separable CMSO-optimization

problem Π admits a kernel of linear size.

16.4 Kernelization in quadratic running time 353

16.4 Kernelization in quadratic running time

The running time of the meta-kernelization algorithm from Theorem 16.21

is polynomial, however the exponent of the polynomial depends on prob-

lem Π. The most time-consuming part of the algorithm is the brute-force

search for a t-protrusion of certain size. In this section we explain a much

more efficient way of performing this part of the algorithm, which will

bring us to an algorithm with quadratic running time.

Let us remind that a vertex set X of a graph G is connected if G[X]

is connected. The faster protrusion-finding algorithm is based on the

following lemma about the number of connected sets in a graph.

Lemma 16.23. Let G be a graph. For every v ∈ V (G), and p, q ≥ 0,

the number of connected vertex subsets P ⊆ V (G) such that

(i) v ∈ P ,

(ii) |P | = p+ 1, and

(iii) |NG(P)| = q,

is at most
(
p+q
p

)
. Moreover, there is an algorithm that, given as input

a graph G, a vertex v ∈ V (G) and integers p and q, outputs in time

O(|E(G)|+ |V (G)| ·
(
p+q
p

)
· (p+ q)O(1)) all pairs (P,Q) such that P is a

connected vertex set of size p+ 1 containing v, Q = NG(P) and |Q| = q.

Proof. We assume that the input graph G is provided with the following

additional data structure. For every vertex u ∈ V (G), we can output in

time polynomial in p and q the degree of u in G. Moreover, if the degree

of u is at most p+q+1, then this structure should allow us to output the

list of neighbors of u. Such a data structure can be easily constructed

in time O(|E(G)| + |V (G)|). From now on we assume that we run this

preprocessing step and constructed required structure.

For a vertex v ∈ V (G) and integers p, q ≥ 0, we denote by Pp,q(v) the

family of all sets satisfying the conditions of the lemma. Thus Pp,q(v) is

a family of pairs (P,Q) such that P is a connected set containing v, and

such that |P | = p+ 1, and Q = N(P) is of size q. In order to prove the

lemma, we give an algorithm which enumerates all elements of Pp,q(v)

in time
(
p+q
p

)
· (p+ q)O(1). Let us underline that the running time of the

algorithm does not depend on the size of graph G. Of course, for that

we will strongly use our assumption that the input has already been

preprocessed.

In order to enumerate all sets from Pp,q(v), we use a recursive (or

354 Surgery on graphs

branching) algorithm constructing triples of sets (I,B, U) with the fol-

lowing properties.

• The sets I,B, and U are pairwise disjoint.

• The set I of inner vertices is connected, it contains v and |I| ≤ p+ 1.

• The set B of boundary vertices satisfies B ⊆ N(I) and |B| ≤ q.
• The set U of undecided vertices satisfies U ∪B = N(I).

• Finally, |I ∪B ∪ U | ≤ p+ q + 1.

We refer to such a triple as a legitimate triple. The intuition behind the

definition of a legitimate triple (I,B, U) is that if I ∪ B ∪ U ⊆ P ∪ Q
for some (P,Q) ∈ Pp,q(v), then the inner vertices of I are in P , the

boundary vertices of B belong to Q, and the undecided vertices of U

can go either in P or in Q.

More formally, for a legitimate triple X = (I,B, U) we define P(X)

as the family of all sets (P,Q) ∈ Pp,q(v) such that

• I ⊆ P , B ⊆ Q, and U ⊆ P ∪Q.

When a triple X is not legitimate, we put P(X) = ∅.
The recursive algorithm is based on the following observations.

Observation 16.24. P(v, ∅, N(v)) = Pp,q(v).

Proof. For every (P,Q) ∈ Pp,q(v), the set P should contain v and every

vertex of N(v) should be either in P or in Q. y

The next observation follows directly from the definition of the family

P.

Observation 16.25. For every pair (P,Q) ∈ Pp,q(v), P(P,Q, ∅) =

(P,Q). Also for every legitimate triple X = (I,B, U) with |I| = p + 1,

|B| = q and U = ∅, P(X) = (I,B).

Observation 16.26. For every legitimate triple X = (I,B, U), and

every u ∈ U , P(X) = P(Y) ∪ P(Z), where

• Y = (I ∪ {u}, B, (U ∪N(u)) \ (I ∪ {u} ∪B)), and

• Z = (I,B ∪ {u}, U \ {u}).

Proof. The fact that P(X) ⊇ P(Y) ∪ P(Z) follows from the definition

of triples Y and Z.

To show that P(X) ⊆ P(Y) ∪ P(Z), observe the following. For every

(P,Q) ∈ P(X), we have U ⊆ P ∪ Q. Therefore every vertex u ∈ U is

either in P or in Q.

16.4 Kernelization in quadratic running time 355

If u ∈ P , we claim that (P,Q) ∈ P(Y). Let us check first that Y is

legitimate. Since I is connected and u is adjacent to one of the vertices

of I, the set I∪{u} is connected. We have I∪{u} ⊆ P , hence |I∪{u}| ≤
p+1. The set B satisfies B ⊆ N(I) and because u 6∈ B, B ⊆ N(I∪{u}).
Also the set B and the set of undecided vertices (U∪N(u))\(I∪{u}∪B)

of Y form a partition of the set N(I ∪ {u}). Since I ∪ {u} ⊆ P and

B ⊆ N(P) = Q, we have that (P,Q) ∈ P(Y).

The proof that for u ∈ Q we have (P,Q) ∈ P(Z) is very similar.

In this case, B ∪ {u} is a subset of N(P). Thus Z is legitimate and

(P,Q) ∈ P(Z). y

In order to enumerate all sets from Pp,q(v) in time independent of the

size of the graph G, we need one more observation.

Observation 16.27. If a legitimate triple X = (I,B, U) contains a

vertex u ∈ U with degree at least p+ q + 1, then P(X) = P(Z), where

Z = (I,B ∪ {u}, U \ {u}).

Proof. Let u ∈ U be a vertex of degree at least p + q + 1. By Observa-

tion 16.26, P(X) = P(Y)∪P(Z), where Y = (I∪{u}, B, (U∪N(u))\(I∪
{u}∪B)). But the triple Y is not legitimate because it has in total more

than p+ q+ 1 vertices in its sets, thus P(Y) = ∅ and P(X) = P(Z). y

By Observations 16.24, in order to enumerate all sets from Pp,q(v), it

is sufficient to compute P({v}, ∅, N(v)).

The recursive algorithm computing P(v, ∅, N(v)) starts with the triple

({v}, ∅, N(v)). In order to compute P(X) for a legitimate triple X =

(I,B, U), the algorithm does the following.

• (Non-branching step) If U contains a vertex u of degree at least p +

q + 1, put P(X) = P(Z), where Z = (I,B ∪ {u}, U \ {u}).
• (Branching step) Select (arbitrarily) a vertex u ∈ U and put P(X) =

P(Y)∪P(Z), where Y = (I ∪{u}, B, (U ∪N(u)) \ (I ∪{u}∪B)), and

Z = (I,B ∪ {u}, U \ {u}).

By Observations 16.24, 16.25, 16.26, and 16.27, the algorithm outputs

all sets P ∈ Pp,q(v).

Now, let us consider the running time of the algorithm. Due to the

preprocessing procedure computing the vertex degrees of the graph, the

non-branching step of the algorithm is performed in time polynomial in

the sizes of the sets B and U , which is (p + q)O(1). Due to the non-

branching step, every vertex of U is of degree at most p + q. Then we

356 Surgery on graphs

are able to construct the new triples Y and Z in time (p + q)O(1). Let

us note that this is exactly the place where we need the non-branching

step because otherwise the construction of U ∪ N(u) would take time

proportional to the number of edges of G.

Hence, up to a factor polynomial in p + q, the running time of the

algorithm is proportional to the number of its recursive calls, which in

turn is at most P({v}, ∅, N(v)). To bound the size of P({v}, ∅, N(v)), we

prove inductively that for every legitimate triple (I,B, U) appearing in

the algorithm, |P(I,B, U)| ≤
(
i+b
b

)
where i = p+1−|I| and b = q−|B|.

The base of the induction with i = 0 and b = 0 corresponds to the case

where |I| = p+ 1, |B| = q and U = ∅. In this case by Observation 16.25,

P(I,B, U) = I.

For the inductive step, for the triple X = (I,B, U), we branch into

two subproblems Y and Z. In the first subproblem Y , the size of the

inner set is decreased by at least one, and in the subproblem Z, the size

of the boundary set is decreased by at least one. Thus

|P(X)| ≤ |P(Y)|+ |P(Z)| ≤
(
i+ b− 1

b

)
+

(
i+ b− 1

b− 1

)
=

(
i+ b

b

)
.

Hence the running time of the algorithm enumerating all pairs from

Pp,q(v) is, up to a factor polynomial in p and q, bounded by

|P({v}, ∅, N(v))| ≤
(
p+ q

q

)
.

Finally, running the algorithm for each vertex v, we obtain the state-

ment of the lemma.

By making use of Lemma 16.23, we can efficiently enumerate in time

2O(p+q)(n + m) all connected sets of a graph G of size at most p and

with neighborhood size at most q. Every set is defined by the vertices

contained in that set. Actually, the algorithm does a bit more. The

algorithm can also output in time 2O(p+q)(n + m) not only the sets P ,

but also the subgraphs G[P] induced by these sets P . However, in the

claimed running time the algorithm cannot output the graphs G[P ∪Q].

This is due to the way we handle the vertices of high degrees in the non-

branching step of the algorithm. In this step, if we find a vertex of high

degree in the set U , we move it to the set Q. However, we are not able to

control the adjacencies of the vertices in Q in time depending on p and q

only. So far this is not important, but we will have to come back to this

issue in the next section, where we give a linear time implementation of

the meta-kernelization algorithm.

16.4 Kernelization in quadratic running time 357

For algorithmic purposes, we need a procedure which efficiently par-

titions sets according to their neighborhoods.

Definition 16.28 (Neighborhood partition). Let S = {S1, . . . , Sp} be

a family of vertex subsets of a graph G. A partition {P1, . . . ,Pt} of S
is the neighborhood partition of S if for every 1 ≤ i, j ≤ p, the sets

Si and Sj belong to the same class Pk of the partition if and only if

NG(Si) = NG(Sj).

In other words, the neighborhood partition of S is the partition of S
into its neighborhood-equivalent classes.

Lemma 16.29. There exists an algorithm with the following specifica-

tions. It takes as input a graph G on n vertices and m edges, a fam-

ily S = {S1, S2, . . . , S`} of vertex sets together with the family N =

{N1, . . . , N`}, where Ni = NG(Si), and |Ni| ≤ q for i ∈ {1, . . . , `}. The

algorithm runs in time O((|S|+n) ·q log q) and outputs the neighborhood

partition of S.

Proof. We assume that the vertices of G are labelled by integers from

{1, . . . , n}. The algorithm starts by sorting each of the sets Ni in in-

creasing order. This takes time O(|S| · q log q). Then the algorithm goes

over every j ∈ {1, . . . , q} in increasing order. For each choice of j the

algorithm sorts the sets {S1, S2, . . . , S`} by the label of the jth vertex

of the corresponding set in N using a stable bucket sort.

Each such bucket sort takes time O(|S|+ n), hence the total running

time is O((|S|+ n) · q log q). When the sorting algorithm is finished, the

sets in S are now lexicographically sorted according to their neighbor-

hoods. Since sets with equal neighborhoods appear consecutively in this

ordering, going through the ordering in one pass provides the neighbor-

hood partition of S.

The “bottleneck” in the running time of the kernelization algorithm

in Theorem 16.21 is the costly nO(t)-tme procedure of finding an O(t)-

protrusion of reasonable size. By making use of Lemmata 16.23 and

16.29, and slightly decreasing the size of the protrusion, we can make

this running time linear.

Lemma 16.30. Given a graph G with n vertices and m edges, and

integers c > 3t > 0, there is a constant α and an algorithm that in time

f(t, c) · (n + m), for some function f of c and t only, either finds an

358 Surgery on graphs

α · t-protrusion of size between c/αt and 2c, or concludes correctly that

G has no t-protrusion of size more than c.

Proof. Suppose that G has a t-protrusion of size at least c. Then by

Lemma 16.17, G has a (2t+ 1)-protrusion X of size at least c+ 1 and at

most 2c. Let S = ∂(X) and let CS be the family of connected components

of G[X]− S. Every set C ∈ CS is a connected set of size at most 2c and

since N(C) ⊆ S, the size of its neighborhood is at most 2t + 1. Also

tw(G[C]) ≤ 2t+ 1.

Since for each C ∈ CS we have N(C) ⊆ S, there are at most 2|S| ≤
22t+1 different neighborhoods of sets C ∈ CS . Let us consider a neigh-

borhood partition {P1, . . . ,Pp} of the sets of CS . Then p ≤ 22t+1. Be-

cause the total number of vertices in all components C ∈ CS is at least

c−|S| ≥ c−2t−1, we have that at least in one of these classes the number

of vertices contained in the sets of this class is at least (c−2t−1)/22t+1.

Summarizing, if G has a t-protrusion of size at least c, then there is a

family of (disjoint) connected sets C1, . . . , C`, such that

(i) each of these sets Ci is of size at most 2c and the treewidth of the

graph induced by N [Ci] is at most 2t+ 1,

(ii) all sets belong to the same neighborhood class, that is N(C1) = · · · =
N(C`), and the size of this neighborhood is at most 2t+ 1,

(iii) the total number of vertices of G belonging to these components is

at least (c− 2t− 1)/22t+1.

On the other hand, the union N of the sets N [C1], . . . , N [C`], where

sets C1, . . . , C` satisfy conditions (i) − (iii), is a (4t + 1)-protrusion of

size at least (c − 2t − 1)/22t+1. Indeed, the boundary vertices of N

are contained in N(C1). A tree decomposition of G[N] of width at most

4t+1 can be constructed from the forest of tree decompositions of graphs

induced by N [Ci] by adding to each of their bags the vertices of N(C1)

and then adding edges to turn the forest into a tree. We know that by

Lemma 16.17, such a protrusion N contains a (8t+ 3)-protrusion of size

at least (c− 2t− 1)/22t+1 and at most 2c.

In order to find a family of sets satisfying conditions (i) − (iii), for

every 0 ≤ p ≤ 2c and 0 ≤ q ≤ 2t+ 1, we use Lemma 16.23 to enumerate

all pairs (P,Q), where P is a connected set of size p + 1 and Q is the

neighborhood of P of size q. Then we eliminate all sets P such that

tw(G[P ∪Q]) is more than 2t+ 1. Let S be the resulting family.

We use Lemma 16.29 to compute the neighborhood partition of S.

If there is an equivalence class in this partition whose sets contain at

16.4 Kernelization in quadratic running time 359

least (c − 2t − 1)/22t+1 vertices, then the union of these sets and their

neighborhoods is a (4t+1)-protrusion X of size at least (c−2t−1)/22t+1.

We use Lemma 16.17, to obtain fromX a (8t+3)-protrusion Y whose size

is between (c−2t−1)/22t+1 and 2c. By picking α such that α ·t ≥ 8t+1,

and (c−2t−1)/22t+1 ≥ c/αt, for example α = 9, we obtain the required

α · t-protrusion. Otherwise, we can correctly report that G has no t-

protrusion of size larger than c.

Now, let us consider the running time. By Lemma 16.23, we enumerate

all connected sets P of size p+ 1 and with neighborhood Q of size q in

time 2O(c+t)(n+m). For every set P we also output the subgraph G[P].

Computing the treewidth of G[P] can be done in time O(2t
3 · c) by

making use the algorithm of Bodlaender (1996), see Proposition 14.21.

The size of S is 2O(c+t)n. Thus the running time required to compute S
is O(2O(c+t) · 2t3 · (n+m)).

By Lemma 16.29, the neighborhood partition of S can be computed

in 2O(c+t)(n + m). This gives us the set X. Constructing graph G[X]

and then computing its tree decomposition of width O(t) will require

time O((n+m) + 2t
3 |X|). Then by Lemma 16.17, computing Y is done

in time O(|X|). Thus the total running time of the algorithm is O(2t
3 ·

2O(t+c)(n+m)) = f(t, c)(n+m).

Let us note that if instead of using Bodlaender’s algorithm, we use

a single-exponential linear-time treewidth approximation algorithm, see

Proposition 14.21, then the running time of the algorithm would be

O(2O(t+c)(n+m)) but the constant α is larger.

With the faster protrusion-finder provided by Lemma 16.30, we can

modify the proof of Theorem 16.21 such that the running time of the

algorithm becomes O(n2).

Theorem 16.31. Every bidimensional linearly-separable problem Π that

has FII admits a kernel of linear size. For an n-vertex input graph, the

running time of the kernelization algorithm is O(n2).

Proof. We run exactly the same algorithm with constants c, t and ` as

in Theorem 16.21, except that for finding a 4t-protrusion we use a lin-

ear time algorithm for finding an α · t-protrusion from Lemma 16.30:

If the algorithm finds an α · t-protrusion X of size between c + 1 and

2c, apply the protrusion-replacing algorithm from Lemma 16.18 and ob-

tain an equivalent instance (G∗, k∗) of Π. Here α is the constant from

Lemma 16.30.

As in Theorem 16.21, the algorithm concludes that

360 Surgery on graphs

• If G has more than ` · k vertices, and Π is a minimization problem,

then (G, k) is a no-instance,

• If G has more than ` · k vertices, and Π is a maximization problem,

then (G, k) is a yes-instance.

• If G has at most ` · k vertices, then the algorithm outputs (G, k).

By Lemma 16.30, it takes time O(n + m) to find a required α · t-
protrusion. Since at every step of the algorithm we decrease the number

of vertices in the input graph, the total running time is O(n2).

The correctness of the algorithm for a specific choice of constants c, t

and ` is almost identical to the proof of Theorem 16.21. We observe

these small differences and skip the full proof.

The choice of constant t is the same as in Theorem 16.21. That is, t is

a constant such that G has a (t · OPTΠ(G), t · OPTΠ(G), t)-protrusion

decomposition. By Lemma 16.18, there is a constant y, depending on Π

and t only, such that for every graph G with an α · t-protrusion of size

between y and 2y and integer k, the instance (G, k) can be reduced to

an equivalent instance (G∗, k∗) of Π, where graph G∗ has less vertices

than G and k∗ ≤ k. We select c = y · αt and put ` = t(c+ 1).

16.5 Linear time algorithm

The kernelization algorithm from the previous section uses quadratic

time for the following reasons. It repeats n times the following two oper-

ations: find a protrusion and replace it. Each of these operations requires

linear time and this is why in total we have quadratic running time.

Suppose that we can perform protrusion replacement in time linear

in the size of the replaced protrusion and independent of the size of

the graph. While Protrusion Replacement Lemma (Lemma 16.18) does

not do it, a close investigation of its proof reveals that the only cases

requiring scanning the adjacency lists of the whole graph are when we

cut and glue protrusions. In particular, for performing ⊕ operation, we

need to know the adjacencies between the vertices in the boundary of a

protrusion. As we will see, by constructing in linear time a specific data

structure, we will be able to perform such an adjacency check efficiently

and thus implement protrusion replacements in time O(|X|), linear in

the size of the protrusion and independent of the size of the input graph.

However, we need one more idea to get the linear running time.

The second idea is the following. For kernelization we used the ar-

16.5 Linear time algorithm 361

gument that if the input graph G is sufficiently large, say larger than

α · OPTΠ(G) for some contant α, then it should contain a t-protrusion

of size at least c, for some constants t and c. With some work these

arguments can be extended: for some ε, if the size n of G is at least

α ·OPTΠ(G), then G contains at least εn protrusions of size at least c.

By applying fast protrusion replacement to each of these protrusions, we

replace each of these protrusions by a smaller one. Thus in time linear

(in n) we obtain an equivalent instance on at most (1− δ)n vertices.

We apply the same procedure until we are able to find a new set

of protrusions. If we are able to compute such a set of protrusions in

time linear in the size of the graph, the total running time would be

proportional to

O(n+ (1− δ)n+ (1− δ)2n+ · · ·) = O(
n

δ
) = O(n).

We say that sets X,Y ⊆ V (G) touch if NG[X]∩Y 6= ∅. In other words,

sets touch if they have a vertex in common or G has an edge between

them. The following notion of protrusion cover will be used through all

this section.

Definition 16.32 (Protrusion cover). For integers c, t > 0 and graph

G, a (c, t)-protrusion cover of G is a family Z = {Z1, . . . , Zq} of sets

such that

• for every i, N [Zi] is a t-protrusion in G and |Zi| ≥ c,
• for every i 6= j, sets Zi and Zj do not touch.

The number q of elements in Z is the order of Z and is denoted by

|Z|.
Let us remark that according to this definition, families of sets in the

protrusion cover do not necessarily cover all the vertices of the graph.

However, in the main application of protrusion covers, we construct fam-

ilies of order ε · |V (G)|, for some ε > 0, thus covering a significant part

of the graph. Hence the origin of the name protrusion cover.

Then, on the input graph G the new algorithm will execute the fol-

lowing plan.

• Find a (c, t)-protrusion cover of order ε · |V (G)|,
• Replace each of the protrusions from the cover by a smaller one,

• Proceed with the reduced graph.

362 Surgery on graphs

In what follows, we explain why the algorithm is correct, why we

obtain a kernel of linear size, and how to implement the algorithm to

run in linear time.

We proceed in several steps. Let Π be a bidimensional separable prob-

lem.

• The first step is purely combinatorial and is required to prove the

correctness of the algorithm. We show that for any choice of param-

eters c, t, there exists a function f(c, t) and ε > 0 such that every

planar graph with more than f(c, t) · OPTΠ(G) vertices contains a

(c, t)-protrusion cover of order at least ε · |V (G)|.
• We need a fast variant of Lemma 16.18 which allows to replace a pro-

trusion with a smaller one in time linear in the size of the protrusion.

• We also need a linear time algorithm that, given parameters c, t and

a graph G, either constructs for some α > 0 a (c/αt, αt)-protrusion

cover of order Ω(n) or concludes that G has no (c, t)-protrusion cover

of order Ω(n). Note that in the latter case we use the first step to

conclude that we have a trivial no-instance (when Π is a minimization

problem) or yes-instance (when Π is a maximization problem).

The combination of these steps will bring us a linear time linear kernel.

From protrusion decompositions to protrusion covers. We start

from a combinatorial result relating protrusion covers to protrusion de-

compositions. This result is proved via a sequence of lemmata.

The first lemma shows that if a graph is of small treewidth and of

large size, then it has a protrusion cover of large order.

Lemma 16.33. For integers c > t ≥ 2 there exists a constant ε ≥ 1
122c

such that every graph G of treewidth t and with n ≥ 1/ε vertices, contains

a (c, 2t+ 1)-protrusion cover of order at least ε · n.

Proof. Let (T, χ) be a nice tree-decomposition of an n-vertex graph G

of width t, where T is a rooted tree with root r. For a subset of nodes

Q ⊆ V (T), we define the size of Q as the size of

χ(Q) =
⋃

q∈Q
χ(q).

In other words, χ(Q) is the set of vertices of G which are contained in

the bags of Q.

16.5 Linear time algorithm 363

For a node v ∈ T , a connected component C of T−v is said to be below

v if all vertices of C are descendants of v in T . We start by constructing a

set S ⊆ V (T) and a family C = {C1, . . . , C|S|} of connected components

of T − S using the following greedy procedure.

Initially, we put S = ∅, C = ∅, and T0 = T . We maintain the invariant

that Ti is the connected component of T − S containing r. At the ith

step of the greedy procedure we pick a lowermost node vi in V (Ti−1)

such that there is a connected component Ci of Ti−1 − vi below vi
of size |χ(Ci)| ≥ 3c + 7(t + 1). We add vi to S, Ci to C, and update

Ti accordingly. That is, we select Ti to be the connected component of

Ti−1 − vi containing r.

The procedure terminates when no node v in Ti has this property.

Hence when the procedure terminates, for each node v ∈ Ti and each of

the components C of Ti−v below v, it follows that |χ(C)| < 3c+7(t+1).

For every node vi, the sum of the sizes of the components of Ti−vi below

vi does not exceed 2 · (3c+ 7(t+ 1)). This is because T is a binary tree

and because at every step of the procedure we select the lowermost node

vi such that the size of every connected component of Ti − vi below vi
is at most 3c+ 7(t+ 1), Hence for every component C of T − S,

|χ(C)| < 6c+ 14(t+ 1) ≤ 20c. (16.3)

We use (16.3) to bound |S|, the cardinality of C. We have that the set

of nodes S, together with the nodes of connected components of T − S,

covers all nodes of T . The tree T is binary, thus T − S has at most

2|S|+ 1 ≤ 3|S| connected components. Every bag χ(v) is of size at most

(t+1) ≤ c and by (16.3), for every component C of T −S, |χ(C)| ≤ 20c.

Therefore, |S| · (t+ 1) + 3|S| · 20c ≥ n. Since c ≥ t+ 1, this implies that

|S| ≥ n
61c .

Having constructed S and C1, . . . , C|S|, we let S′ = LCA-Closure(S).

By Lemma 9.28, |S′| ≤ 2|S|. Let S∗ = S′\S. Since |S∗| ≤ |S|, at most |S|2
of the connected components C1, . . . , C|S| contain at least two nodes of

S∗. This implies that at least |S|2 of the components C1, . . . , C|S| contains

at most one node of S∗. Without loss of generality, we assume that each

of the components C1, . . . , Cb |S|2 c
contains at most one node of S∗. For

every i ≤ |S|/2, if Ci does not contain a node of S∗, then C ′i = Ci is a

component of C \ S′ with |χ(C ′i)| ≥ 3c + 7(t + 1) ≥ c + 2(t + 1). If Ci
contains one node v of S∗, since v has degree at most 3 and |χ(Ci)| ≥
3c + 7(t + 1), we have that T [Ci \ {v}] has at least one component C ′i
with |χ(C ′i)| ≥ c + 2(t + 1). Thus we have constructed a set S′ and

364 Surgery on graphs

a collection of disjoint connected components C ′1, . . . , C
′
b |S|2 c

of T − S′,
each with |χ(C ′i)| ≥ c+ 2(t+ 1). By Lemma 9.27, every C ′i has at most

two neighbors in T .

We construct protrusion cover Z as follows. For every i ≤ |S|/2 let

Zi = χ(C ′i) \ χ(S′). Since C ′i has at most two neighbors in T , it follows

that |N(Zi)| ≤ 2(t+ 1), thus N [Zi] is a 2(t+ 1)-protrusion. Also |Zi| ≥
c+2(t+1)−2(t+1) = c. Moreover, for any i 6= j, sets Zi do not touch Zj .

Hence Z is a (c, 2(t+ 1))-protrusion cover of G of order |S|2 ≥ n
122c .

Lemma 16.33 implies the following lemma.

Lemma 16.34. For any integers c > t ≥ 2, there exist constants δ > 0

and d > 0 such that for every k > 0, if a graph G with n ≥ d · k · t
vertices admits a (t · k, t · k, t)-protrusion decomposition, then G has a

(c, 2 · t+ 1)-protrusion cover of order at least δ · n.

Proof. Let ε = 1
122c be the constant from Lemma 16.33. We define δ =

ε/2 and d = 2(1 + 1
ε2). The reason why these constants are defined the

way they are will become clear during the course of the proof.

Since G admits a (t · k, t · k, t)-protrusion decomposition, it implies

that its vertex set can be partitioned into sets R0, R1, . . . , Rtk such that

|R0| ≤ t · k, and for each 1 ≤ i ≤ t · k we have that N(Ri) ⊆ R0, and

NG[Ri] is a t-protrusion.

Then,

k·t∑

i=1

|Ri| ≥ n− t · k. (16.4)

Because for every i ≥ 1, N(Ri) is in R0, we have that for any i 6= j ∈
{1, . . . , k · t}, sets Ri and Rj do not touch. Thus the union of protrusion

covers of the graphs G[R1], . . . , G[Rtk] is also a protrusion cover of the

graph G. Since for each i ≥ 1, the treewidth of G[Ri] is at most t,

by Lemma 16.33, every G[Ri] with |Ri| ≥ 1/ε, contains a (c, 2t + 1)-

protrusion cover of order at least ε · |Ri|. The total number of vertices

contained in all sets Ri of size less that 1/ε is at most (1/ε) · k · t.
Therefore, G has a (c, 2t+ 1)-protrusion cover of order at least

k·t∑

i=1

ε|Ri| − (1/ε) · k · t.

16.5 Linear time algorithm 365

By (16.4), we have that

k·t∑

i=1

ε|Ri| − (1/ε) · k · t ≥ ε · (n− k · t · (1 +
1

ε2
)).

By the choice of constants δ = ε/2 and d = 2(1+ 1
ε2), and the condition

n ≥ d · k · t, we conclude that

ε · (n− k · t · (1 +
1

ε2
)) ≥ εn

2
= δn.

Hence G has a (c, 2t+ 1)-protrusion cover of order δn.

We summarize the connection between bidimensional problems and

protrusion covers in the following theorem.

Theorem 16.35. Let Π be a bidimensional separable problem and c > 0.

Then there exist an integer t > 0 (depending on Π only), and constants

ε > 0 and d > 0, such that every planar graph G with more than d ·
t ·OPTΠ(G) vertices contains a (c, 2t)-protrusion cover of order at least

ε · |V (G)|.

Proof. Because Π is a bidimensional separable problem, by Theorem 15.15,

there is a constant t′, depending on Π only, such that every planar graph

G has a (t′ ·OPTΠ(G), t′ ·OPTΠ(G), t′)-protrusion decomposition. Let

δ > 0 and d > 0 be the constants from Lemma 16.34. We put ε = δ and

t = 2t′ + 1. Since G has more than d · t · OPTΠ(G) > d · t′ · OPTΠ(G)

vertices, by Lemma 16.34, it admits a (c, t)-protrusion cover of order at

least ε · |V (G)|.

Algorithmic part. We assume that graph is represented by adjacency

list. Following Cormen et al. (2009), we use an implementation in which

the vertices of a graph are represented by index numbers. In this imple-

mentation we use an array indexed by vertex numbers. For each vertex

the corresponding cell of the array points to a singly linked list of the

neighboring vertices of that vertex. For each vertex u, we call this list

the adjacency list of u. In this model, to check whether a vertex u is

adjacent to a vertex v, one either goes through the adjacency list of u or

through the adjacency list of v, which can take time proportional to the

number of vertices in the graph. Every protrusion is a set of vertices and

is represented as an array of vertices. In this model, to check whether

two vertices of a protrusion are adjacent, we might spend time Ω(n).

For the linear time algorithm, we need a representation that for any

366 Surgery on graphs

two vertices u and v of any protrusion of constant size, can check their

adjacency in constant time. The representation should also allow us to

update the information when we replace one protrusion with another.

Roughly, such a representation should keep for every protrusion X, the

subgraph G[X] induced by X and allow us to update this information

when the graph is changing. While the number of protrusions of con-

stant size we are dealing with will be O(n), a naive approach of going

through every pair of vertices of each protrusion and checking their ad-

jacencies could take time O(n2) simply because some pairs can be in

Ω(n) protrusions. Thus we have to be a bit more careful.

Definition 16.36 (Explicit induced subgraph representation). For a

graph G and vertex set X ⊆ V (G), an explicit representation of G[X] is

a list containing the identification numbers of the vertices in X, and a

list that for every ordered pair (u, v) such that uv ∈ E(G[X]) contains

a pointer to the position of u in the adjacency list of v. We refer to the

list of edge-pointers as the edge list.

If a protrusion X is given together with its explicit representation,

then the protrusion replacement from Lemma 16.18 can be performed

in time O(|X|). Indeed, the only operations Lemma 16.18 that required

time O(n+m) were the operations of cutting the graph along the bound-

ary of X and gluing a new protrusion along this boundary. But with an

explicit representation of X, these operations clearly can be done in time

proportional to the number of edges in G[X], which is O(|X|). Thus we

obtain the following lemma.

Lemma 16.37 (Fast Protrusion Replacement Lemma). Let Π be a prob-

lem that has FII. Then for every t ∈ Z+, there exists a c ∈ Z+ (depend-

ing on Π and t), and an algorithm that, given an instance (G, k) of Π,

a t-protrusion X in G with |X| > c, and an explicit representation of

X, outputs in O(|X|) steps an equivalent instance (G∗, k∗) of Π where

|V (G∗)| < |V (G)| and k∗ ≤ k.

The next lemma shows how to compute explicit representations for a

family of sets.

Lemma 16.38. Given a graph G together with a family of vertex sets

X = {X1, . . . , Xp}, each of the sets of size at most c, an explicit rep-

resentation of all Xi ∈ X can be computed in time O(cO(1)(|V (G)| +
|E(G)|+ |X |)).

Proof. Without loss of generality we can assume that all adjacency lists

16.5 Linear time algorithm 367

of all vertices of G are sorted in increasing order by their identification

numbers. This assumption is justified by listing all edges of G and then

sorting them in linear time using two stable bucket sorts, first sorting

on the second endpoint, and then on the first endpoint.

For each set Xi we produce a list of all the O(c2) potential edges of

Xi. Here by potential edge we mean an ordered triple (u, v, i), where

u, v ∈ Xi. We merge the list of potential edges into one list L. Notice

that |L| = O(c2) · |X | and that L can be computed in time O(|L|). Next

we sort L in lexicographical order using three stable bucket sorts, first on

the third, then the second and finally on the first coordinate of triples.

This also takes time O(|L|+ |V (G)|).
We will now construct the edge lists of the sets X1, . . . , Xp. Initially

all the lists are empty and we make an array of size p, where the ith

entry of the array points to the edge list of Xi. We scan through all

vertices u ∈ V (G) in increasing order by their identification numbers.

For each u ∈ V (G), we scan through the adjacency list of u. Notice that

this list is also sorted in increasing order. We also maintain a pointer pL
to a position in the list L. Initially this pointer points to the first entry

of the list.

When we consider the entry of the adjacency list of u corresponding

to an edge uv, we proceed as follows. While pL points to a potential

edge (u′, v′, i) such that (u′, v′) is lexicographically smaller than (u, v),

we move pL to the next entry of L. Then while pL points to a potential

edge (u, v, i), we add a pointer to the position of v in the adjacency list

of u to the edge list of Xi, and then move pL to the next entry of L.

Because each entry of L is considered once, and each edge uv ∈ E(G)

is considered twice, the total running time is as claimed.

To see the correctness of the construction, observe that for every ver-

tex u and v ∈ N(u), when the algorithm considers the pair (u, v), the

pointer pL will scan through all potential edges of the form (u, v, i). This

is because all entries of L and all adjacency lists are lexicographically

sorted.

As far as we have learned how to compute in linear time explicit

representation of a family of sets, we are to able give a linear time

algorithm computing a protrusion cover.

Lemma 16.39. For every c > t ≥ 2 there exist γ > 0 and an algorithm

A with the following specification.

• The input to A is a graph G with n vertices and m edges.

368 Surgery on graphs

• The output of A is a (c/γt, γ · t)-protrusion cover V = {V1, . . . , Vz} of

G such that the size of each set Vi is at most 6c.

• The running time of the algorithm is O(n+m).

Moreover, for every ε > 0, there exists δ > 0 such that if input graph

G admits a (c, t)-protrusion cover of order εn, then the order z of the

protrusion cover V is at least δn.

Proof. The correctness of our algorithm is based on the combinatorial

result which guarantees the existence of a protrusion cover with spe-

cific properties. Informally, we want to show that if G contains a (c, t)-

protrusion cover of order εn, then it also contains a protrusion cover of

order εn with certain properties. The properties we want of protrusion

cover {Z1, . . . , Zq} are as follows.

• Every set Zi is of size Θ(c).

• For each set Zi, its connected components in G[Zi] have equal neigh-

borhoods.

Let X = {X1, . . . , Xq} be a (c, t)-protrusion cover of order εn in G.

Claim 16.40. The graph G contains a (c, 2t+ 1)-protrusion cover Y =

{Y1, . . . , Yq} of order εn such that every set Yi is of size at most 5c.

Proof. Each set N [Xi] is a t-protrusion of size at least c + t + 1. By

Lemma 16.17, for every i ∈ {1, . . . , q}, there is a (2t + 1)-protrusion

Xi ⊆ Yi, such that c ≤ |Xi| ≤ 2(c+ t+ 1) ≤ 5c. Then Y = {Y1, . . . , Yq}
is the required protrusion cover. y

Claim 16.41. The graph G contains a (c
22t+1 , 2t + 1)-protrusion cover

Z = {Z1, . . . , Zq} of order εn such that every set Zi is of size at most 5c

and for every set Zi, all connected components of the graph G[Zi] have

exactly the same neighborhood in G. In other words, for any connected

component C of G[Zi], NG(C) = NG(Zi).

Proof. By Claim 16.40, G contains a (c, 2t + 1)-protrusion cover Y =

{Y1, . . . , Yq} of order εn such that every set Yi is of size at most 5c. By

the definition of a protrusion cover, each of the sets Yi has a neighbor-

hood N(Yi) of size at most 2t + 1. Since the neighborhood of each of

the connected components of G[Yi] belongs to N(Yi), the neighborhood

partition of the connected components of G[Yi] contains at most 22t+1

equivalent classes. Since the size of Yi is at least c, the components of

at least one of the neighborhood equivalence classes contain in total at

least c
22t+1 vertices. This means that there is a set Zi ⊆ Yi such that for

16.5 Linear time algorithm 369

every connected component C of G[Zi], N(C) = N(Zi) ⊆ N(Yi). Then

Z = {Z1, . . . , Zq} is the required protrusion cover. y

We put γ = 5, then 22t+1 ≤ γt and γ · t ≥ 2t+ 1.

We consider the following Algorithm A operating in several steps. It

takes as input a graph G and integers c, t, and outputs a family V =

{V1, . . . , Vz} of vertex subsets of G.

Step 1. Use Lemma 16.23 to produce all pairs (Pi, Qi), 1 ≤ i ≤ `, such

that Pi is a connected vertex set of size at most 5c and Q = NG(P) is

of size at most γ · t.

Step 2. Use Lemma 16.38 to construct explicit representations of all

sets Pi ∪Qi, 1 ≤ i ≤ `.

Step 3. Eliminate all pairs (P,Q) such that the treewidth of G[P ∪Q]

is more than γt. Let (Pi, Qi), 1 ≤ i ≤ `, be the remaining pairs.

Step 4. Define P = {P1, P2, . . . , P`} and use Lemma 16.29 to compute

the neighborhood partition of P. Let {P1, . . . ,Pr} be the neighborhood

partition of P.

Step 5. Eliminate all equivalent classes whose sets contain in total less

than c/γt vertices. For each remaining equivalence class Pi = {P i1, . . . , P is},
we club the sets P is into groups such that the total number of vertices in

each of the groups is at least c/γt and at most 6c. In other words, we ob-

tain a partition of the vertex vertex set P i1∪· · ·∪P is into sets W i
1, . . . ,W

i
x

such that for each j ∈ {1, . . . , x}, c/γt ≤ |W i
j | ≤ 6c. Let us note that

since all sets P ij are of size at most 5c, such a partition is always possible.

Also because each of the sets W i
j is the union of some sets from the same

class Pi of the neighborhood partition, we have that NG(W i
j) = NG(P i1)

for every j ∈ {1, . . . , x}. Finally, letW = {W1, . . . ,Wy} be the family of

all sets W i
j , i ∈ {1, . . . , s} and j ∈ {1, . . . , x}.

Step 6. Construct an auxiliary graph GW . The vertices of GW are sets

of W and two vertices are adjacent if and only if the corresponding sets

touch. Let ∆ be the maximum vertex degree ofGW . Find an independent

set of size at least |V (GW)|/(∆ + 1) in GW . Let V = {V1, . . . , Vz},
z ≥ |V (GW)|/(∆ + 1), be the family of the corresponding (pairwise

non-touching) sets from W.

Step 7. Output V = {V1, . . . , Vz}.

First of all, V = {V1, . . . , Vz} is a (c/γt, γ · t)-protrusion cover and

370 Surgery on graphs

the size of each set Vi is at most 6c. Indeed, by the construction of

W = {W1, . . . ,Wy}, for each 1 ≤ i ≤ y, the set N [Wi] is a γ ·t protrusion,

and the size of set Wi is at least c/γt and at most 6c. The only reason

why W may not be a (cγt , γ · t)-protrusion cover is that the sets of W
can touch each other. Thus when we select a subset V = {V1, . . . , Vz}
of sets from W that are pairwise non-touching, we obtain a (c/γt, γ · t)-
protrusion cover.

Now we argue now that if G has a (c, t)-protrusion cover of order εn,

then

• the set V = {V1, . . . , Vz} produced by the algorithm is the required

protrusion cover, and

• the algorithm can be implemented to run in linear time.

We prove each of the arguments as a separate claim.

Claim 16.42. If G admits a (c, t)-protrusion cover of order εn, then

V = {V1, . . . , Vz} is a (c/γt, γ · t)-protrusion cover of order δn, where

δ ≥ ε

6γt
· 1(

5c+γt
γt

)
· (6c+ γt)2 + 1

.

Proof. By Claim 16.41, G contains a (cγt , γ · t)-protrusion cover Z =

{Z1, . . . , Zq} of order q = εn such that every set Zi is of size at most 5c

and for every set Zi, all connected components of the graph G[Zi] have

exactly the same neighborhood in G.

Each of the vertex sets Zi is of size at most 5c, the size of its neigh-

borhood is at most γt and the treewidth of G[Zi ∪N(Zi)] is at most γt.

In Step 1 we enumerate all sets Pi of size at most 5c with neighborhood

Qi of size at most γt. In Step 3 we eliminated all pairs whose induced

subgraph is of treewidth more than γt. Thus, after Step 3, for every con-

nected component C of G[Zi], there is a set P ∈ P = {P1, P2, . . . , P`}
such that C = P . Therefore, all vertices contained in sets of Z with

the same neighborhood are also contained in the sets of the same class

of neighborhood partition of P. In other words, let {Z1, . . . ,Za} be the

neighborhood partition of Z = {Z1, . . . , Zq}. Then we can denote a

neighborhood partition of P by {P1, . . . ,Pr} with r ≥ a such that for

every i ≤ a, Zi ⊆ Pi. (By writing Zi ⊆ Pi for families of sets Zi and

Pi, we mean that for every set Z ∈ Zi there is a set P ∈ Pi such that

Z = P .) In particular, every vertex v of G that is contained in some set

from the equivalence class Zi also belongs to some set from Pi.
Because each of the sets from Zi contains at least c/γt vertices, we

16.5 Linear time algorithm 371

have that the number of vertices of G covered by sets from Zi is at least

c · |Zi|
γt

. (16.5)

Here we use |Zi| to denote the number of sets in the family Zi. With this

notation, the number q of sets in the protrusion cover Z = {Z1, . . . , Zq}
is

q =

a∑

i=1

|Zi|.

Every set W i
j , which was formed by grouping sets of Pi = {P i1, . . . , P is}

in Step 5, is of size at most 6c. Thus the number of sets W i
1, . . . ,W

i
x we

create at this step is at least the number of vertices covered by all sets

from Pi divided by 6c. Because Zi ⊆ Pi, by (16.5), we have that for each

i we created at least
|Zi|

6c · γt
sets. Because the sets of the protrusion cover Z do not touch, and thus

are disjoint, we have that the family W = {W1, . . . ,Wy}, produced in

Step 5, is of order

y ≥
a∑

i=1

|Zi|
6c · γt =

q

6c · γt =
εn

6c · γt .

Moreover, the size of each of the sets Wi is at least c/γt and N [Wi] is a

γt-protrusion. However, sets from W can touch each other.

In Step 6 we produce a maximal subfamily V = {V1, . . . , Vz} of pair-

wise non-touching sets ofW. Thus, the family V is a (cγt , γ ·t)-protrusion

cover, so it only remains to bound its order z. By Lemma 16.23, every

vertex v ∈Wi is contained in at most
(

5c+γt
γt

)
· (5c+ γt) sets Wj . Hence,

the number of sets intersecting Wi is at most
(

5c+ γt

γt

)
· (5c+ γt) · |Wi|.

Similarly, the number of sets intersecting the neighborhood of Wi is at

most (
5c+ γt

γt

)
· (5c+ γt) · |N(Wi)|.

Thus each set Wi touches at most
(

5c+ γt

γt

)
· (5c+ γt) · (|N(Wi)|+ |Wi|) ≤

(
5c+ γt

γt

)
(6c+ γt)2 (16.6)

372 Surgery on graphs

sets. By Brook’s theorem, the chromatic number of an n-vertex graph

of maximum vertex degree ∆ is at most ∆ + 1. Thus such a graph

contains an independent set of size at least n/(∆ + 1). The graph GW
has y ≥ q

6γt = εn
6γt vertices and its maximum vertex degree is at most

(
5c+ γt

γt

)
(6c+ γt)2.

Hence, the order z of the (cγt , γ · t)-protrusion cover V is at least

εn

6γt
· 1(

5c+γt
γt

)
· (6c+ γt)2 + 1

= δn.

y

Claim 16.43. Algorithm A can be implemented to run in time O(n+

m).

Proof. We analyze the running time of the algorithm step by step.

By Lemma 16.23, in Step 1 the number of pairs (Pi, Qi) produced by

the algorithm is at most n ·
(

5c+γt
γt

)
· (5c+ γt)O(1) and all these pairs are

enumerated in time O(m+ n ·
(

5c+γt
γt

)
· (5c+ γt)O(1)) = O(n+m).

In Step 2 we compute explicit representations of all sets Pi ∪ Qi. By

Lemma 16.38, this takes time O((n + m +
(

5c+γt
γt

)
) · (5c + γt)O(1)). As

far as we have explicit representations of all the sets Pi ∪ Qi, deciding

whether the treewidth of the graph G[Pi ∪Qi] is at most γt takes time

O((5c+ γt) · 2O(t2)), see Proposition 14.21. Thus Step 3 takes time

O(2O(t2) · n ·
(

5c+ γt

γt

)
· (5c+ γt)O(1)) = O(n+m).

By Lemma 16.29, the time required to find the neighborhood partition

{P1, . . . ,Pr} of P in Step 4 is

O((m+ n) ·
(

5c+ γt

γt

)
· (5c+ γt)O(1)) = O(n+m).

In Step 5 we can use a greedy algorithm which for each neighborhood-

partition class Pi = {P i1, . . . , P is} groups its sets in timeO(|P i1∪· · ·∪P is |).
Thus W = {W1, . . . ,Wy} is constructed in time linear in n and m.

Finally, for Step 6 we again use a greedy algorithm. An independent

set of size k/(∆ + 1) in a k-vertex graph of degree ∆ can be obtained

by repeating the following procedure. We pick a vertex, add it to the

independent set and delete its neighbors from the graph. Thus in the

algorithm, we select a setWi to be added to V and delete all sets touching

16.5 Linear time algorithm 373

Wi. By (16.6), the number of sets touching Wi is a constant depending

on c, t, and γ only. Therefore, the construction of the family V also takes

time O(|W|) = O(n+m). y

The proof of the lemma follows from Claims 16.42 and 16.43.

We are ready to prove the main result of this section.

Theorem 16.44. Every bidimensional linearly-separable problem Π that

has FII admits a kernel of linear size. For an n-vertex input planar

graph, the running time of the kernelization algorithm is O(n).

Proof. The outline of the algorithm is very similar to the algorithm

from Theorem 16.21. The main difference is that instead of finding a

protrusion, we compute a protrusion cover and replace all protrusions

in parallel.

On an instance (G, k) of a bidimensional linearly-separable problem

Π that has FII and for constants c, t, ε and `, we run the following

algorithm.

Let γ be the constant defined in Lemma 16.39. For an input (G, k), we

apply the algorithm that computes a protrusion cover from Lemma 16.39

on G.

• If the algorithm finds a (c/γt, γt)-protrusion cover V = {V1, . . . , Vz} of

order z = δ · |V (G)|, where δ is the constant from Lemma 16.39 which

depends only on ε, γ, c and t (this dependence is given in Claim 16.42),

then for each protrusionNG[Vi], we apply the Fast Protrusion Replace-

ment Lemma (Lemma 16.37). Thus we obtain an equivalent instance

(G∗, k∗) of Π. Then, we restart the algorithm with (G := G∗, k := k∗)
as input.

• If the algorithm fails to find a (c/γt, γt)-protrusion cover of order

z = δ · |V (G)|, then

– If G has more than ` · k vertices, and Π is a minimization problem,

then report that (G, k) is a no-instance.

– If G has more than ` · k vertices, and Π is a maximization problem,

then report that (G, k) is a yes-instance.

– If G has at most ` · k vertices, then output (G, k).

We need to show that the algorithm can be implemented to run in

374 Surgery on graphs

linear time and that for a certain choice of constants it works correctly.

We start with the running time.

By Lemma 16.39, the protrusion cover V = {V1, . . . , Vz} is computed

in time O(|V (G)|+ |E(G)|). Because G is planar, O(|V (G)|+ |E(G)|) =

O(|V (G)|). Moreover, in the process of implementation of the algo-

rithm of Lemma 16.39, we compute explicit representations of all γt-

protrusions N [Vi], i ∈ {1, . . . , z}. Each of the sets Vi is of size at most

6c, thus the size of the protrusion is |N [Vi]| ≤ 6c + γt. By the Fast

Protrusion Replacement Lemma, the replacement step for each protru-

sion takes time O(6c + γt) = O(1). Hence computing the new instance

(G∗, k∗) takes time O(|V|) = O(|V (G)|).
Because at each iteration of the algorithm we reduce at least δ|V (G)|

disjoint sets of the protrusion cover, the size of the reduced graph G∗ is

at most (1− δ)|V (G)|. Hence the total running time of the algorithm is

O(n+ (1− δ)n+ (1− δ)2n+ · · ·) = O(nδ) = O(n).

It only remains to argue that it is possible to select constants c, t, ε

and ` such that the algorithm works correctly. We select these constants

as follows.

By Theorem 16.35, there exists an integer t > 0 (depending on Π

only), and constants ε > 0 and d > 0, such that every planar graph G

with more than d · t ·OPTΠ(G) vertices contains a (c, t)-protrusion cover

of order at least ε · |V (G)|. We take c, t, ε from this theorem and ` = dt.

By Lemma 16.39, if the algorithm does not find a (c/γt, γ·t)-protrusion

cover of order δn, then G has no (c, t)-protrusion cover of order ε·|V (G)|.
Then by Theorem 16.35, if the number of vertices in G is at least ` ·k+1,

then k < OPTΠ(G). Hence when k < OPTΠ(G) and Π is a minimization

problem, we can correctly conclude that (G, k) is a no-instance. Similarly,

if Π is a maximization problem, then (G, k) is a yes-instance.

Finally, if the size of G is at most ` · k, the algorithm outputs (G, k)

and thus the described algorithm is a kernel of linear size.

Combined with Theorem 16.16, Theorem 16.44 implies the following

corollary.

Corollary 16.45. Every bidimensional linearly-separable CMSO-optimization

problem Π admits a kernel of linear size. For an n-vertex input planar

graph, the running time of the kernelization algorithm is O(n).

16.5 Linear time algorithm 375

Exercises

Problem 16.1. Prove that

• Vertex Cover,
• Feedback Vertex Set,
• Treewidth-η Modulator,
• Dominating Set,
• Connected Dominating Set,
• Connected Vertex Cover,
• Connected Feedback Vertex Set

are CMSO-optimization problems.

Problem 16.2. Prove that the relation ≡Π is an equivalence relation.

Problem 16.3. Let Π be a parameterized graph problem that has FII. For a finite
I ⊆ Z+, show that the number of equivalence classes of ≡Π that are subsets of FI

depends only on |I|.

Problem 16.4. Prove Lemma 16.11 when Π is a positive extended parameterized
problem.

Problem 16.5. Let Π be a parameterized graph problem with a signature function
that satisfies the two properties in Section 16.2, then Π has FII.

Problem 16.6. Prove that Longest Path does not have FII.

Problem 16.7. Prove that the negative extension of Independent Set does not
have FII.

Bibliographic notes

The idea of graph replacement for algorithms dates back to Fellows and

Langston (1989). Arnborg et al. (1993) proved that every set of graphs

of bounded treewidth that is definable by a Monadic Second Order Logic

(MSO) formula is also definable by reduction. By making use of algebraic

reductions, Arnborg et al. (1993) obtained a linear time algorithm for

MSO expressible problems on graphs of bounded treewidth. Bodlaender

and de Fluiter (1996); Bodlaender and van Antwerpen-de Fluiter (2001);

de Fluiter (1997) generalized these ideas in several ways—in particular,

they applied it to a number of optimization problems. We also men-

tion the work of Bodlaender and Hagerup (1998), who used the concept

of graph reduction to obtain parallel algorithms for MSO expressible

problems on graphs of bounded treewidth.

The notion of Finite Integer Index was introduced in the thesis of

de Fluiter (1997), see also Bodlaender and de Fluiter (1996).

The general framework of meta-kernelization and protrusion replacing

376 Surgery on graphs

technique was developed in Bodlaender et al. (2009a, 2016b). Kernel-

ization of bidimensional problems was obtained in Fomin et al. (2010,

2016a). The proof of Theorem 16.16 is given in Fomin et al. (2016a).

The results discussed in this chapter could be extended to more general

classes of graphs. The planar excluded grid theorem (Theorem 14.56)

can be generalized to graphs excluding some fixed graph H as a minor,

i.e., H-minor-free graphs. Demaine and Hajiaghayi (2008b) proved that

for every fixed graph H and integer t > 0, every H-minor-free graph

G of treewidth more than αHt contains �t as a minor, where αH is a

constant depending on H only. Using this, it is possible to show that

the treewidth-parameter bound tw(G) ≤ αQ ·
√
OPTQ(G) holds for

much more general classes of apex-minor-free graphs. An apex graph

is a graph obtained from a planar graph G by adding one vertex and

making it adjacent to an arbitrary subset of vertices of G. Then a class

of graphs is apex-minor-free if every graph in this class does not contain

some fixed apex graph as a minor. Thus for example, the arguments we

use in this chapter can be easily adapted to imply a linear kernel for

Dominating Set on apex-minor-free graphs, but do not imply such

an algorithm for general H-minor-free graphs. While Dominating Set

admits a linear kernel on H-minor-free graphs, the algorithm requires

additional ideas, see Fomin et al. (2012a); Drange et al. (2016a).

When we relax the notion of (contraction) bidimensionality to minor

bidimensionality, i.e., we require that the problem Q is minor-closed and

OPTQ(�t) = Ω(t2), then for minor-bidimensional problems the kernel-

ization algorithm from this section hold even for H-minor-free graphs.

Therefore for example Feedback Vertex Set admit linear kernel on

graphs excluding a fixed minor.

Lemma 16.23 is due to Fomin and Villanger (2012). It can be seen

as a variation of the Two-Families Theorem of Bollobás (1965). The

observation on the size of an independent set in graphs of bounded degree

in Lemma 16.39 is based on Brooks Theorem from Brooks (1941).

The notion of protrusion cover (in a slightly different form) is taken

from Fomin et al. (2012b). Linear time kernelization algorithm follows

ideas from Fomin et al. (2012b) and Fomin et al. (2015b).

The kernelization algorithm discussed in this chapter are non-constru-

ctive in the following sense. The theorems show the existence of kernel-

ization algorithms but they do not provide a way to construct such

algorithms. Non-constructiveness is due to the protrusion replacing pro-

cedure. Here we prove that if the size of a protrusion is larger than some

constant c, which depends on the sizes of graphs in progressive represen-

16.5 Linear time algorithm 377

tatives of the corresponding boundary graph, then we can replace this

protrusion. However, the algorithm does not provide a way to compute

this constant c. This issue is addressed in the work of Garnero et al.

(2015).

Other kernelization meta-theorems based on the techniques explained

in this chapter, can be found in Fomin et al. (2016c); Gajarský et al.

(2017); Kim et al. (2016); Ganian et al. (2016).

Part THREE

LOWER BOUNDS

17

Framework

In this chapter we define the framework which will be used to establish lower

bounds on some problem kernels. We define polynomially bounded distillation

algorithms, and prove a fundamental theorem about such algorithms. We use

this theorem to show that Longest Path does not admit polynomial kernels

subject to a popular assumption from complexity theory. Then we define OR-

cross-compositions of languages, and use this to show that Steiner Tree and

Clique (vc) do not admit polynomial kernels either.

The starting point of this book was Lemma 1.4. This lemma implies

that a problem has a kernel if and only if it is fixed-parameter tractable.

The tools offered by Parameterized Complexity allow to distinguish be-

tween fixed-parameter tractable and intractable problems. However, we

are interested in kernels that are as small as possible, and a kernel ob-

tained using Lemma 1.4 has size that equals the dependence on k in the

running time of the best known FPT algorithm for the problem. The

natural question is—can we do better? In particular, can we get polyno-

mial sized kernels for problems that admit FPT algorithms? As we saw

in the previous chapters, many such problems admit polynomial kernels.

However, for some problems like Edge Clique Cover (Theorem 2.12),

we were able to provide only a kernel of exponential (in k) size. The goal

of this part of the book is to provide the intractability theory of kernel-

ization that allows us to identify problems which are unlikely to have

polynomial kernels.

To begin with, we consider the following problem. In Longest Path,

we are given an undirected graph G and a non-negative integer k. The

381

382 Framework

task is to decide whether G contains a (simple) path of length at least

k.

It is well known that the Longest Path problem is fixed-parameter

tractable. There are many parameterized algorithms developed for this

problem, see Cygan et al. (2015) for an overview of different algorithms

for Longest Path. In particular, the problem can be solved in time

2O(k)nO(1), where n is the number of vertices in the input graph G.

Thus by Lemma 1.4, we deduce that Longest Path admits a kernel of

size 2O(k). But what about a kernel of polynomial size?

We argue that intuitively this should not be possible. Assume that

Longest Path admits a polynomial kernel of size kc, where c is some

fixed constant. We take many instances,

(G1, k), (G2, k), . . . , (Gt, k),

of the Longest Path problem, where in each instance |V (Gi)| = n, 1 ≤
i ≤ t, and k ≤ n. If we make a new graph G by just taking the disjoint

union of the graphs G1, . . . , Gt, we see that G contains a path of length

k if and only if Gi contains a path of length k for some i ≤ t. Now run

the kernelization algorithm on G. Then kernelization algorithm would in

polynomial time return a new instance (G′, k′) such that |V (G′)| ≤ kc ≤
nc, a number potentially much smaller than t, for example set t = n1000c.

This means that in some sense, the kernelization algorithm considers the

instances (G1, k), (G2, k), . . . , (Gt, k) and in polynomial time figures out

which of the instances are the most likely to contain a path of length

k. More precisely, if we have to preserve the value of the OR of our

instances while being forced to forget at least one of the inputs entirely,

then we have to make sure that the input being forgotten was not the

only one whose answer is yes (otherwise we turn a yes-instance into a no-

instance). However, at least intuitively, this seems almost as difficult as

solving the instances themselves, and since the Longest Path problem

is NP-complete, this seems unlikely. In what follows, we formalize this

intuition.

17.1 OR-Distillation

We start with the crucial definition.

Definition 17.1 (Distillation algorithm). Let L,R ⊆ {0, 1}∗ be a pair

of languages and let t : N → N \ {0} be a function. Then a t-bounded

17.1 OR-Distillation 383

OR-distillation algorithm from L into R is an algorithm that for every

n, given as input t(n) strings x1, . . . , xt(n) with |xi| = n for all i,

• runs in polynomial time, and

• outputs a string y of length at most t(n) · log n such that

y ∈ R if and only if xi ∈ L for some i ∈ {1, . . . , t(n)}.

The strategy of using distillation to rule out the existence of polyno-

mial kernels is to combine the following facts.

• As we will see in Theorem 17.3, the existence of a polynomially

bounded distillation for any NP-hard language implies a complexity-

theoretic collapse, and is therefore considered very unlikely.

• For some parameterized problems L, one can show that the existence

of a polynomial kernel would imply the existence of a polynomially

bounded distillation for an NP-hard problem related to L. Hence it is

unlikely that such a polynomial kernel exists.

Distillation algorithms are also often called OR-distillation because

the answer to the output instance of R is equivalent to the logical OR

of the answers to the input instances of L.

The main property of distillation algorithms is provided in Theo-

rem 17.3. In order to state this theorem, let us recall the definition

of complexity class NP/ poly. For more details on computational com-

plexity we refer to Arora and Barak (2009).

Definition 17.2 (Class NP/ poly). We say that a language L belongs

to the complexity class NP/poly if there is a Turing machine M and a

sequence of strings (αn)n=0,1,2,..., called advice, such that:

• Machine M , when given an input x of length n, has access to the

string αn and has to decide whether x ∈ L. Machine M works in

nondeterministic polynomial time.

• |αn| ≤ p(n) for some polynomial p(·).

In the first condition, nondeterministic polynomial time means that

the run of the algorithm is nondeterministic, and by deciding a problem

nondeterministically, we mean that if the answer is yes, then at least

one computation path answers yes, and if the answer is no, then all

computation paths answer no. Note that in this definition αn depends

384 Framework

only on n. Thus for each n we need to design a “global” advice αn that

will work for all the inputs of length n.

As the basis of additional lower bounds on kernelization, it is assumed

that the containment coNP ⊆ NP/ poly is not true (see the Bibliographic

notes in this chapter). Briefly, the containment coNP ⊆ NP/ poly may

be viewed as a variant of the hypothesis coNP = NP, and it is considered

to be highly implausible.

For language L ⊆ {0, 1}∗, we let L̄ = {0, 1}∗\L denote the complement

of L. We remark that in what follows, we use the term NP-hard with

respect to Karp reductions.

Theorem 17.3. If there is a t-bounded OR-distillation algorithm from a

language L ⊆ {0, 1}∗ into a language R ⊆ {0, 1}∗ for some polynomially

bounded function t, then L̄ ∈ NP/poly.

In particular, if L is NP-hard then coNP ⊆ NP/ poly.

Proof. The idea of the proof is to show that there is a nondetermin-

istic Turing machine that, with the help of a polynomial amount of

advice, decides L̄ in polynomial time. Specifically, by using a distillation

and advice, one can obtain a polynomial-time verifiable witness of non-

membership of an instance x1 in a language as follows: if y is known to

be a no-instance hard-coded in the advice, and there is some series of

inputs x2, . . . , xt that together with x1 is mapped to y by the distillation

(verifiable in polynomial time), then the answer of x1 must be false since

the OR is false.

We start with a simple lemma using which we implement the approach

mentioned above. To understand the relevance of this lemma, think of

β in the context of the functionality of distillation, and remember that

we want to find y that “implies” the classification of as many inputs x

as possible.

Lemma 17.4. Let X,Y be finite sets, p be a natural number, and

β : X × · · · ×X︸ ︷︷ ︸
p

→ Y

be a mapping. We say that y ∈ Y covers x ∈ X if there exist x1, . . . , xp ∈
X such that xi = x for some i, 1 ≤ i ≤ p, and β((x1, . . . , xp)) = y. Then

at least one element from Y covers at least |X| / p
√
|Y | elements of X.

Proof. Let Xp = X × · · · ×X︸ ︷︷ ︸
p

. By the pigeonhole principle, there is

y ∈ Y such that β maps at least |X|p / |Y | elements of Xp to y. Let Xy

17.1 OR-Distillation 385

be the set of tuples in Xp mapped to y. Let Z be the set of elements

occurring in at least one tuple in Xy; then all elements in Z are covered

by y. Since Xy consists of at least |X|p/|Y | tuples, each of which consists

of p elements of Z, it follows that |Z|p ≥ |X|p/|Y |.
For n ∈ N, let L̄n =

{
x ∈ L̄ | |x| = n

}
. Thus L̄n consists of all strings

of length n which are not in L.

We set α(n) = t(n) log t(n). Let A be a t-bounded OR-distillation

algorithm from L into R. Then for each input x1, . . . , xt(n) such that

for all i ∈ [t(n)], xi ∈ L̄n, A outputs a string y of length at most α(n)

such that y ∈ R̄. We define R̄α(n) =
{
y ∈ R̄ | |y| ≤ α(n)

}
. Thus to each

t(n)-tuple x1, . . . , xt(n) with xi ∈ L̄n for all 1 ≤ i ≤ t(n), the distillation

algorithm A maps a string from R̄α(n). Because our alphabet is binary,

the cardinality of the set R̄α(n) is at most 2α(n) = 2t(n) log t(n) = t(n)t(n).

By Lemma 17.4, there is y1 ∈ R̄α(n) such that the number of elements

of L̄n that it covers is at least

|L̄n|
|R̄α(n)|1/t(n)

≥ |L̄n|
t(n)

.

Denote Z1 = {x ∈ L̄n : y1 covers x}. By applying Lemma 17.4 again,

there is a string y2 ∈ L̄α(n) \ {y1} covering at least |L̄n\Z1|
(|R̄α(n)|−1)1/t(n) ≥

|L̄n\Z1|
|R̄α(n)|1/t(n) = |L̄n\Z1|

t(n) elements of L̄n \ Z1. Denote Z2 = {x ∈ L̄n \ Z1 :

y2 covers x}. Generally, we denote by yi ∈ L̄α(n) \{y1, . . . , yi−1} a string

that covers at least
|L̄n \ (Z1 ∪ . . . ∪ Zi−1)|

t(n)

elements of L̄n \ (Z1 ∪ . . . ∪ Zi−1), where Zi is the set of new elements

covered by yi.

We claim that for all i ≤ t(n), the number of elements of L̄n that

y1, y2, . . . , yi cover together is either all elements of L̄i or at least Ci|L̄n|
for Ci = t(n)−1

t(n) Ci−1 + 1
t(n) where C1 = 1

t(n) . We have already shown

that the base case holds. Now, suppose that the claim holds for i − 1,

and let us prove it for i. Then, by the inductive hypothesis, the number

of elements of L̄n that y1, y2, . . . , yi cover together, if it is not already

all elements of L̄n, is at least

|Z1|+ . . .+ |Zi| ≥ |Z1|+ . . .+ |Zi−1|+
|L̄n \ (Z1 ∪ . . . ∪ Zi−1)|

t(n)

≥ Ci−1|L̄n|+
|L̄n| − Ci−1|L̄n|

t(n)
= (

t(n)− 1

t(n)
Ci−1 +

1

t(n)
) · |L̄n|.

386 Framework

This proves our claim. Now, note that the recurrence above evaluates to

Ci =
1

t(n)
·
i−1∑

j=0

(
t(n)− 1

t(n)
)j = 1− (1− 1

t(n)
)i.

Thus, by setting i = 2t(n)·n, we have Ci|L̄n| = (1−(1− 1
t(n))2t(n)·n)|L̄n| ≥

(1− 1
en)|L̄n|. Because |L̄n| ≤ 2n, this means that all elements of L̄n are

then covered.

We thus conclude that there is a set Sn ⊆ R̄α(n) of size (t(n))O(1)

such that Sn covers every element of L̄n. Since t(n) is bounded by some

polynomial of n, we have that |Sn| = nO(1). By construction, Sn has the

following properties. For every string x of length n:

(S1) If x ∈ L̄n, then there is a set of strings x1, . . . , xt(n) of length n with

xi = x for some i, 1 ≤ i ≤ t(n), such that on input x1, . . . , xt(n),

algorithm A outputs a string from Sn.

(S2) If x /∈ L̄n, then as x is of length n, we have that x ∈ L. Then for every

input set of strings x1, . . . , xt(n) of length n with xi = x for some

i, 1 ≤ i ≤ t(n), the distillation algorithm A outputs a string from R,

and thus not a string from Sn ⊆ R̄.

The NP/ poly machine M that decides the language L̄ is described as

follows. For x ∈ {0, 1}n given as input, M takes as advice the set Sn. The

nondeterministic machine M guesses a set of t(n) strings x1, . . . , xt(n) ∈
{0, 1}n, each of the strings of length n, and such that at least one of these

strings is x. Then it runs in polynomial time the distillation algorithm

A on the guessed input x1, . . . , xt(n). If A outputs a string from the

advice set Sn, then M accepts. Otherwise it rejects. This completes the

description of M .

It is clear that M runs in polynomial time. By (S1) and (S2), x ∈ L̄ if

and only if M accepts x, that is, M has a computation path that accepts

x. Thus L̄ ∈ NP/ poly.

Furthermore, if L is NP-hard then L̄ is coNP-hard. Then every prob-

lem in coNP is polynomial-time reducible to L̄. Thus coNP ⊆ NP/poly.

This completes the proof.

We apply Theorem 17.3 immediately and prove that Longest Path

is unlikely to admit a polynomial kernel.

Theorem 17.5. Longest Path parameterized by k, the length of the

path, does not admit a polynomial kernel unless coNP ⊆ NP/poly.

17.1 OR-Distillation 387

Proof. Suppose that Longest Path admits a polynomial kernel of size

kc and let K be the corresponding kernelization algorithm.

Let us remind that in Hamiltonian Path, we are given an undi-

rected graph G and the task is to decide whether it contains a path

spanning all its vertices. This is exactly the Longest Path problem

with k being the number of vertices of G. We also say that a graph is

Hamiltonian if it contains a Hamiltonian path, i.e. a path containing all

its vertices. Deciding whether a graph is Hamiltonian is a well-known

NP-hard problem.

We fix some reasonable encoding of undirected graphs by binary strings.

The property of the encoding we require is that the length of the string

is polynomial in the size of the graph it encodes and that two strings of

equal length encode graphs with the same number of vertices. For exam-

ple, we can encode every graph by the sequence of rows of its adjacency

matrix. We define the language

L = {x ∈ {0, 1}∗ : x encodes a Hamiltonian graph}.

Observe that deciding whether x ∈ L is NP-hard.

We want to prove that kernelization algorithm K for Longest Path

gives rise to a polynomially-bounded distillation algorithm from L to a

language R, which is

R = {y ∈ {0, 1}∗ : y encodes a yes-instance of Longest Path}.

Thus every string y of R encodes a pair (G, k) such that the undirected

graph G contains a path of length k. Then for every string y = (z, k),

the kernelization algorithm K outputs in polynomial time a string y′ =

(z′, k′) such that |z′|+ k′ ≤ kc and y ∈ R if and only if y′ ∈ R.

Let t(n) = nc. The algorithm A does the following.

• For every n, A receives as input t(n) strings x1, . . . , xt(n), each of the

strings of length exactly n. We assume that each of the strings xi
encodes a p-vertex graph Gi, where p ≤ n. More precisely, if some of

the strings do not encode a p-vertex graph, we omit these strings and

consider only those strings that do encode a p-vertex graph.

• For the graph G = G1∪· · ·∪Gt(n) and the integer p, algorithm A calls

kernelization algorithm K with (G, p) as input, and outputs a string

y corresponding to the encoding of the reduced instance (G′, k′).

Algorithm A has the following properties. First, by construction, the

pair (G, p) is a yes-instance of Longest Path if and only if the graph G

contains a path of length at least p, which in turn, is if and only if at least

388 Framework

one of the graphs Gi is Hamiltonian. Thus the kernelization algorithm

K outputs a yes-instance (G′, k′), and hence A outputs a string y ∈ R, if

an only if at least one of the strings xi is in L. Second, the kernelization

algorithm runs in polynomial time and outputs an instance (G′, k′) of

Longest Path such that the length of the corresponding string y is at

most nc = t(n).

Thus A is a polynomially-bounded OR-distillation algorithm from L

into R. By Theorem 17.3, the existence of such an algorithm for an NP-

hard problem would imply that coNP ⊆ NP/ poly. Hence unless coNP ⊆
NP/ poly, Longest Path does not admit a polynomial kernel.

17.2 Cross-Composition

In this section we build on the ideas used in the proof of Theorem 17.5.

In particular, these ideas will bring us to cross-composition, a technique

which is handy to rule out polynomial kernels. By making use of cross-

composition, it is sufficient to compose the or of any classical NP-hard

problem into an instance of the parameterized problem Q for which we

want to prove a lower-bound. The term “cross” in the name comes from

the fact that the source and target problems might not be the same.

Also, instead of the parameter being bounded by a polynomial in the

parameter of the original problem, it is required that the parameter of

the output is bounded by a polynomial in largest input size. In addition,

cross-composition allows the output parameter to depend on logarithm

of the number of input instances, which often simplifies the constructions

and proofs.

We start with the definition of polynomial equivalence relation.

Definition 17.6 (Polynomial equivalence relation). An equivalence re-

lation R on the set Σ∗ is called a polynomial equivalence relation if the

following conditions are satisfied:

(i) There exists an algorithm that, given strings x, y ∈ Σ∗, resolves

whether x is equivalent to y in time polynomial in |x|+ |y|.
(ii) For any finite set S ⊆ Σ∗ the equivalence relation R partitions the

elements of S into at most (maxx∈S |x|)O(1) classes.

As an example of a polynomial equivalence relation, let us take some

problem defined on undirected graphs. We fix some encoding of graphs.

Now, we put into one equivalence class all the strings from Σ∗ that do

17.2 Cross-Composition 389

not encode any graph. We refer to such instances as malformed. All

other strings encoding graphs are well-formed. We can assume that we

can choose the encoding in such a way that graphs with encoding of

length at most n have at most n vertices and at most n edges. Then R
can be a relation such that two well-formed instances are equivalent if

the corresponding graphs have the same numbers of vertices and edges.

In this scenario, if all strings in a set S ⊆ Σ∗ are of length at most n,

then S is is divided by R into at most n2 + 1 classes (+1 comes from

the malformed class) and condition (b) is satisfied. Of course, provided

that we chose a reasonable encoding, condition (a) holds as well. For

parameterized problems, when the input to the problem consists of a

graph and an integer k, encoded in unary, then we could in addition

refine R by requiring that the instances x and y have the same value

of k ≤ n. Indeed, this would just increase the bound on the number of

equivalence classes in S from n2 + 1 to n3 + 1.

We now proceed to the main definition.

Definition 17.7 (OR-cross-composition). Let L ⊆ Σ∗ be a language

and Q ⊆ Σ∗ × N be a parameterized language. We say that L cross-

composes into Q if there exists a polynomial equivalence relation R
and an algorithm A, called a cross-composition, satisfying the follow-

ing conditions. The algorithm A takes as input a sequence of strings

x1, x2, . . . , xt ∈ Σ∗ that are equivalent with respect to R, runs in time

polynomial in
∑t
i=1 |xi|, and outputs one instance (y, k) ∈ Σ∗ × N such

that:

(i) k ≤ p(maxti=1 |xi|+ log t) for some polynomial p(·), and

(ii) (y, k) ∈ Q if and only if there exists at least one index i such that

xi ∈ L.

Cross-composition is very convenient. As we will see soon in the proof

of Theorem 17.8, having a cross-composition of a language L into a

parameterized language Q which admits a polynomial kernel (and even

more generally, a polynomial compression) implies that L admits a poly-

nomially bounded distillation. By the results of the previous section, this

is highly unlikely when L is NP-hard.

Thus to prove that a problem Q is unlikely to admit a polynomial

kernel, all we need is to cross-compose some NP-hard problem L into it!

It is important to understand the role of R in the definition of cross-

390 Framework

composition. Observe that in the proof of Theorem 17.5, we defined the

Hamiltonian Path problem as a set of strings that denote adjacency

matrices of graphs with hamiltonian cycles. The main reason to define

the problem in this way was that when the size of strings were equal,

then they denoted graphs on the same number of vertices. This kind

of situations can easily be handled by a polynomial time equivalence

relation R. For example for the Hamiltonian Path problem, we can

say that two strings x, y ∈ {0, 1}∗ are equivalent if |x| = |y| and the

graphs described by x and y have the same number of vertices.

Note that in this definition, contrary to OR-distillation, it is only the

output parameter that is small, while the whole output string y may be

even as huge as the concatenation of the input instances. Moreover, the

output parameter can also depend poly-logarithmically on the number

of input instances.

In Definition 1.5, we introduced the notion of compression, which is a

more general form of kernelization. Often, when we talk about compres-

sion, we do not specify the target language R from Definition 1.5. Then

we just mean the existence of a polynomial compression of a language

L into any language R.

The machinery developed in the next theorem allows to rule out poly-

nomial compressions as well.

Our plan now is to show that pipelining the cross-composition from an

NP-hard problem with a polynomial kernel will yield an OR-distillation

of the NP-hard problem. Then we would be able to employ Theorem 17.3

for refuting the existence of a larger class of preprocessing routines.

Theorem 17.8. Let L ⊆ Σ∗ be an NP-hard language. If L cross-

composes into a parameterized problem Q and Q has a polynomial com-

pression, then coNP ⊆ NP/ poly.

Proof. Suppose that Q has a polynomial compression into some lan-

guage R. Using the premises of the theorem, we give a t-bounded OR-

distillation algorithm for L, where t is a polynomially bounded function,

into the language OR(R) consisting of strings of the form z1#z2# . . .#zq
such that for at least one index i it holds that zi ∈ R. Together with

Theorem 17.3, this will prove the theorem.

We start with observations that can be derived from the given as-

sumptions.

(c1) Language L cross-composes into Q, and let R denote the correspond-

ing polynomial equivalence relation. Thus given a set of R-equivalent

17.2 Cross-Composition 391

strings x1, . . . , xp one can obtain in polynomial time an instance (y, k)

such that k ≤ (maxpi=1 |xi|+log p)c1 for some constant c1, and (y, k) ∈
Q if and only there exists at least one index, 1 ≤ i ≤ p, such that

xi ∈ L.

(c2) Language Q has a polynomial compression into R. Thus given an

instance (y, k) of Q, in polynomial time, one can obtain an instance z

of R such that |z| ≤ kc2 for some constant c2.

(c3) Since R is the polynomial equivalence relation, there is a constant c3
such that for every integer n, any set S of strings of length n can be

partitioned in polynomial time into at most nc3 R-equivalent classes.

Let t(n) = n2(c1·c2+c3) be a polynomially bounded function.

Since R is the polynomial equivalence relation, for every integer n we

have the following. For a given set S of t(n) instances of L of length n,

namely x1, . . . , xt(n), it is possible in polynomial time to partition S into

R-equivalent classes X1, . . . , Xr, where r ≤ nc3 .

We apply the cross-composition algorithm on each of the classes Xi,

i ∈ {1, . . . , r}. We can do it because all the instances in Xi are R-

equivalent. Let the output of the cross-composition algorithm be (yi, ki)

for Xi, where (yi, ki) is an instance of Q. By the definition of cross-

composition and by (c1), for all 1 ≤ i ≤ r, ki is at most (n+ log t(n))c1 .

In the next step of the algorithm, we compress each of the r instances

of Q to build instances of R whose sizes are polynomial in the parameter.

Let the instances after compression be zi for 1 ≤ i ≤ r, where |zi| ≤ kc2i .

Observe that z = z1#z2# . . .#zr is an instance of OR(R).

Thus we constructed a polynomial-time algorithm that for a given

set of strings x1, . . . , xt(n) of length n, constructs a string z such that

z ∈ OR(R) if and only if for at least one index i ∈ {1, . . . , t(n)}, xi ∈ L.

The length of z = z1#z2# . . .#zr is at most

|z| ≤ r + r · max
1≤i≤r

|zi|

= r + r · max
1≤i≤r

kc2i ≤ r + r · (n+ log t(n))c1c2

≤ nc3 + nc3 · (n+ log t(n))c1c2

≤ n2c3 · (n log t(n))c1c2 ≤ n2(c3+c1c2) = t(n).

Thus we have the desired t-bounded distillation algorithm from lan-

guage L to language OR(R), where t is a polynomially bounded function.

This together with Theorem 17.3 completes the proof.

392 Framework

17.3 Examples of compositions

Let us see how the developed framework can be used to derive the im-

possibility (under assumption that coNP ⊆ NP/poly does not hold) of

kernelization for some concrete optimization problems.

17.3.1 Lower bound for Steiner Tree

In the Steiner Tree problem we are given a graph G, a subset T ⊆
V (G) of terminals and an integer k. The task is to decide whether there

exists a tree H in G on at most k vertices such that T ⊆ V (H). Such

a tree is called a Steiner tree. We will assume that k ≤ |V (G)|, else

the instance is trivial to solve. Steiner Tree can be solved in time

2O(|T |)|V (G)|O(1) and thus is FPT parameterized by the number of ter-

minals. In this section we show that Steiner Tree does not admit

a polynomial compression being parameterized by the size of the solu-

tion k. Since k is always at least |T | (if the answer is yes), this would

also imply that Steiner Tree does not admit polynomial kernel and

compression when parameterized by |T |.

Theorem 17.9. Steiner Tree parameterized by the size of the solu-

tion k does not admit a polynomial compression unless coNP ⊆ NP/ poly.

Proof. We give a cross composition from Steiner Tree to itself. For

the cross-composition, we first need a polynomial equivalence relation

R. We define R such that the triples (Gi, Ti, ki), (Gj , Tj , kj) go to the

same equivalence class if and only if |V (Gi)| = |V (Gj)|, |Ti| = |Tj |,
and ki = kj . All the remaining malformed instances, which do not form

an instance of Steiner Tree, form another equivalence class. Clearly,

this relation satisfies both the properties of a polynomial equivalence

relation: Given pairs (Gi, Ti, ki), (Gj , Tj , kj) of well-formed instances of

Steiner Tree, we can check in polynomial time if they have the same

number of vertices, same sized terminal sets and that ki = kj . For any

finite set S ⊆ Σ∗, the equivalence relation R partitions the elements

of S into at most (maxx∈S |x|)O(1) classes as in a well-formed instance,

|Ti| ≤ |V (Gi)| and ki ≤ |V (Gi)|.
Now, we have to give a cross-composition algorithm for instances be-

longing to the same equivalence class. For the equivalence class contain-

ing malformed instances, we output a trivial no-instance. Thus from now

on, we assume that we have an equivalence class (G1, T1, k), . . . , (Gt, Tt, k)

and the number of the vertices, the number of terminals and the size of

17.3 Examples of compositions 393

G1 G2 G3

G0 :

T3 = {t31, t
3
2, t

3
3}T2 = {t21, t

2
2, t

2
3}T1 = {t11, t

1
2, t

1
3}

T 0 = {w1, w2, w3}
paths on

n +
1
vertices

Figure 17.1 Constructing a new instance (G′, T ′, k′) in Steiner Tree

cross-composition.

a solution which is asked for, are the same for all triples in this class.

Let |V (Gi)| = n and |Ti| = ` for all 1 ≤ i ≤ t. Suppose that ` ≥ 1, else

the solution is trivial.

We construct an instance (G′, T ′, k′) of Steiner Tree, where |T ′| = `

and k′ = k+ `n. We start the construction by taking a disjoint union of

graphs Gi. Let the vertices of Ti be denoted by ti1, . . . , t
i
`. We add new

vertices, w1, . . . , w`, which will form the set of terminal vertices T ′ of G′.
Now, we add a path on n+1 vertices from wj to tij , for all j ∈ {1, . . . , `}
and i ∈ {1, . . . , t}. Let the resulting graph be G′, see Figure 17.1 for an

illustration.

Now we prove the required equivalence. If Gi is a yes-instance of

Steiner Tree, then we start with the Steiner tree H in Gi. Since

Ti ⊆ V (H), we can add the vertices of T ′ by the corresponding paths to

the vertices in Ti. Since H is connected, we have that even after adding

these paths the subgraph remains connected. The total number of ver-

tices is at most the number of vertices in V (H) and the corresponding

paths, hence it is at most k+ `n. For the reverse direction, observe that

if we have a Steiner tree in G′ that contains the vertices of T ′ and is

of size at most k′ = k + `n, then it cannot contain vertices from two

distinct instances Gx and Gy. Indeed, any connected subgraph of G′

that contains the vertices of T ′ should contain a path from wj to some

394 Framework

vertex tij , for all j ∈ {1, . . . , `}, and the number of vertices on all of these

paths together is at least `(n+ 1). However, if this connected subgraph

contains vertices from two distinct instances Gx and Gy, then it must

contain some vertex wj with paths to both vertices txj and tyj . So, if a

connected subgraph of G′ that contains the vertices of T ′ also contains

vertices from two distinct instances Gx and Gy, then its size must be

at least `(n + 1) + n > k + `n. This implies that a Steiner tree H in

G′ containing the vertices of T ′ of size at most k′ = k + `n contains

vertices from at most one instance, say Gx. Let H ′ be the subtree of

H containing only the vertices from Gx. By construction, we have that

Tx ⊆ V (H ′) and the connectivity of H forces H ′ to be connected. The

size of V (H ′) is at most k and thus we know that Gx is a yes-instance

of Steiner Tree.

Now by applying Theorem 17.8, we derive the desired result. This

completes the proof.

17.3.2 Clique parameterized by Vertex Cover

Let us remind that in the Clique problem, we are given a graph G

and an integer `. The task is to decide whether there exists a set of `

vertices of G that is a clique in G. When being parameterized by the size

of the clique `, Clique is W[1]-hard and thus does not admit even an

exponential kernel. However, when parameterized by the size of a given

vertex cover, the problem becomes FPT. More precisely, in the Clique

parameterized by the vertex cover number (Clique (vc) for short) we

are given a graph G, integers k, ` and a vertex cover S ⊆ V such that

|S| = k. The parameter is k and the task is to decide whether G has a

clique on ` vertices.

The reason why Clique (vc) is FPT is the following. Let S be a

vertex cover and K be a clique of G. Then V (G) \ S is an independent

set, and thus it contains at most one vertex of K. Whether a clique of

size ` is entirely in S, or all its but one are in S, can be checked by

brute-force in time 2k · nO(1). In what follows, we prove that Clique

(vc) does not admit a polynomial kernel unless coNP ⊆ NP/ poly.

Theorem 17.10. Clique parameterized by vertex cover number does

not admit a polynomial compression unless coNP ⊆ NP/ poly.

Proof. We prove the theorem by showing that the NP-complete problem

Clique cross-composes into Clique (vc).

17.3 Examples of compositions 395

For the cross-composition, we first need a polynomial equivalence re-

lation R. We define R such that all the pairs (Gi, `i), (Gj , `j) are in the

same equivalence class if and only if |V (Gi)| = |V (Gj)| and `i = `j . We

put all the instances which are malformed, as well as instances where

the size of the clique that is asked for exceeds the number of vertices

in the graph, in another equivalence class. Then this relation satisfies

both the properties of a polynomial equivalence relation: Given pairs

(Gi, `i), (Gj , `j) of well-formed instances of Clique, we can check in

polynomial time if they have the same number of vertices and that

`i = `j . For any finite set S ⊆ Σ∗, the equivalence relation R parti-

tions the elements of S into at most (maxx∈S |x|)O(1) classes, as in a

well formed instance we have `i ≤ |V (Gi)|.
Now we give a cross-composition algorithm for instances belonging

to the same equivalence class. For the equivalence class containing the

malformed instances, we output a trivial no-instance. So, all that is left

is to give a composition algorithm for an equivalence class where the

number of vertices and the size of clique which is asked for are the

same. Let (G1, `), . . . , (Gt, `) be instances of the same equivalence class,

such that |V (Gi)| = n for all i ∈ {1, . . . , t}. For all i ∈ {1, . . . , t}, we

think of the vertices in V (Gi) as being bijectively labelled by integers in

{1, . . . , n}. Using these instances, we make an instance (G′, Z ′, k′, `′) of

Clique (vc), which consists of a graph G′ with vertex cover Z ′ ⊆ V (G)

of size k′ and an integer `′.
We number the vertices in each of the Gi’s from 1 to n arbitrarily. We

construct G′ as follows.

(i) We make `n new vertices vi,j with i ∈ {1, . . . , `} and j ∈ {1, . . . , n},
and connect two vertices vi,j and vi′,j′ if i 6= i′ and j 6= j′. Let C

denote the set of these vertices. It is easy to see that any clique in

G′ can contain only one vertex vi,m for all m ∈ {1, . . . , n} for each

choice of i ∈ {1, . . . , `}. Similarly, a clique in G′ can contain only one

vertex vm,j for all m ∈ {1, . . . , `} for each choice of j ∈ {1, . . . , n}.
Thus any clique contains at most ` vertices from C. One can think

of these vertices as being placed on an ` × n grid and the vertices

in each row and each column form an independent set. Furthermore,

any two vertices that are neither in the same column nor in the same

row are adjacent.

(ii) For each pair {p, q}, 1 ≤ p < q ≤ n, create three new vertices: wp,q,

wp,q̂, and wp̂,q. Let D denote the set of these 3 ·
(
n
2

)
vertices. We make

vertices of D adjacent to vertices of C as follows.

396 Framework

(a) wp,q is adjacent to all vertices from C.

(b) wp,q̂ is adjacent to all vertices from C except for vi,q for all i ∈
{1, . . . , `}. That is, if we view the vertices of C placed on the `×n-

grid, then the only vertices wp,q̂ is not adjacent to belong to the

q-th column.

(c) wp̂,q is adjacent to all vertices from C except for vi,p for all i ∈
{1, . . . , `}. That is, the only vertices wp̂,q is not adjacent to belong

to the p-th column.

For each p < q, we refer to wp,q, wp,q̂ as the (p, q)-cloud. Each cloud is

an independent set. We add all edges between different clouds. That

is, we add all edges between vertices in D that correspond to distinct

pairs from {1, . . . , n}. Any clique can contain at most one out of the

three vertices from each cloud.

(iii) For each graph Gi, we introduce a new vertex ui and connect it to

all vertices in C. Let B be the set of these t vertices. The adjacency

between each ui and D is as follows:

(a) Make ui adjacent to wp,q if pq is an edge in Gi.

(b) Otherwise make ui adjacent to wp,q̂ and wp̂,q.

We put `′ := `+ 1 +
(
n
2

)
and Z ′ = C ∪D. Clearly, Z ′ is a vertex cover

for G′ since the remaining vertices are in B, which is an independent

set. Also, |Z ′| = n` + 3
(
n
2

)
. So, the parameter, k′ = |Z ′| = n` + 3

(
n
2

)

is bounded by a polynomial in n as well as the largest input size. Also,

it is easy to see that the construction can be done in polynomial time

in the size of input. So, all we need to show is that (G′, Z ′, k′, `′) is a

yes-instance of Clique (vc), if and only if (Gi, `) is a yes-instance of

Clique for some i ∈ {1, . . . , t}.
(⇒) Let (G′, Z ′, k′, `′) be a yes-instance of Clique (vc). Let S′ be a

clique of size ` + 1 +
(
n
2

)
in G′. As argued above, any clique in G′ can

take at most ` vertices from C, at most
(
n
2

)
vertices from D and at most

one vertex from B. Let

S = {j ∈ {1, . . . , n} : vi,j ∈ S′ for some i ∈ {1, . . . , `}}.

The size of the set S is ` because for each i ∈ {1, . . . , `}, S′ can contain at

most one vi,· and no two vertices vi,j and vi′,j′ from S′ can have indices

j = j′. Let the vertex in S′ from B be ui∗ . We argue that (Gi∗ , `) is a

yes-instance of Clique, and the vertices of S form a clique in Gi∗ .

Let p, q be any two vertices in S. We look at the vertices in D corre-

sponding to (p, q), namely wp,q, wp,q̂ and wp̂,q. Since these three vertices

form an independent set, at most one of them is in S′. Also, since we

17.3 Examples of compositions 397

want
(
n
2

)
vertices from D, each such triple contributes exactly one vertex

to the clique. By the construction of S, the clique S′ must contain two

vertices vi,p and vi′,q for some i and i′. Now, the clique cannot contain

any of the vertices wp,q̂ and wp̂,q from D, since they are not adjacent to

vi′,q and vi,p, respectively, which are vertices in the clique. So, wp,q is

contained in the clique along with ui∗ , which means that pq is an edge

in Gi∗ . Therefore S is a clique of size ` in Gi∗ , and thus (Gi∗ , `) is a

yes-instance of Clique.

(⇐) Let (Gi∗ , `) be a yes-instance of Clique for some i∗. Let S =

{p1, . . . , p`} ⊆ {1, . . . , n} be the clique of size ` in Gi∗ . We show that

(G′, Z ′, k′, `′) is a yes-instance by constructing a clique S′ of size `+ 1 +(
n
2

)
in G′.

First, we insert the vertex ui∗ into S′. Also, for each pi in S, we add

vi,pi to S′. All these vertices are adjacent to ui∗ by construction. They

are also pairwise adjacent because for no two vertices vi,j and vi′,j′ added

to S′, i = i′ or j = j′. This contributes ` + 1 vertices to the clique. To

construct a clique of size `+ 1 +
(
n
2

)
, we have to add exactly one vertex

from each cloud, that is from wp,q, wp,q̂ and wp̂,q for 1 ≤ p < q ≤ n.

For each pair {p, q}, we look at the following two cases:

• If p is adjacent to q in Gi∗ , then the vertex ui∗ is adjacent to wp,q in

G′ and wp,q is adjacent to all vertices of C. In this case, we add wp,q
to S′.

• Otherwise, ui∗ is adjacent to both wp,q̂ and wp̂,q. Since p and q are not

adjacent in Gi∗ , S cannot contain both p and q. If S contains p (and

does not contain q), then we add the vertex wp,q̂ to S′. The vertex

wp,q̂ is adjacent to all the vertices in S′ that are added already, since

the only vertices in C it is not adjacent to are of the form v·,q, which

are not added to S′ by construction. Symmetrically, if S contains q

(and does not contain p), then we add the vertex wp̂,q to S′.

Hence we get a clique S′ of size `′ = `+1+
(
n
2

)
in G′ and (G′, Z ′, k′, `′)

is a yes-instance of Clique (vc). This concludes the proof of the con-

struction. Now by applying Theorem 17.8, we derive the desired result.

This completes the proof.

Exercises

Problem 17.1. Show that coNP ⊆ NP/ poly if and only if NP ⊆ coNP/ poly.

398 Framework

Problem 17.2. Show that Clique parameterized by maximum vertex degree does
not admit a polynomial kernel unless coNP ⊆ NP/poly.

Problem 17.3. Recall the Test Cover problem from Exercise 2.8. Show that this
problem does not admit a polynomial kernel unless coNP ⊆ NP/ poly.

Bibliographic notes

The definition of a distillation algorithm adapted in this book is slightly

different from the definition used in (Cygan et al., 2015, Definition 15.1).

The main difference in the definitions is that in our definition the length

of the string y outputted by a distillation algorithm is bounded by t(n) ·
log n. For deriving lower bounds on kernels in the next two chapters,

where we rule out polynomial kernels, this constraint is not required.

However, this difference will become useful in Chapter 20, where we

obtain concrete polynomial lower bounds on the sizes of the kernels. Let

us also remark that for the proofs of the lower bounds we provide in this

book, a slightly lighter condition t(n) on the length of string x in the

definition of the distillation algorithm will suffice. On the other hand,

since the proof of Theorem 17.3 works also for the bound t(n) · log n, we

decided to have this bound in the definition.

For an introduction to complexity theory, and in particular to the

concepts used in this chapter such as the assumption coNP ⊆ NP/poly,

we refer to the book of Arora and Barak (2009).

Theorem 17.3 is the quantitative version of the main result proved

in (Fortnow and Santhanam, 2011). This theorem will allow us to de-

rive polynomial lower bounds in the upcoming chapters. The framework

for proving kernelization lower bounds was initially proposed by Bod-

laender et al. (2009b). They called the technique OR-composition. OR-

composition is a slightly weaker form of the cross-composition framework

that was presented in this chapter. More precisely, the formalism pre-

sented in (Bodlaender et al., 2009b) does not use polynomial equivalence

relations, assumes that the source and target languages of a composition

are the same, and does not allow the output parameter to depend poly-

logarithmically on the number of input instances. The cross-composition

framework was proposed by Bodlaender et al. (2014). The term cross-

composition was used to underline that this composition allows “cross-

fertilization” between different languages.

The bound for Clique parameterized by vertex cover (Theorem 17.10)

is due to Bodlaender et al. (2014). The paper (Bodlaender et al., 2014),

17.3 Examples of compositions 399

as well as the thesis of Jansen (2013), contain more examples of cross-

composition. The lower bounds for Longest Path (Theorem 17.5) and

Steiner Tree (Theorem 17.9), using different approaches, were ob-

tained in (Bodlaender et al., 2009b) and (Dom et al., 2014), respectively.

Exercise 17.3 is taken from (Gutin et al., 2013b).

18

Instance selectors

In this chapter we introduce Instance Selector, an approach for deriving OR-

cross-compositions. We use it to obtain lower bounds on the sizes of kernels

for Disjoint Factors, CNF-SAT parameterized by the number of variables,

and Colored Red-Blue Dominating Set.

In the previous chapter, we defined what is a cross-composition from

a language L to a parameterized language Q, that is, an algorithm that

given t strings x1, x2, . . . , xt belonging to the same equivalence class

of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in∑t
i=1 |xi| such that (i) (x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 ≤ i ≤ t, and

(ii) k∗ is bounded by a polynomial in maxti=1 |xi| + log t. Observe that

the magnitude of the parameter of the output is allowed to be (log t)O(1).

In this chapter we describe cross-composition algorithms for various

problems. In all these examples we will compose a problem into itself.

All these algorithms have the following theme in common. Instead of

building a composition for t instances simultaneously, in many cases it

can be much easier to construct the composition by explaining how to

compose from only two instances.

The description of these algorithms generally revolves around a single

function, which we will call ρ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, that accepts

two instances and returns one. We want the function ρ to have the

following properties:

• For two instances x1 and x2 belonging to the same equivalence class,

ρ((x1, k), (x2, k)) outputs (x∗, k∗) such that (x∗, k∗) ∈ Q if and only if

400

Instance selectors 401

306CHAPTER 18. LOWER BOUNDS USING INSTANCE SELECTOR (SS)

A Composition Tree

⇢(a, b)

a

⇢(x1, x2)

x1 x2

⇢(x3, x4)

x3 x4

. . .

b

⇢(xt�3, xt�2)

xt�3 xt�2

⇢(xt�1, xt)

xt�1 xt

Figure 18.1: General Framework For Composition

We would like to visualize the input instances as plugged in at the leaves of
a complete binary tree with t vertices. For convenience, we generally assume
t = 2l. This makes the tree l levels deep. (Such an assumption can usually
be easily justified.) We inductively compute the contents of a given node as
being ⇢(a, b), where a and b are the instances obtained at the children of this
node. The output of the composed algorithm is what is obtained at the root
of this tree (as shown in the Figure 18.1). Given this general framework, let
us now put it to work to obtain non-trivial or-cross composition algorithms.

18.2 Disjoint Factor.

Let Lk be the alphabet consisting of the letters {1, 2, . . . , k}. We denote by
L⇤

k the set of words on Lk . A factor of a word w1 · · · wr 2 L⇤
k is a substring

wi · · · wj 2 L⇤
k, with 1 i < j r, which starts and ends with the same

letter, i.e., the factor has length at least two and wi = wj. A word w has the
disjoint factor property if one can find disjoint factors F1, . . . , Fk in w such
that the factor Fi starts and ends by the letter i.

For example, the word 123235443513 has all the r-factors, r 2 [5] —
but not as many disjoint factors. It has disjoint 2, 3, and 4 factors, but,
for instance, the only 5-factor overlaps with with the 4-factor, and the only

Figure 18.1 General framework for composition: A composition tree.

at least one among (x1, k) and (x2, k) is in Q. Thus for two instances,

ρ selects an instance equivalent to their logical OR. This is where the

name instance selector comes from.

• The output of ρ((x1, k), (x2, k)) is computed in time polynomial in

|x1|+ |x2|+ k.

• The parameter k∗ in the new instance should be “small”. In most

typical situations, we demand k∗ ≤ k + c for some constant c.

Let us note that constructing such a function ρ is sufficient for construct-

ing a cross-composition. Indeed, given strings (x1, k), (x2, k), . . . , (xt, k),

we group them into t/2 pairs and apply ρ to each pair. Then we group

the obtained instances into pairs again, and use ρ on the new instances.

After repeating these steps log2 t times, we obtain a string (x∗, k∗) such

that (x∗, k∗) ∈ Q if and only if at least one of the instances (xi, k) is

in Q. The parameter k∗ is at most k + c · log2 t and thus we obtain a

cross-composition.

We can visualize the repeating steps of instance selector in the form of

a complete binary tree T with 2t−1 nodes. For convenience, we generally

assume that t = 2`. (Such an assumption can usually be easily justified.)

This makes the tree ` levels deep. The input instances are plugged in at

the leaves of T. We inductively compute the contents of a given node as

being ρ(a, b), where a and b are the instances obtained at the children

of this node. The output of the composed algorithm is what is obtained

at the root of this tree (as shown in the Fig. 18.1).

402 Instance selectors

18.1 Disjoint Factors

Our first example of an instance selector concerns Disjoint Factors.

Let Lk = {w1, . . . , wk} be an alphabet consisting of k letters. We

denote by L∗k the set of strings on Lk. A factor of a string s ∈ L∗k
is a substring wi · · ·wi ∈ L∗k of s. Thus a factor starts and ends with

the same letter and has length at least two. A string s has the disjoint

factor property if one can find disjoint factors F1, . . . , Fk in s such that

the factor Fi starts and ends by the letter wi.

For example, the word 123235443513 has all the r-factors, r ∈ {1, . . . , k},
but not as many disjoint factors. It has disjoint 2, 3, and 4 factors, but,

for instance, the only 5-factor overlaps with the 4-factor, and the only

1–factor overlaps with all other factors. Of course, other combinations

of disjoint factors are attainable from this word, but it clearly does not

have the disjoint factor property. The problem we would be interested

in is the following.

In the Disjoint Factors problem, we are given a word w ∈ L∗k and

the task is to decide whether w admits the disjoint factors property.

Observe that the difficulty lies in the fact that the factors Fi do not

necessarily appear in increasing order, otherwise detecting them would

be computable in O(n), where n is the length of w. The problem is

known to be NP-complete. We record this without a proof.

Lemma 18.1. Disjoint Factors is NP-complete.

It is immediate that Disjoint Factors is FPT. Since the problem

can be solved in time that is linear in the length of the word given the

ordering of the factors, we simply iterate over all possible orderings of

factors—this gives us an algorithm with runtime O(k! ·n). However, less

obvious is a 2k · nO(1) algorithm for the problem, see Exercise 18.1.

Next we give a cross-composition algorithm for Disjoint Factors

following the framework described in Section 17.2.

Theorem 18.2. Disjoint Factors parameterized by the size of the

alphabet k does not admit a polynomial compression unless coNP ⊆
NP/ poly.

Proof. We prove the theorem by showing that Disjoint Factors cross-

composes into itself. We define a polynomial equivalence relation R such

that all bit-strings that do not encode a valid instance of Disjoint

Factors are equivalent. Of the remaining instances, any two well formed

18.1 Disjoint Factors 403

instances (s1, k) and (s2, k) are equivalent if and only if they satisfy

|s1| = |s2|.
We define the instance selector ρ as follows. Let (s1, k) and (s2, k),

where s1 and s2 are strings from L∗k, be two equivalent underR instances

of Disjoint Factors. Let b be a new letter not from the alphabet Lk
and let s = bs1bs2b. Thus s ∈ L∗k+1 is obtained by appending b to s1

from both ends, then appending s2 and again appending b. We put

ρ((s1, k), (s2, k)) = (s, k + 1).

We claim that (s, k + 1) is a yes-instance of Disjoint Factors if and

only if at least one among (s1, k) and (s2, k) is.

Indeed, let F1, . . . , Fk+1 be disjoint factors of s. Then factor Fk+1,

the factor which starts and ends with b, should contain the middle b.

(If it contains the first and the last bs, then it overlap with all other

factors of s.) But then all other k disjoint factors should be from either

s1 or s2. Hence at least one among (s1, k) and (s2, k) is a yes-instance

of Disjoint Factors.

In the opposite direction, if s1 has disjoint factors F1, . . . , Fk (the case

of s2 is symmetric), then the k+ 1 disjoint factors of s are the k factors

of s1 and the factor formed by the middle and the last b. Thus (s, k+ 1)

is a yes-instance of Disjoint Factors.

The instance selector ρ is clearly computable in polynomial time. The

parameter in the selector increases by 1. We are basically done with

the proof. As we have already discussed in the introductory part of

this chapter, such an instance selector implies the existence of a cross-

composition algorithm, which in turn, combined with Lemma 18.1 and

Theorem 17.8, implies the desired result.

In what follows, we explain once again in detail, why the construc-

tion of an instance selector ρ for Disjoint Factors gives a cross-

composition algorithm. In all the remaining examples of this chapter,

we will be skipping such reasonings.

Let s1, s2, . . . , st be strings from L∗k that are equivalent under R. We

may assume that the number of instances t = 2` for some `, else we

can duplicate the instances to get the desired number of instances. To

obtain a cross-composition algorithm A, which composes the input set of

words into a word s∗, we do the following. We partition s1, s2, . . . , st into

pairs and use ρ to construct new s1
1, s

1
2, . . . , s

1
t/2 instances over alphabet

L∗k+1. As we have already proved, every new string s1
i is a yes-instance

of Disjoint Factors if and only if at least one of the two old instances

used to select it is a yes-instance of Disjoint Factors. We continue

404 Instance selectors
20.2. DISJOINT FACTOR. 299

b2b1b0pb0qb0b1b0rb0sb0b1b2b1b0wb0xb0b1b0yb0zb0b1b2

b1b0pb0qb0b1b0rb0sb0b1

b0pb0qb0

p q

b0rb0sb0

r s

b1b0wb0xb0b1b0yb0zb0b1

b0wb0xb0

w x

b0yb0zb0

y z

An example with

{p, q, r, s, w, x, y, z}

as input words. Notice how a solution in the root can be traced to some
unique solution in the leaves and conversely! (Warning: beware of

confusing this w with the w we have been using to denote the composed
instance — they are di↵erent.) can we avoid this by using di↵erent

letters?

Figure 20.4: Disjoint Factors Composition: An Example

The 1, 2, . . . , k disjoint factors may be obtained from wi.

Note that wi is a substring of one of the bl�1 factors. For bl�1, therefore,
we choose that bl�1 factor that does not overlap with wi.

Further, there are exactly three bl�2 factors that do not overlap with wi,
and two of these overlap with the chosen bl�1 factor, so there is one bl�2

factor that does not overlap with any of the factors chosen thus far, and we
use this as the bl�2 factor.

This process can be continued till all the bi factors are obtained, indeed,
we will always have one for every 0 i l � 1 by construction.

On the other hand, if the composed instance has the disjoint factors
property, then we would like to derive that all the 1, 2, . . . , k factors are
substrings of wi for some i. It is easy to observe that if we delete all the
bi factors from the word w, then the remaining word contains exactly one
of the wi’s as a substring. For example, notice that the bl�1 factor overlaps
with half of the wi’s, and the bl�2 factor overlaps with half of the remaining
wi’s, and so on. Thus, once the bi factors have been accounted for, only
one possible source remains for the 1, 2, . . . k factors — necessarily one of the

Figure 18.2 Disjoint Factors Composition: An example with

{p, q, r, s, w, x, y, z} as input strings. The output string is composed

from the input strings by adding three additional letters. Notice how a

solution in the root can be traced to some unique solution in the leaves

and conversely.

this procedure until we obtain one string s` ∈ L∗k+`−1, see Fig. 18.2.

Algorithm A outputs s`. By inductive arguments, one can argue that

(s`, k + `) is a yes-instance if and only if at least one of the instances

(si, k), i ∈ {1, . . . , t} is. The construction can be done in time polynomial

in |s1|+ · · ·+ |st|, and thus A is a cross-composition.

18.2 SAT parameterized by the number of variables

In this section we study the parameterized version of CNF-SAT where

parameter is the number of variables. Let us remind that in CNF-SAT,

we are given a propositional formula ϕ on n Boolean variables Vars =

{x1, x2, . . . , xn} in conjunctive normal form ,

ϕ = C1 ∧ C2 ∧ . . . ∧ Cm.

Here, each Ci is a clause of the form

Ci = `i1 ∨ `i2 ∨ . . . ∨ `iri ,

where `ij are literals of some variables of Vars. The task is to decide

whether ϕ is satisfiable. Here we prove the lower bound on the com-

pression of CNF-SAT when parameterized by the number of variables

n.

The problem is evidently in FPT, as an algorithm merely has to iterate

over all possible assignments to the variables, there being 2n of them.

The runtime of this algorithm is O(2n ·m), where m is the input length.

18.2 SAT parameterized by the number of variables 405

Theorem 18.3. CNF-SAT parameterized by the number of variables

n does not admit a polynomial compression unless coNP ⊆ NP/poly.

Proof. We prove the theorem by showing that CNF-SAT parameterized

by the number of variables cross-composes into itself. We define a polyno-

mial equivalence relation R such that all bit-strings that do not encode a

valid instance of CNF-SAT are equivalent. Of the remaining instances,

any two well formed instances (ϕ1, n) and (ϕ2, n) are equivalent if and

only if they satisfy |ϕ1| = |ϕ2|. Let ϕ1, ϕ2, . . . , ϕt be equivalent CNF

formulas. All these formulas are on n variables and we assume that each

formula has the same set of variables Vars = {x1, x2, . . . , xn}. Further,

let m := maxi∈{1,...,t}|ϕi|.
Instead of building a cross-composition, we only describe an instance

selector ρ. To define the instance selector, we need the following oper-

ation on CNF formulas. For a formula ϕ = C1 ∧ C2 ∧ . . . ∧ Cm and

a boolean variable x, we define ϕ ∨ x as the formula obtained from ϕ

by adding x to every clause Ci of ϕ. Then for two equivalent instances

(ϕ1, n) and (ϕ2, n) on variables {x1, x2, . . . , xn}, we define

ρ((ϕ1, n), (ϕ2, n)) = (ϕ, n+ 1),

where

ϕ = (ϕ1 ∨ xn+1) ∧ (ϕ2 ∨ ¬xn+1).

For example, for ϕ1 = (x1 ∨x2)∧ (x1 ∨¬x2)∧ (x2 ∨¬x3) and variable

x4, the result of ϕ1 ∨ x4 is the formula (x1 ∨ x2 ∨ x4)∧ (x1 ∨¬x2 ∨ x4)∧
(x2 ∨¬x3 ∨ x4). For ϕ1 and ϕ2 = (x1 ∨ x3)∧ (x1 ∨¬x2)∧ (x2 ∨ x3), the

instance selector outputs ρ((ϕ1, n), (ϕ2, n)) = (ϕ, n+ 1), where

ϕ = (ϕ1 ∨ x4) ∧ (ϕ2 ∨ ¬x4)

= (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4)

∧ (x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ ¬x4).

We claim that there is a truth assignment satisfying ϕ if and only if

there is a truth assignment satisfying at least one among ϕ1 and ϕ2.

Let ψ be a truth assignment satisfying ϕ. If ψ(xn+1) = >, then every

clause of ϕ2 should be satisfied by ψ. Otherwise, if ψ(xn+1) = ⊥, then

ψ satisfies ϕ1.

Suppose now that ψ is a truth assignment satisfying at least one of the

formulas ϕ1 and ϕ2. Then the truth assignment ψ′ on ϕ which coincides

406 Instance selectors

with ψ for the first n variables and

ψ′(xn+1) =

{
⊥, if ψ satisfies ϕ1,

>, otherwise (in which case ψ satisfies ϕ2),

satisfies ϕ.

The instance selector ρ for CNF-SAT brings us immediately to an

algorithm A that in time polynomial in m and t constructs a CNF

formula ϕ such that

• ϕ is satisfiable if and only if for at least one i ∈ {1, . . . , t} formula ϕi
is satisfiable, and

• the number of variables in ϕ is n+ log2 t.

Hence A is a cross-composition.

Since CNF-SAT is NP-hard, the proof of the theorem now follows

from Theorem 17.8.

18.3 Colored Red–Blue Dominating Set

Our last example of the instance selector technique concerns a vari-

ant of Dominating Set. An instance of Red-Blue Dominating Set

(RBDS for short) comprises of a bipartite graph G with bipartition T

and N , and an integer k. We ask whether there exists a vertex set X ⊆ N
of size at most k such that every vertex in T has at least one neighbor

in X.

In the literature, the sets T and N are usually called blue and red

vertices, respectively, and this is why the problem is called Red-Blue

Dominating Set. Here, we call the vertices “terminals” and “nontermi-

nals” in order to avoid confusion with the colored version of the problem

that we are going to introduce. RBDS is equivalent to Set Cover and

Hitting Set.

Let us remind that an input to Hitting Set consists of a universe

U , a family F of subsets of U , and an integer k. The goal is to choose a

set X of at most k elements from U such that every set from the family

F contains at least one element from X. To see that Hitting Set and

RBDS are equivalent, note that given a Hitting Set instance (U,F , k),

one may set T = F , N = U , and make each set A ∈ F adjacent to all

its elements; the condition that every set from F contains an element

from X translates to the condition that every vertex from T is adjacent

18.3 Colored Red–Blue Dominating Set 407

to a vertex from X in the constructed graph. Set Cover is the dual of

Hitting Set, where the task is to find at most k sets from the family

F covering all elements of U .

Hitting Set, and therefore RBDS, is NP-complete. Due to equiva-

lence with Hitting Set, RBDS is also W[2]-hard being parameterized

by k. However, it is trivially FPT parameterized by the size of N . It is

also FPT parameterized by the size of T , see Exercise 18.3. However,

RBDS does not admit a polynomial kernel being parameterized by nei-

ther |T | nor |N | unless coNP ⊆ NP/poly. Here we prove the lower bound

for RBDS when parameterized by |T |. The lower bound for parameter-

ization by |N | is left as an exercise (Exercise 19.3).

Observe that RBDS becomes polynomial for k ≥ |T | (each vertex

v ∈ T may simply greedily pick one “private” neighbor in N), so the

parameterization by |T |+k is equivalent to the parameterization by |T |.
We do not know how to construct a cross-composition for RBDS di-

rectly. This is why the proof is performed in two steps. In this section

we describe an auxiliary variant of RBDS and show that it is composi-

tional. In the next chapter, we will reduce to RBDS from the auxiliary

variant and thus rule out the existence of a polynomial kernel for RBDS

parameterized by |T |.
The auxiliary problem is called Colored Red-Blue Dominating

Set (Col-RBDS for short). In this problem we are given a bipartite

graph G with bipartition N and T , and an integer k. The set of non-

terminal vertices N is partitioned into k sets, N = N1 ∪N2 ∪ . . . ∪Nk,

and the solution set X is required to contain exactly one vertex from

each set N i. We will think of sets N1, N2, . . . , Nk as of colors, provided

by a function col : N → {1, . . . , k}. Thus a solution X ⊆ N is not

only required to be of size at most k, but it should also contain exactly

one vertex of each color. We refer to such a solution X as a k-colored

dominating set. We parameterize Col-RBDS by |T |+ `, that is, we add

the number of colors to the parameter. Let us note that while for RBDS

the parameterization by |T |+k is equivalent to the parameterization by

|T |, this is not the case for Col-RBDS.

Theorem 18.4. Col-RBDS does not admit a polynomial compression

unless coNP ⊆ NP/ poly.

Proof. We describe a cross-composition for a sequence

(G1 = (T1 ∪N1, E1), k, col1), . . . , (Gt = (Tt ∪Nt, Et), k, colt)

of Col-RBDS instances with |T1| = |T2| = · · · = |Tt| = p. Again,

408 Instance selectors

318CHAPTER 18. LOWER BOUNDS USING INSTANCE SELECTOR (SS)

Othe
r Term

ina
ls

1 2 1 3 3 4 4 2 1 1

v(1) v(2) v(3)

u(1) u(2) u(3)

An illustration of the application of � to a graph. The subscripts on the
u and v vertices are omitted for clarity, as are the edges between the
terminals and the terminals and non-terminals. Note that a similar

picture for � would be identical with the u and v labels flipped.

Figure 18.8: Composition of col-RBDS: Application of �

Figure 18.3 Composition of Col-RBDS. An illustration of the application

of λ to a graph. The subscripts on the u and v vertices are omitted for

clarity, as are the edges between terminals and non-terminals. Note that

such a illutstration for λ would be identical with the u and v labels flipped.

instead of providing a description of a cross-composition, we define an

instance selector for Col-RBDS.

For a bipartite graph G with bipartition T and N and k-coloring of

N , we let λ(G) denote the graph obtained from G after adding a set S
of 2(k−1) new vertices u(r) and v(r), r ∈ {1, . . . , k−1}, to the terminal

vertex set T of G, and the following edges to the edge set:

E1 = {xu(r) : x ∈ Nr and r ∈ {1, . . . , k − 1}}, and

E2 = {xv(r) : x ∈ Nk and r ∈ {1, . . . , k − 1}}.
Thus all vertices that have color r ∈ {1, . . . , k− 1} are made adjacent

to u(r), and all vertices with color k are adjacent to v(r) for all r ∈
{1, . . . , k − 1}. The terminal set of λ(G) is T ∪ S, see Fig. 18.3.

We similarly define λ(G). Here, the vertex set of G is expanded by

vertices S = {u(r), v(r), : r ∈ {1, . . . , k−1}}, and new edges as follows:

E1 = {xv(r) : x ∈ Nr and r ∈ {1, . . . , k − 1}}, and

E2 = {xu(r) : x ∈ Nk and r ∈ {1, . . . , k − 1}}.
The terminal set of λ(G) is T ∪S Here, all vertices that have color 1 ≤

r < k are adjacent to v(r) and all vertices with color k are adjacent to

u(r), for all r. Let us note that if a set X ⊆ N is a k-colored dominating

18.3 Colored Red–Blue Dominating Set 409

set in a graph G, then in λ(G) (and in λ(G)) it also dominates all the

vertices of S as well as “old” terminal vertices of G, and thus is a k-

colored dominating set in λ(G) (and in λ(G)). The converse is also true:

If X is a k-colored dominating set in λ(G) or in λ(G), then it is also a

k-colored dominating set in G.

To describe ρ, we need to define the operation of identifying two ver-

tices. For two nonadjacent vertices u and v of a graph G, the graph

H obtained by identifying u and v is the graph obtained from G by

deleting u and v, adding a new vertex w and making it adjacent to all

neighbors of u all neighbors of v in G. This operation intuitively amounts

to merging u and v into a common vertex and using the union of their

neighborhoods as the neighborhood of the common vertex.

Let G1 and G2 be two equivalent (subject to R) bipartite graphs with

bipartitions Ti, |Ti| = p, and Ni, and k-colorings coli of Ni, i = 1, 2. We

define

ρ((G1, k, col1), (G2, k, col2)) = (G, k, col),

where G and col are defined as follows.

The graph G is obtained by merging of graphs λ(G1) and λ(G2),

where we identify the pairs of their terminal vertices. More precisely, the

terminal set of λ(G1) consists of the terminal set of graph G1, namely

T1 = {x1, . . . , xp}, plus 2(k−1) new vertices of S1 = {u1(r), v1(r) : r ∈
{1, . . . , k−1}}, added by λ. The terminal set of λ(G2) is the union of the

terminal set of G2, namely T2 = {y1, . . . , yp}, plus the new vertices of

S2 = {u2(r), v2(r) : r ∈ {1, . . . , k−1}}, added by λ. Then G is obtained

from the union of λ(G1) ∪ λ(G2) by identifying all pairs of terminal

vertices of the form {xi, yi} for all i ∈ {1, . . . , p}, and {u1(r), u2(r)} and

{v1(r), v2(r)} for all r ∈ {1, . . . , k − 1}. We call the set of vertices of

G obtained by identifying pairs from S1 and S2 by S = {u(r), v(r)},
r ∈ {1, . . . , k − 1}.

The terminal set T of G consists of p “old” terminal vertices and the

2(k−1) “new” vertices of S. The non-terminal set N of G is the disjoint

union N = N1 ∪N2. The coloring col of N is formed from colorings col1
and col2 of N1 and N2, respectively. This means that every vertex v of

N inherits its color either from N1 or from N2. See Fig. 18.4.

Claim 18.5. G has a k-colored dominating set if and only if at least

one of the instances Gi, i = 1, 2, has a k-colored dominating set.

Proof. Let Gi, i = 1, 2, be a yes-instance of Col-RBDS and let X be

a k-colored dominating set in Gi. Then in G, X dominates all “old”

410 Instance selectors

18.4. COLORED RED–BLUE DOMINATING SET 319

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5 y6 y7

z1 z2 z3 z4 z5 z6 z7

Above is an example application of µ to two graphs. Note that the xi’s
get identified with the yi’s (the merge of xi and yi is labelled zi in the
graph obtained), and the vertices from F are also identified. For the

non-terminals, we take a simple union.

Figure 18.9: Composing col-RBDS

Figure 18.4 Composing col-RBDS. An example of a selector ρ from λ(G1)

and λ(G2). Here terminals xi’s get identified with the yi’s. The merge of xi
and yi is labelled zi in the resulting graph, and we do not show in the figure

how these terminals are connected to non-terminal vertices. The terminal

vertices from Si are shown by squares, and they are also pairwise-identified.

For the non-terminals, we take a simple union.

terminal vertices and all terminals from S. Indeed, by construction, X

should dominate old terminals. Every vertex u(r) or v(r) of S is adjacent

either to all non-terminal vertices colored r or to all non-terminal vertices

colored k, and thus it is also dominated by X.

For the converse, suppose that G has a k-colored dominating set X =

{x1, x2, . . . , xk}, where xi is the vertex for which col(xi) = i. We argue

that all vertices of X are from exactly one of the Gi’s, i = 1, 2, and then

it is immediate that they must dominate all the terminals of Gi.

Targeting towards a contradiction, suppose that the vertices of X do

not belong only to one graph among G1 and G2. Let us further first

assume that xk ∈ G1, and we pick any r 6= k such that xr ∈ G2. Due

to the applicability of transformations λ and λ, vertex u(r) of S in G

can be dominated either by xk or by xr. On the other hand, it cannot

be adjacent to xr because xr ∈ V (G2) and in λ(G2), u(r) is adjacent

only to vertices colored k. It also cannot be adjacent to xk ∈ V (G1)

18.3 Colored Red–Blue Dominating Set 411

because in λ(G1) ur is adjacent to vertices colored r 6= k. Thus u(r) is

not dominated by X in G, which is a contradiction. In the case xk ∈ G2

and xr ∈ G2 for some r 6= k, symmetric arguments show that v(r) is not

dominated by X in G.

y

The described instance selector for Col-RBDS immediately implies

the existence of a cross-composition. The only detail which is different

for Col-RBDS, when compared to other examples considered in this

section, is that in the new instance the parameter grows by more than

a constant. Let us remind that we parameterized by k, the size of a

colored dominating set, plus the cardinality of the terminal set T . While

we still seek a k-colored dominating set in the new graph G, the size of

the terminal set of G increases by 2(k − 1) because we have added to it

the vertices of S. By applying the selection ` times for t = 2` instances

with terminal sets of size p, we cross-compose t into an instance with

terminal set T of size

|T | = p+ 2` · (k − 1).

Since the size of the parameter |T | + k is bounded by a polynomial in

maxti=1 |Gi|+ log t, we obtain a cross-composition for Col-RBDS.

Exercises

Problem 18.1. Give an algorithm solving Disjoint Factors in time 2k · nO(1).

Problem 18.2. Show that Disjoint Factors is NP-complete.

Problem 18.3. Give an algorithm solving Red-Blue Dominating Set in time
2|T | · nO(1).

Bibliographic notes

The idea of an instance selector originated in the work of Dom et al.

(2014). The formalism used in this chapter is inspired by the Master

thesis by Misra (2010) and the survey by Misra et al. (2011).

The lower bound for Disjoint Factors was shown by Bodlaender

et al. (2011), and the bound for CNF-SAT (Theorem 18.3) was obtained

in (Fortnow and Santhanam, 2011). Bounds for Colored Red-Blue

Dominating Set were obtained in (Dom et al., 2014).

412 Instance selectors

Other applications of the instance selector technique can be found in

(Cygan et al., 2014b, 2012, 2014a).

19

Polynomial parameter transformation

In this chapter we introduce a type of reduction suitable for deriving kerneliza-

tion lower bounds, namely, polynomial parameter transformation (PPT). We

give several examples of how PPTs can be used.

Notions of reduction are generally popular as they lie at the heart of

most known hardness results. To establish NP-hardness for some prob-

lem P , we rarely use the definition of NP-hardness but instead reduce

an already known NP-hard problem to P . A very similar situation oc-

curs with kernelization. Instead of constructing a distillation or a cross-

composition every time we want to establish a lower bound for some

problem, often it is easier to deduce the hardness of one problem by re-

ducing to it another hard problem. To this end, we need an appropriate

notion of reduction.

We start with the definition of the required transformation.

Definition 19.1. Let P,Q ⊆ Σ∗ × N be two parameterized problems.

An algorithm A is called a polynomial parameter transformation (PPT,

for short) from P to Q if, given an instance (x, k) of problem P , A works

in polynomial time and outputs an equivalent instance (x̂, k̂) of problem

Q, i.e., (x, k) ∈ P if and only if (x̂, k̂) ∈ Q, such that k̂ ≤ p(k) for some

polynomial p(·).

Thus in PPT we do not put any constraints on the size of x̂, and only

the polynomial bound on the parameter k̂ is essential.

The motivation for defining polynomial parameter transformation will

become clear from the theorem below.

Theorem 19.2. Let P and Q be parameterized problems such that there

413

414 Polynomial parameter transformation

is a PPT from P to Q. If Q has a polynomial compression, then P also

has a polynomial compression.

Proof. Suppose that Q admits a polynomial compression to some lan-

guage L. We show that there is a polynomial time compression of P

to L.

Consider the following algorithm, which for an input pair (x, k), first

calls a PPT A on (x, k). Let (y, k′) be the output given by A. Then

(x, k) ∈ P if and only if (y, k′) ∈ Q and k′ is bounded by some polynomial

of k. Now, we apply the polynomial compression algorithm (say K) from

Q to L on (y, k′). Let z be the output of K. Thus (y, k′) ∈ Q if and only

if z ∈ L, and the size of z is bounded by a polynomial of k′. Pipelining

algorithms A and K, we obtain a polynomial compression of P to L.

In this chapter we give examples of PPTs from a problem P to a

problem Q such that the problem P does not admit a polynomial com-

pression unless coNP ⊆ NP/poly. Such a transformation together with

Theorem 19.2 would imply that Q does not admit a polynomial com-

pression unless coNP ⊆ NP/ poly. For some of the examples we deal

with, we are not aware of any obvious cross-composition algorithms. In

these situations, PPT is a very reasonable alternative to the strategy of

showing a cross-composition algorithm for ruling out polynomial kernels.

19.1 Packing paths and cycles

We start with simple illustrative examples. Consider the following ex-

tension of the Longest Path problem. In the Path Packing problem,

we are given a graph G and a positive integer k. The task is to decide

whether there exists a collection of k mutually vertex-disjoint paths of

length k in G.

This problem is known to be fixed parameter tractable by Alon et al.

(1995). Since Path Packing reminds Longest Path, it is natural to

guess that Path Packing also does not admit a polynomial kernel.

However, the “disjoint union” trick which we used for Longest Path,

does not directly apply here.

Theorem 19.3. Path Packing parameterized by k does not admit a

polynomial kernel unless coNP ⊆ NP/ poly.

Proof. We give a PPT from the Longest Path problem. Given an

instance (G, k) of Longest Path, we construct a graph G′ from G

19.1 Packing paths and cycles 415

by adding k − 1 vertex disjoint paths of length k. Then, G contains a

path of length k if and only if G′ contains k mutually vertex-disjoint

paths of length k. Since Longest Path does not admit a polynomial

compression unless coNP ⊆ NP/ poly (Theorem 17.5), by Theorem 19.2

so does Path Packing.

Closely related to Path Packing is the Cycle Packing problem.

Here we are given a graph G and a non-negative integer k, and the task

is to decide whether G contains at least k vertex-disjoint cycles. The

problem of Cycle Packing is strongly related to the Feedback Ver-

tex Set problem. Clearly, if a graph has more than k vertex-disjoint

cycles, then it cannot have a feedback vertex set of size k or less, as

any feedback vertex set has to pick at least one vertex from every cycle.

If there are at most k vertex disjoint cycles, the implications are less

immediate, but an upper bound of O(k log k) on the size of an optimal

feedback vertex set is known, due to a classic result by Erdős and Pósa.

For Feedback Vertex Set, we have already seen polynomial kernels

in earlier chapters. Note also that the variant of the problem called Edge

Disjoint Cycle Packing, where instead of vertex-disjoint cycles, we

have to find edge-disjoint cycles, admits a polynomial kernel, see Exer-

cise 19.1. In contrast, we show that the Cycle Packing problem does

not admit a polynomial kernel, and we establish this by showing a PPT

from Disjoint Factors. Since Disjoint Factors parameterized by

the size of the alphabet k does not admit a polynomial compression un-

less coNP ⊆ NP/ poly (Theorem 18.2), this would imply that Cycle

Packing also does not admit a polynomial compression.

Theorem 19.4. Cycle Packing parameterized by k does not admit a

polynomial compression unless coNP ⊆ NP/ poly.

Proof. Let Lk be an alphabet consisting of k letters, for simplicity we

assume that Lk = {1, . . . , k}, and let s = w1 · · ·wn ∈ L∗k be an input

to Disjoint Factors. We build a graph Gs as follows. First, we take

n vertices v1, . . . , vn, and edges {vi, vi+1} for 1 ≤ i < n, i.e., these

vertices form a path of length n. Let P denote this path. Then, for each

i ∈ {1, . . . , k} we add to Gs a vertex xi, and make xi adjacent to all

vertices vj of P such that in the string s, the letter sj is i. See Fig. 19.1

for an illustration.

We claim that the graph Gs has k disjoint cycles if and only if s has

the requested k disjoint factors. Suppose that Gs has k disjoint cycles

C1, . . . , Ck. As P is a path, each of these cycles must contain at least

416 Polynomial parameter transformation

324 CHAPTER 19. LOWER BOUNDS BY REDUCTION (SS)

an upper bound of O(k log k) on the size of the optimal feedback vertex set is
known, due to a result by Erdős and Pósa. For the Feedback Vertex Set
problem, we have already seen a kernel of size O(k2) in an earlier chapter.
The Cycle Packing problem is also known to have a polynomial kernel [].
In contrast, we show that the Disjoint Cycles problem do not admit a
polynomial kernel, and we establish this by showing a polynomial parameter
and time transformation from Disjoint Factors. Towards this we will
first define an auxiliary problem and show incompressibility result for this
and then give a polynomial parameter transformation from this problem to
Disjoint Cycles to get the desired result.

w = 1123343422

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

1 1 2 3 3 4 3 4 2 2

1 2 3 4

Figure 19.1: Disjoint Factors 4ppt Disjoint Cycles

Theorem 19.3. Disjoint Cycles does not admit a polynomial compres-
sion unless coNP ✓ NP/poly.

Proof. Given an input (W, k) of Disjoint Factors, with W = w1 · · · wn, a
word in (Lk = {1, . . . , k})⇤, we build a graph G as follows. First, we take n
vertices v1, . . . , vn, and edges {vi, vi+1} for 1 i < n, i.e., these vertices form
a path of length n. Let P denote this subgraph of G. Then, for each i 2 Lk,
we add a vertex xi, and make xi incident to each vertex vj with wj = i, i.e.,
to each vertex representing the letter i. See Figure 19.1 for an illustration.

G has k disjoint cycles, if and only if (W, k) has the requested k disjoint
factors. Suppose G has k disjoint cycles c1, . . . , ck. As P is a path, each of
these cycles must contain at least one vertex not on P , i.e., of the form xj,
and hence each of these cycles contains exactly one vertex xj. For 1 j k,
the cycle cj thus consists of xj and a subpath of P . This subpath must start
and end with a vertex incident to xj. These both represent letters in W

Figure 19.1 PPT from Disjoint Factors to Cycle Packing, where s =

1123343422.

one vertex not on P , that is of the form xj . Also it is easy to see that

none of these cycles can contain more than one of the xj vertices, else

we could not have k cycles. Hence for every 1 ≤ j ≤ k, the cycle Cj thus

consists of xj and a subpath of P . This subpath must start and end with

a vertex adjacent to xj . These two endpoints represent letters in s equal

to j. Let Fj be the factor of s corresponding to the vertices on P in Cj .

Now, F1, . . . , Fk are disjoint factors, each of length at least two (as the

cycles have length at least three), and Fj starts and ends with j, for all

1 ≤ j ≤ k.

Conversely, if we have disjoint factors F1, . . . , Fk, we build k vertex-

disjoint cycles as follows: for each j, 1 ≤ j ≤ k, take the cycle consisting

of xj and the vertices corresponding to factor Fj . Thus we have shown

the desired result. This concludes the proof.

19.2 Red-Blue Dominating Set

In the previous chapter (Theorem 18.4), we gave a cross-composition for

Colored Red-Blue Dominating Set (Col-RBDS). Our real inter-

est, however, is in showing the hardness of obtaining polynomial kernels

for the following fundamental problems, Hitting Set and Set Cover.

Recall that a convenient equivalent graph-theoretic formulation of these

problems is in the form of Red-Blue Dominating Set (RBDS). We

start by reducing RBDS from Col-RBDS.

Recall that in RBDS we are given a bipartite graph G = (T ∪N,E)

and an integer k, and we are asked whether there exists a vertex set X ⊆
N of size at most k such that every vertex in T has at least one neighbor

in X. We also refer to the vertices T as terminals and to the vertices of

N as nonterminals.

19.2 Red-Blue Dominating Set 417

In the colored version Col-RBDS, which we showed to be composi-

tional, the vertices of N are colored with colors chosen from {1, . . . , k},
that is, we are additionally given a function col : N → {1, . . . , k}, and X

is required to contain exactly one vertex of each color.

Theorem 19.5. RBDS parameterized by |T | does not admit a polyno-

mial compression unless coNP ⊆ NP/ poly.

Proof. By Theorem 18.4, Col-RBDS parameterized by |T |+k does not

admit a polynomial compression unless coNP ⊆ NP/ poly. To prove the

theorem, we give a PPT from Col-RBDS parameterized by |T |+ k to

RBDS parameterized by |T |.
Given an instance (G = (T∪N,E), k, col) of Col-RBDS, we construct

an instance (G′ = (T ′ ∪N,E′), k) of RBDS.326 CHAPTER 19. LOWER BOUNDS BY REDUCTION (SS)

Othe
r Term

ina
ls

1 2 1 3 3 4 4 2 1 1

TERMINALS

1 2 1 3 3 4 4 2 1 1

v1 v2 v3 v4

Figure 19.2: The polynomial parameter transformation from the colored ver-
sion of RBDS to RBDS.

19.4.1 Reductions from RBDS

In this section, we use the fact that we have ruled out the possibility of
polynomial kernels for RBDS to give hardness results for four other prob-
lems, all of which are known to be NP-complete (see [?]). In this section, we
rule out the possibility of their admitting polynomial kernels by polynomial
parameter transformations from RBDS.

Steiner Tree

In Steiner Tree we are given a graph a graph G = (T [N, E) and an
integer k and asked for a vertex set N 0 ✓ N of size at most k such that G[T [
N 0] is connected. The problem is parameterized by k + |T |.

Let (G = (T [N, E), k) be an instance of RBDS. To transform it into
an instance (G0 = (T 0 [N, E 0), k) of Steiner Tree, define T 0 = T [{ũ}
where ũ is a new vertex and let E 0 = E [{{ũ, vi} | vi 2 N}. See Figure 19.3
for an illustration. It is easy to see that every solution for Steiner Tree

Figure 19.2 The polynomial parameter transformation from the colored

version of RBDS to RBDS.

In G′, the set T ′ consists of all vertices from T plus k additional

vertices v1, . . . , vk. The edge set E′ consists of all edges from E plus the

edges

{uvi : i ∈ {1, . . . , k} ∧ u ∈ N ∧ col(u) = i}.

See Fig. 19.2 for an illustration.

First, observe that G is a yes-instance of Col-RBDS if and only if G′

418 Polynomial parameter transformation

is a yes-instance of Col-RBDS. Clearly, every k-colored dominating set

in G is also a k-dominating set in G′. In the opposite direction, every

vertex vi can be dominated only by a vertex from N colored i. Since

we seek a dominating set of size k, every k-dominating of G′ should

contain exactly one vertex of each color, and thus should be a k-colored

dominating set.

Finally, we parameterize Col-RBDS by |T |+ k. Since the size of the

terminal set of G is |T ′| = |T | + k, the described construction provides

us with a PPT.

As we have already mentioned in the previous chapter, RBDS be-

comes polynomial-time solvable when k ≥ |T |. To see this, greedily pick

for each vertex v ∈ T one “private” neighbor in N . Thus the parameter-

ization by |T | + k is equivalent to the parameterization by |T |. Hence,

by Theorem 19.5, we have the following corollary.

Corollary 19.6. RBDS parameterized by |T |+ k (and thus by k) does

not admit a polynomial compression unless coNP ⊆ NP/ poly.

As we have also already discussed in the previous chapter, RBDS

is equivalent to Hitting Set. Recall that an input to Hitting Set

consists of a universe U , a family F of subsets of U , and an integer k.

The goal is to choose a set X of at most k elements from U such that

every set from the family F contains at least one element from X. To see

that RBDS and Hitting Set are equivalent, note that given a Hitting

Set instance (U,F , k), one may set N = U , T = F , and make each set

A ∈ F adjacent to all its elements; for a set X ⊆ U , the condition that

every set from F contains an element from X is equivalent to saying

that X is a dominating set in the constructed graph.

Hitting Set is dual to Set Cover. Let us remind that an input to

Set Cover consists of a universe U , a family F of subsets of U , and

an integer k. The goal is to choose at most k sets from the family F
that cover the entire universe U . That is, we are looking for a subfamily

X ⊆ F such that |X | ≤ k and
⋃X = U . To see that RBDS and Set

Cover are equivalent, note that given a Set Cover instance (U,F , k),

one may set N = F , T = U , and make each set A ∈ F adjacent to all its

elements; the condition that a family of sets X ⊆ F covers U translates

to X dominates T in the constructed graph.

Hence by Theorem 19.5, we have the following

Theorem 19.7. Set Cover parameterized by the size of the universe

19.2 Red-Blue Dominating Set 419

U and Hitting Set parameterized by the size of the family F do not

admit a polynomial compression unless coNP ⊆ NP/ poly.

RBDS is handy for making PPTs to different problems. As a warm-up

exercise, let us consider Steiner Tree. Recall that in Theorem 17.9,

which was proved by constructing a cross-composition, we stated that

Steiner Tree parameterized by the size of the solution k does not ad-

mit a polynomial compression unless coNP ⊆ NP/ poly. An alternative

and simpler proof of Theorem 17.9 is by the following PPT from RBDS

to Steiner Tree.

Let (G = (T ∪N,E), k) be an instance of RBDS. To transform it into

an instance (G′, T ′, k′) of Steiner Tree, define T ′ = T ∪ {ũ}, where ũ

is a new vertex, and let

E(G′) = E ∪ {ũv : v ∈ N},

and

k′ = k + |T |+ 1.

See Fig. 19.3 for an illustration. It is easy to see that there is a one-to-

one correspondence between solutions for Steiner Tree on (G′, T ′, k′)
and solutions for RBDS on (G, k). Indeed, every dominating set X ⊆ N
of size k can be turned into a Steiner tree in G′ by adding to X the

terminal vertices T and ũ. Moreover, for every Steiner tree in G′, with

vertex set T ∪ {ũ} ∪ X, every vertex of T should be adjacent to some

vertex of X. Thus X is a dominating set in G.

19.4. RED-BLUE DOMINATING SET 327

on (G0, k) one-to-one corresponds to a solution for RBDS on (G, k).

TERMINALS

v1 v2 v3 v4 v5 vr�1 vr· · · · · ·

ũ

This is how we modify an instance of RBDS to convert it into an
instance of Steiner Tree. Notice that solution to the Steiner Tree
problem on this modified problem must dominate all the non-terminals

(if it doesn’t, then ũ is not connected to the vertex that is not
dominated).

Figure 19.3: The polynomial parameter transformation from RBDS to
Steiner Tree.

Connected Vertex Cover

In ConVC we are given a graph G = (V, E) and an integer k and asked for
a vertex cover of size at most k that induces a connected subgraph in G. The
parameter for the problem is the solution size, k.

To transform (G, k) into an instance (G00 = (V 00, E 00), k00) of ConVC, first
construct the graph G0 = (T 0 [N, E 0) as described above. The graph G00 is
then obtained from G0 by attaching a leaf to every vertex in T 0. Now, G00 has
a connected vertex cover of size k00 = |T 0| + k = |T | + 1 + k if and only if
G0 has a steiner tree containing k vertices from N if and only if all vertices
from T can be dominated in G by k vertices from N . See Figure 19.4 for
an illustration. This is in sharp contrast to the fact that Vertex Cover
admits a kernel of size O(k2).

Figure 19.3 PPT from Steiner Tree to RBDS.

Our next example is Connected Vertex Cover. Here we are given

a graph G and an integer k, and asked for a vertex cover of size at most k

420 Polynomial parameter transformation

that induces a connected subgraph in G. It is known, see Exercise 19.2,

that Connected Vertex Cover is FPT.

The PPT from Connected Vertex Cover to RBDS is almost the

same as the reduction from Steiner Tree. The only trick is based on

the following observation. If we have a vertex v adjacent to a vertex

u of degree 1, then there is always a minimal (connected) vertex cover

containing v. Thus by attaching vertices of degree one we “anchor” their

neighbors to be in the solution.

More formally, let (G = (T ∪N,E), k) be an instance of RBDS. We

transform it first into a graph G′ by adding a vertex ũ and making it

adjacent to all the vertices of N . The graph G′′ is then obtained from G′

by attaching a leaf to every vertex in T ′. Now, G′′ has a connected vertex

cover of size k′′ = |T |+1+k if and only if G′ has a Steiner tree of size k′′,
which happens if and only if in G all vertices from T can be dominated

by k vertices from N . See Fig. 19.4 for an illustration.
328 CHAPTER 19. LOWER BOUNDS BY REDUCTION (SS)

TERMINALS

v1 v2 v3 v4 v5 vr�1 vr· · · · · ·

ũ

There is an optimal solution for VertexCover that contains all the
gray terminals, and the vertex ũ. To be a solution for ConVC, it must
additionally connect all the vertex cover vertices, which are incidentally

the set of all terminals for Steiner Tree, and hence it reduces
precisely to the Steiner Tree problem (which in turn reduces to

RBDS).

Figure 19.4: The polynomial parameter transformation from RBDS to
ConVC.

Capacitated Vertex Cover

In CapVC we are asked to find a vertex cover on a graph where the vertices
have capacities associated with them, and every vertex can cover at most as
many edges as its capacity. The problem takes as input a graph G = (V, E),
a capacity function cap : V ! N+ and an integer k, and the task is to find a
vertex cover C and a mapping from E to C in such a way that at most cap(v)
edges are mapped to every vertex v 2 C. The parameter of this problem is
k.

Next, we describe how to transform (G, k) into an instance (G000 = (V 000, E 000), cap, k000)
of CapVC. First, for each vertex ui 2 T , add a clique to G000 that contains
four vertices u0

i , u
1
i , u

2
i , u

3
i . Second, for each vertex vi 2 N , add a vertex v000

i

to G000. Finally, for each edge {ui, vj} 2 E with ui 2 T and vj 2 N , add
the edge {u0

i , v
000
j } to G000. See Figure 19.5 for an illustration. The capac-

Figure 19.4 PPT from RBDS to Connected Vertex Cover.

Thus we have the following theorem.

Theorem 19.8. Connected Vertex Cover parameterized by the

size of the solution k does not admit a polynomial compression unless

coNP ⊆ NP/ poly.

Interestingly, Theorem 19.8 is a sharp contrast to the fact that Ver-

tex Cover admits a kernel of size O(k2).

Another variant of Vertex Cover is Capacitated Vertex Cover,

where we are asked to find a vertex cover in a graph where the vertices

have capacities associated with them, and every vertex can cover at

19.2 Red-Blue Dominating Set 421

most as many edges as its capacity. The Capacitated Vertex Cover

problem takes as input a graph G, a capacity function cap : V (G)→ N+

and an integer k, and the task is to find a vertex cover C ⊂ V (G) of size

at most k for which there is a a mapping from E(G) to C such that (i)

for every edge e ∈ E(G) mapped to a vertex v ∈ C, v is incident to e,

and (ii) at most cap(v) edges are mapped to every vertex v ∈ C.

A PPT from RBDS to Capacitated Vertex Cover is as follows.

Let (G = (T ∪ N,E), k) be an instance of RBDS. We transform G

into graph G′ as follows. The vertex set of G′ consists of sets T ′ and

N . Each vertex u ∈ T of G is replaced in G′ by a clique with four

vertices u0, u1, u2, u3. Thus |T ′| = 4|T |. For every edge uv ∈ E(G)

with u ∈ T and v ∈ N , we add the edge u0v to G′. The capaci-

ties of the vertices are defined as follows: For each vertex u ∈ T , the

vertices u1, u2, u3 ∈ T ′ have capacity 1 and the vertex u0 has capac-

ity degG′(u
0) − 1. Each vertex v ∈ N has capacity degG′(v). Clearly,

in order to cover the edges of the size-4 cliques inserted for the vertices

of T , every capacitated vertex cover for G′, for every u ∈ T , must con-

tain all the vertices u0, u1, u2, u3. Moreover, since the capacity of each

vertex u0 is too small to cover all the edges incident to it, at least one

neighbor v of u0 must be selected into every capacitated vertex cover

for G′. Therefore, G′ has a capacitated vertex cover of size k′ = 4 · |T |+k
if and only if all vertices from T can be dominated in G by k vertices

from N .

This brings us to the following theorem.

Theorem 19.9. Capacitated Vertex Cover parameterized by the

size of the solution k does not admit a polynomial compression unless

coNP ⊆ NP/ poly.

Exercises

Problem 19.1 (A). In the Edge Disjoint Cycle Packing problem, we are given
an undirected graph G and a positive integer k, and the objective is to test whether
G has k pairwise edge disjoint cycles. Obtain a polynomial kernel for Edge Disjoint
Cycle Packing (parameterized by k).

Problem 19.2 (l). Show that Capacitated Vertex Cover and Connected Ver-
tex Cover parameterized by the solution size are FPT.

Problem 19.3. Prove that Red-Blue Dominating Set parameterized by |N | does
not admit a polynomial kernel unless coNP ⊆ NP/poly.

422 Polynomial parameter transformation

Bibliographic notes

The first usage of a polynomial parameter transformation (PPT) to es-

tablish lower bounds on kernel sizes is due to Bodlaender et al. (2011),

see also (Binkele-Raible et al., 2012). The example of Path Packing

is from (Lokshtanov, 2009). The bounds for Red-Blue Dominating

Set, Hitting Set and Set Cover were originally established by Dom

et al. (2014).

Other examples of applications of PPTs can be found in (Cygan et al.,

2012; Jansen, 2013; Kratsch and Wahlström, 2013).

20

Polynomial lower bounds

In this chapter we introduce the notion of a weak cross-composition, used to ob-

tain lower bounds for problems which admit polynomial kernels. In particular,

we use a weak cross-composition to establish a lower bound for d-Hitting Set.

Specifically, for any ε > 0, the d-Hitting Set problem parameterized by the

solution size does not admit a polynomial compression with bitsize O(kd−ε),

unless coNP ⊆ NP/ poly.

In previous chapters, we saw how one can rule out polynomial kernels

(and even compressions) for specific problems. So far these techniques

were applied to rule out the existence of polynomial kernels. Interest-

ingly, with a small modification, the same approach can also be used to

obtain concrete lower bounds on the kernel sizes of problems admitting

polynomial kernels. For example, we have already seen that Vertex

Cover and Feedback Vertex Set admit kernels of bit-size O(k2)

and that d-Hitting Set admits a kernel of bit-size roughly kd. The

technique we develop in this chapter is used to show that most likely

these bounds on the kernel sizes are tight.

20.1 Weak cross-composition

So far, in our strategy of using cross-composition to rule out the ex-

istence of polynomial-size compressions of NP-hard problems, we used

the following chain of arguments. First, we know that a polynomially

bounded OR-distillation of an NP-hard language L is not possible un-

less coNP ⊆ NP/ poly (Theorem 17.3). Second, the possibility of cross-

composing a language L into a polynomially-compressible language Q

423

424 Polynomial lower bounds

implies that L admits a polynomially bounded OR-distillation (Theo-

rem 17.8). Thus if L can be cross-composed into Q, then Q cannot be

compressed.

Quite surprisingly, almost the same approach can be used for deriving

lower bounds on kernel sizes for problems admitting polynomial ker-

nels! The rough idea is the following. Let us recall Definition 17.7 of

cross-composition on page 389. A cross-composition algorithm outputs

a pair (y, k) with a string y from a set of t strings, x1, . . . , xt, such that

k is bounded by p(maxti=1 |xi| + log t) for some polynomial p(·). The

dependence p(log t) in the bound for k was used in Theorem 17.8 to

show that cross-composition with compression can be used to design an

OR-distillation, i.e. an algorithm producing a string of length at most t.

But the proof of Theorem 17.8 will work also if we slightly change

the settings. For example, suppose that Vertex Cover, which has a

polynomial kernel, admits a “weaker” cross-composition into Q, such

that for (y, k) ∈ Q the bound on the parameter k is weaker, say

k ≤ p(maxti=1 |xi|) · t
1
2 +δ for every δ > 0. Then the assumption that

Q has a bitsize k2−ε compression for some ε > 0 pipelined with such

a composition, would allow us to design an OR-distillation. Thus, if we

succeed to construct such a weaker cross-composition, this would imply

that Vertex Cover does not admit a bitsize k2−ε compression unless

coNP ⊆ NP/ poly.

In order to formalize this idea, we need to define a weak cross-composition.

Definition 20.1 (Weak cross-composition). Let L ⊆ Σ∗ be a language

and Q ⊆ Σ∗ × N be a parameterized language. We say that L weakly-

cross-composes into Q if there exists a real constant d ≥ 1, called the

dimension, a polynomial equivalence relation R, and an algorithm A,

called the weak cross-composition, satisfying the following conditions.

The algorithm A takes as input a sequence of strings x1, x2, . . . , xt ∈
Σ∗ that are equivalent with respect to R, runs in time polynomial in∑t
i=1 |xi|, and outputs one instance (y, k) ∈ Σ∗ × N such that:

(i) for every δ > 0, there exists a polynomial p(·) such that for ev-

ery choice of t and input strings x1, x2, . . . , xt, it holds that k ≤
p(maxti=1 |xi|) · t

1
d+δ, and

(ii) (y, k) ∈ Q if and only if there exists at least one index i such that

xi ∈ L.

20.1 Weak cross-composition 425

A theorem for cross-composition of bounded cost analogous to the

one for cross-composition is as follows. Its proof goes along the lines of

Theorem 17.8 except for having slightly different calculations.

Theorem 20.2. Assume that an NP-hard language L admits a weak

cross-composition of dimension d into a parameterized language Q. As-

sume further that Q admits a polynomial compression with bitsize O(kd−ε),
for some ε > 0. Then coNP ⊆ NP/ poly.

Proof. Since the proof of this theorem and Theorem 17.8 are very sim-

ilar, here we give details only for the parts of the proof which differ in

these theorems.

Suppose thatQ admits a polynomial compression with bitsizeO(kd−ε),
for some ε > 0, into a language R. As in Theorem 17.8, we show that

this implies the existence of a t-bounded OR-distillation algorithm for

L, where t is a polynomially bounded function, into the language OR(R)

consisting of strings of the form z1#z2# . . .#zq.

We define the following constants.

(c1) Language L weakly-cross-composes into Q. Therefore, there is c1 > 0

such that given a set of R-equivalent strings x1, . . . , xt, the compo-

sition algorithm outputs a string (y, k) equivalent to the OR of the

strings xi and such that k ≤ (maxti=1 |xi|)c1 · t
1
d+δ for every δ > 0.

(c2) Since R is the polynomial equivalence relation, there is a constant c2
such that for every integer n, any set S of strings of length n can be

partitioned in polynomial time into at most nc2 R-equivalent classes.

Let

t(n) = (2nc2+c1(d−ε))
1
εd

be a polynomially bounded function. The reason why we define t(n) in

this way will become clear from the arguments below. As in the proof of

Theorem 17.8, we pipeline a weak cross-composition with a compression.

Thus from an input of t = t(n) strings, we first obtain a set of instances of

Q, denoted by (yi, ki), i ∈ {1, . . . , r}. After compressing each (yi, ki), we

construct an instance of OR(R), which is a string z = z1#z2# . . .#zr.

Thus each substring zi is obtained from compressing a string obtained

by weakly-cross-composing an equivalent class of input strings. Here,

r ≤ nc2 and

|z| ≤ r + r · max
1≤i≤r

|zi| ≤ nc2 + nc2 · max
1≤i≤r

|zi| ≤ 2nc2 · max
1≤i≤r

|zi|.

426 Polynomial lower bounds

(For the last inequality we assume that max1≤i≤r |zi| ≥ 1.) Because of

the compression, we have that for every i ∈ {1, . . . , r},

|zi| ≤ kd−εi .

By the definition of a weak cross-composition, we have that

|ki| ≤ nc1 · t
1
d+δ.

Putting all these together and by defining δ = ε/d2, we have that

|z| ≤ 2nc2nc1(d−ε) · t1+dδ−ε/d−εd

≤ 2nc2nc1(d−ε) · t1−εd = tεd · t1−εd = t.

This provides the desired t-bounded distillation algorithm from the

language L to the language OR(R), and completes the proof.

20.2 Lower bound for Vertex Cover

In order to use Theorem 20.2 for some specific problem, we need to a

weak cross-composition. There is no universal recipe for constructing

such compositions.

We have earlier seen that Vertex Cover admits a kernel with at

most 2k vertices and O(k2) edges; thus it admits a kernel of bitsize

O(k2). In what follows, we prove that Vertex Cover does not admit

any kernel or compression of size O(k2−ε) for any ε > 0 unless coNP ⊆
NP/ poly.

By Theorem 20.2, to refute the existence of a polynomial compression

for Vertex Cover with subquadratic bitsize, it is sufficient to design

a weak cross-composition of dimension 2 from some NP-hard problem

to Vertex Cover. While it is possible, the success of the whole con-

struction depends on the correct choice of the starting problem. We will

compose from Multicolored Biclique. In the Multicolored Bi-

clique problem we are given a bipartite graph G with a bipartition U

and W such that U is partitioned into k color classes U1, U2, . . . , Uk, each

of size n, and W is partitioned into k color classes W1,W2, . . . ,Wk, each

of size n as well. The task is to decide whether G contains a multicolored

biclique with 2k vertices. In other words, the task is to decide whether

one can pick one vertex from each class Ui and one vertex from each class

Wi such that the graph induced by the chosen vertices is isomorphic to

the complete bipartite graph Kk,k.

20.2 Lower bound for Vertex Cover 427

The Multicolored Biclique problem is known to be NP-hard, and

we record this without a proof.

Lemma 20.3. Multicolored Biclique is NP-hard.

We are ready to show that Multicolored Biclique weakly-cross-

composes into Vertex Cover, which will bring us to the following

theorem.

Theorem 20.4. For any ε > 0, the Vertex Cover problem param-

eterized by the solution size does not admit a polynomial compression

with bitsize O(k2−ε), unless coNP ⊆ NP/ poly.

Proof. For our proof we give a weak cross-composition of dimension 2.

We define a polynomial equivalence relation R such that all bit-strings

that do not encode a valid instance of Multicolored Biclique are

equivalent. Of the remaining instances, any two well-formed instances

I1 and I2 are equivalent if and only if they have the same number (say

k) of color classes and every color class in both instances is of the same

size.

Let B1, B2, . . . , Bt be the instances of of Multicolored Biclique

belonging to the same equivalence class of R. Thus we can assume that

every instance Bi has the same number k of groups in each side of its

bipartition, and every group in every instance Bi has the same size n.

Furthermore, we can assume that
√
t is an integer. (If not, we copy a

few instances, not increasing the number of instances by more than a

factor of 2.) It is very useful to view the instances B1, B2, . . . , Bt as the

entries of a
√
t×
√
t matrix B. From this point of view, we can refer to

the instances of Multicolored Biclique as Bi,j , where 1 ≤ i, j ≤
√
t.

We also use the notation Ui,j and Wi,j to refer to the bipartition of Bi,j .

First, we modify each of the Bi,j such that all graphs Bi,j [Ui,j] and

Bi,j [Wi,j] become complete k-partite graphs. We do so by adding edges

between any two vertices of Ui,j if they are in different color classes.

We do the same with the vertices in Wi,j . We call the new graphs B′i,j .
Clearly, every original graph Bi,j has a multicolored biclique Kk,k if and

only if B′i,j has a clique on 2k vertices.

Now, we construct a graph G by introducing 2
√
t sets U1, . . . , U

√
t

and W 1, . . . ,W
√
t of kn vertices each. Thus |V (G)| = 2

√
tkn. Each of

the sets Ui and Wi is colored in k colors, each color class is of size n.

The edge set of G is constructed in such a way that for each pair of

indices 1 ≤ i, j ≤
√
t, the subgraph of G induced by U i ∪W j is a copy

of B′i,j . In other words, for each i ∈ {1, . . . ,
√
t}, we make the vertices

428 Polynomial lower bounds

of U i with different colors pairwise adjacent. We do the same with W i.

Thus each of the graphs G[U i] and G[W i] becomes a complete k-partite

graph. Then for each pair of indices 1 ≤ i, j ≤
√
t, we add edges between

Ui and Wj in such a manner that the subgraph G[U i∪W j] is isomorphic

to B′i,j .

Claim 20.5. The graph G has a 2k-clique if and only if at least one of

the graphs B′i,j has a 2k-clique.

Proof. If one of the B′i,js has a 2k-clique, then G has a 2k-clique, because

there is a graph isomorphic to everyB′i,j that is a subgraph ofG. Now, for

the forward direction, suppose that G has a 2k-sized clique. We observe

that there are no edges between U i and U i
′

in G for i 6= i′. Similarly,

there are no edges between W j and W j′ in G for j 6= j′. Thus, the 2k

clique of G is contained in G[U i ∪W j] for some 1 ≤ i, j ≤
√
t. But each

G[U i∪W j] is isomorphic to B′i,j . Therefore B′i,j has a 2k-sized clique. y

As argued earlier, the original graph Bi,j had a multicolored biclique if

and only if B′i,j has a clique on 2k vertices. Now by Claim 20.5, the origi-

nal graph Bi,j has a multicolored biclique if and only if G has a 2k-clique.

To complete our reduction, we map the t instances of Multicolored

Biclique to the following instance of Vertex Cover, (G, |V (G)|−2k).

Here, G is the complement graph of G. We know that G has a 2k sized

clique if and only if G has a |V (G)| − 2k sized vertex cover. Hence, we

output (G, |V (G)| − 2k) as an instance of Vertex Cover, which is a

yes-instance if and only if at least one of the t instances of Multicol-

ored Biclique is a yes-instance. The only thing that remains to show

is to bound the size of |V (G)| − 2k. However,

|V (G)| − 2k ≤ |V (G)| ≤ 2t
1
2 kn.

Hence our construction is a weak cross-composition. Thus, by making

use of Lemma 20.3 and Theorem 20.2, we obtain the desired result.

Theorem 20.4 implies the bounds on the kernel size for Feedback

Vertex Set. There is a simple polynomial parameter transformation

that takes as input an instance (G, k) of Vertex Cover and outputs

an equivalent instance (H, k) of Feedback Vertex Set. The graph H

is obtained from G as follows. For every edge uv ∈ E(G) we add a new

vertex wuv and make it adjacent to u and to v, thus creating a triangle

that must be hit by every feedback vertex set. Therefore,

Corollary 20.6. For any ε > 0, the Feedback Vertex Set problem

20.3 Lower bound for d-Hitting Set 429

parameterized by the solution size does not admit a polynomial compres-

sion with bitsize O(k2−ε), unless coNP ⊆ NP/poly.

It is interesting to compare the lower bounds for Vertex Cover

and Feedback Vertex Set with the known upper bounds. By Theo-

rem 20.4 and Corollary 20.6, obtaining kernels for these problems with

a strictly subquadratic number of edges is implausible (since O(k2−ε)
edges can be encoded in O(k2−ε log k) bits). Vertex Cover admits a

kernel that has a linear number of vertices (kernel with 2k vertices is

given in Theorem 6.2). For Feedback Vertex Set the best known

kernel, see Theorem 5.14, has O(k2) vertices. By making use of weak

cross-composition we can only bound the size of the kernel, but cannot

obtain more specific information on its structure.

20.3 Lower bound for d-Hitting Set

In this section we obtain a concrete lower bound for a generalization of

Vertex Cover, namely d-Hitting Set. Let us remind that in this

problem, we are given a family A of sets over a universe U , where each

set in the family has cardinality at most d, and a positive integer k. The

objective is to decide whether there is a subset H ⊆ U of size at most

k such that H contains at least one element from each set in A. Thus,

Vertex Cover is d-Hitting Set for d = 2.

It is convenient for our purposes to restate d-Hitting Set in the

language of hypergraphs: In a d-uniform hypergraph H (that is, every

hyperedge in E(H) is a d-sized subset of V (H)), we are looking for a set

of vertices of size k hitting every hyperedge of H. For our arguments, we

need to define what is a hyperclique in a hypergraph. To this end, let H

be a d-uniform hypergraph. A hyperclique of H is a subset W ⊆ V (G)

such that every d-element set X ⊆W is a hyperedge of H. Let H be the

complement of the hypergraph H. That is, H is a d-uniform hypergraph

on the same vertex set as H, where a d-sized vertex set X is a hyperedge

of H if and only if it is not a hyperedge of H.

Let us reflect a bit on how we established the lower bound for Ver-

tex Cover in Theorem 20.4. For the NP-hard problem Multicolored

Biclique, we provided an embedding of t instances of Multicolored

Biclique of length n into a carefully constructed graph G on
√
tpoly(n)

430 Polynomial lower bounds

vertices. The property of the embedding was that G contained a clique

of the specific size ` if and only at least one of the t instances of Mul-

ticolored Biclique was a yes-instance. Because the vertex cover of

G did not exceed |V (G)| − `, this provided us with the required weak

cross-composition.

For d > 2, our approach is similar. This time it is more convenient

to show that 3-SAT weakly-cross-composes into d-Hitting Set. We

construct an embedding of t instances of 3-SAT into a carefully selected

d-uniform hypergraph H with t1/d poly(n) vertices such that H contains

a hyperclique of specific size ` if and only if at least one of the t instances

of 3-SAT is satisfiable.

We will use the following simple result. In graphs, this result states

that for every independent set I in a graph G (or for every clique in the

complement of G), the vertices V (G) \ I form a vertex cover of G.

Lemma 20.7. Let d ≥ 2 and let C be a vertex subset of a d-uniform

hypergraph H. Then, C is a hyperclique if and only if the set W =

V (H) \ C intersects all hyperedges of H.

Proof. Let C be a hyperclique in H. Then for each hyperedge e of H its

vertex set cannot be entirely in C and thus is intersected by W .

In the opposite direction, suppose that W = V (H) \ C intersects all

hyperedges of H. Then every vertex set X ⊆ C of size d, because it

does not intersect W , should induce a hyperedge of H. Thus C is a

hyperclique.

In Theorem 8.3, we proved that d-Hitting Set admits a kernel with

at most d!kd sets and at most d!kd · d2 elements. The following theorem

provides a lower bound for kernelization of d-Hitting Set.

Theorem 20.8. For every integer d ≥ 2 and any ε > 0, the d-Hitting

Set problem parameterized by the solution size does not admit a poly-

nomial compression with bitsize O(kd−ε), unless coNP ⊆ NP/ poly.

Proof. We give a weak cross-composition of dimension d from 3-SAT to

d-Hitting Set. The 3-SAT problem is a variant of CNF-SAT, where

every clause contains exactly three literals. It is well known to be NP-

complete.

We define a polynomial equivalent relation R such that all bit-strings

20.3 Lower bound for d-Hitting Set 431

that do not encode a valid instance of 3-SAT are equivalent. Of the re-

maining instances, any two well formed instances ϕ1 and ϕ2 are equiva-

lent if and only if they have the same number of variables and the same

number of clauses.

Let ϕ1, . . . , ϕt be t instances of 3-SAT with the same number of vari-

ables and the same number of clauses. Since the number of variables in

all instances is the same, we can assume that they are over the same

set of variables {x1, . . . , xn}. (Observe that if they were not the same we

could rename the variables.) We identify these variables by integers from

{1, . . . , n}. We also assume that t1/d is an integer, else we can duplicate

the instances so that we have this property.

For a triple of integers S = {i, j, k}, i 6= j 6= k and i, j, k ∈ {1, . . . , n},
we call a mapping f : S → {⊥,>} a partial assignment. Thus for each

triple S we have eight different partial assignments. Let F be a family of

all partial assignments of all triples. Then the size of F is |F| = 8 ·
(
n
3

)
.

We construct a consistency graph P , whose vertices are assignments

from F and two partial assignments f and f ′ are adjacent if and only

if they are consistent on the intersection of their domains. That is, if

f : S → {0, 1} and f ′ : S′ → {⊥,>}, then for all u ∈ S ∩ S′ we have

f(u) = f ′(u). Observe that the graph P contains a clique of size
(
n
3

)
:

Take partial assignments corresponding to any fixed assignment from

{1, . . . , n} to {⊥,>}. However, P does not have a clique of size more

than
(
n
3

)
. Towards this, observe that for every triple S, the vertices

of P corresponding to all the eight partial assignments of S form an

independent set.

We use the graph P to construct an instance of d-Hitting Set as

follows. First we construct a d-uniform hypergraph H where we will be

seeking a clique of an appropriate size and then take the complement of

this hypergraph as an instance for d-Hitting Set.

It is convenient to view the input instances ϕ1, . . . , ϕt as elements of

a d-dimensional array. In other words, we fix a bijection, say

g : {1, . . . , t} → {1, . . . , t1/d}d.

Thus every integer i ∈ {1, . . . , t} is mapped by g to a d-dimensional

vector (i1, . . . , id) with ij ∈ {1, . . . , t1/d} for all j ∈ {1, . . . , d}. Then

every instance ϕi can be written as ϕi1,...,id , where g(i) = (i1, . . . , id).

The vertex set of hypergraph H consists of dt1/d groups of vertices.

We denote these groups by Va,b for a ∈ {1, . . . , d} and b ∈ {1, . . . , t1/d}.
These groups have the following properties.

432 Polynomial lower bounds

• For each b ∈ {1, . . . , t1/d}, |V1,b| = |V (P)|. Thus in total we have t1/d

copies of the vertex set of the consistency graph P . Let us remind that

every vertex of P is a partial assignment to a triple of variables. Thus

every subset X ⊆ V1,b corresponds to a set of partial assignments of

triples.

• For each a ∈ {2, . . . , d} and b ∈ {1, . . . , t1/d}, Va,b = {vab}. That is, it

is a singleton set.

Thus, V (H) =
⋃
a,b Va,b. Now we define the set of hyperedges of H. A

subset e of d elements of V (H) is a hyperedge of H if and only if it

satisfies the following properties.

(i) For each a ∈ {1, . . . , d}, there is at most one b ∈ {1, . . . , t1/d} such

that e ∩ Va,b 6= ∅. We denote such b by b(a).

(ii) The intersection e ∩ V1,b(1) is a clique in the graph P .

(iii) If e ∩ Va,b(a) 6= ∅ for all a ∈ {1, . . . , d}, then the (unique) partial

assignment σ ∈ e ∩ V1,b(1) does not set any clause of ϕb(1),...,b(d) to

false.

This completes the construction of a d-uniform hypergraph H. Hyper-

edges with |e∩V1,b(1)| > 1 play the role of checking consistency of assign-

ments, and hyperedges with |e ∩ Va,b(a)| = 1 for all a ∈ {1, . . . , d} select

an instance ϕb(1),...,b(d) and check whether that instance is satisfied.

We set ` =
(
n
3

)
+d− 1. Now we show that at least one of the formulas

ϕ1, . . . , ϕt is satisfiable if and only of H has a hyperclique of size `.

For the forward direction, let us assume that ϕi is satisfiable and

ψ : {1, . . . , n} → {⊥,>} is a satisfying assignment. Furthermore, assume

that g(i) = (b1, . . . , bd) ∈ {1, . . . , t1/d}d. Let W be the set of vertices in

P that correspond to 3-variable partial assignments formed by ψ and let

W1 be its copy in V1,b1 . Thus |W1| =
(
n
3

)
. We take

C =
{
vjbj : j ∈ {2, . . . , d}

}⋃
W1

and claim that C is a hyperclique in H of size `. The size bound follows

from the construction. Clearly, every e ⊆ C of size d satisfies the first

property of being an hyperedge of H. The set e ∩ V1,b1 forms a clique

in P as these vertices correspond to a fixed assignment ψ. The final

assertion in the definition of hyperedges follows from the fact that ψ is

a satisfying assignment for ϕi. This completes the proof in the forward

direction.

For the reverse direction, assume that C is a hyperclique of size ` in

H. Since C is a hyperclique, the first property of the hyperedges of H

20.4 Ramsey 433

implies that for every j ∈ {1, . . . , d}, there is at most one bj such that

C ∩Vj,bj 6= ∅. Since the graph P has a clique of size exactly
(
n
3

)
, we have

that C ∩ V1,b1 contains at most
(
n
3

)
vertices and the other vertices that

C could contain are d− 1 vertices of ∪j≥2Vj,bj . However, the cardinality

constraint on C implies that |C ∩ V1,b1 | =
(
n
3

)
and |C ∩ Vj,bj | = 1 for

all j ∈ {2, . . . , d}. Let i = g−1(b1, . . . , bd). We claim that ϕi = ϕb1,...,bd
is satisfiable. The second property of hyperedges and the properties of

P imply that C ∩ V1,b1 corresponds to an assignment ζ : {1, . . . , n} →
{⊥,>}. By the third property of hyperedges, the corresponding partial

assignment does not set any clause of ϕb1,...,bd to false. But since ζ sets

a value for each variable, this means that ζ satisfies ϕb1,...,bd .

Finally, we take (H, |V (H)| − `) as the instance of d-Hitting Set.

By Lemma 20.7 and the above construction, we know that at least one

of ϕ1, . . . , ϕt is satisfiable if and only if there is a set of size |V (H)| − `
intersecting all the sets of H. Thus the parameter size is upper bounded

by

|V (H)| − ` ≤ |V (H)| ≤ t1/d
(
n

3

)
+ (d− 1)t1/d = O(n3t1/d).

This shows that our construction is a weak cross-composition. Now by

applying Theorem 20.2, we obtain the desired result. This concludes the

proof.

20.4 Ramsey

The classical Ramsey’s theorem on graphs says that for every integer

k > 0, there is a computable function R(k) such that every graph with

R(k) vertices contains an independent set of size k or a clique of size k.

A natural decision version of this problem is defined as follows. In the

Ramsey problem, we are given a graph G and an integer k. The task is

to decide whether G contains a clique of size k or an independent set of

size k.

It is well known that Ramsey is an NP-complete problem. The prob-

lem of finding an independent set of size k in a graph, as well as the

problem of finding a clique of size k in a graph, are not expected to

have an algorithm with running time of the form f(k) · nO(1). However,

Ramsey is fixed parameter tractable for the following reason. We know

that every graph with R(k) vertices has either a clique of size k or an in-

dependent set of size k. Thus, given an instance (G, k), if R(k) ≤ |V (G)|

434 Polynomial lower bounds

then we know that it is a yes-instance. Else, we have that |V (G)| ≤ R(k)

and thus in time f(R(k)) we can check whether there exists a set X in

G of size k that is either a clique or an independent set. Thus a valid

question to ask is whether Ramsey has a polynomial kernel. Using the

framework described above, we will show that Ramsey does not admit

a compression of size k2−ε unless coNP ⊆ NP/ poly. This result is not

optimal—by making use of the techniques discussed in the next chap-

ter, it is possible to show that Ramsey does not admit any polynomial

compression unless coNP ⊆ NP/poly. However, the proof of this fact is

quite technical. On the other hand, the proof of k2−ε is relatively simple

and it serves as a good example of a weak cross-composition.

We will give a weak cross-composition of dimension 2 from the follow-

ing promise version of Ramsey. In this version, we are guaranteed that

the input graph G has both a clique of size k−1 and an independent set

of size k−1, and we ask whether G has a clique of size k or independent

set of size k.

We start by showing that Refinement Ramsey is NP-hard.

Lemma 20.9. Refinement Ramsey is NP-hard.

Proof. We give a reduction from Ramsey. Given an instance (G, k) of

Ramsey, we construct an instance (G′, k′) of Refinement Ramsey

such that (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance.

Let us remind that the disjoint union of vertex-disjoint graphs G and

H is the graph G∪̇H with the vertex set V (G)∪ V (H) and the edge set

E(G)∪E(H). The join ⊗ of vertex-disjoint graphs G and H is the graph

with the vertex set V (G)∪V (G) and the edge set E(G)∪E(H)∪{uv : u ∈
V (G),∈ V (H)}).

We construct G′ by first taking a disjoint union of G and a clique C

on k − 1 vertices and then joining this graph (disjoint union of C and

G) with an independent set I of size k. That is, G′ = (G∪̇C) ⊗ I. We

also set k′ = k + 1.

We first show that G′ has both a clique and independent set each of

size k. The clique C combined with any vertex of I is a clique of size k,

and I itself is an independent set of size k.

Now we show the desired equivalences. If (G, k) is a yes-instance of

Ramsey, then

• Case 1: G has a clique of size k. In this case, we get a clique of size

k + 1 in G′ by combining the clique in G with any vertex in I.

• Case 2: G has an independent set of size k. In this case, we combine

20.4 Ramsey 435

it with one of the vertices in C to get an independent set in G′ of size

k + 1.

Conversely, if (G′, k′) is a yes-instance of Refinement Ramsey, then

• Case 1: G′ has a clique of size k+1. We observe that the clique cannot

come from I ∪ C alone, since the largest clique in I ∪ C is of size k.

So, it has at least one vertex from G, which forces at most one vertex

from I and no vertices from C, since there are no edges between G

and C. Hence, all but one vertex of the k+1 sized clique have to come

from G, and thus G has a k sized clique.

• Case 2: G′ has an independent set of size k+1. We again observe that

the independent set cannot come from I ∪ C alone, since the largest

independent set in I∪C is of size k. So, it has at least one vertex from

G, which forces at most one vertex from C and no vertices from I,

since all the vertices of G are adjacent to all the vertices of I. Hence,

all but one vertex of the k + 1 sized independent set have to come

from G and thus G has a k sized independent set.

This completes the proof.

Now we are ready to give the main proof of this section.

Theorem 20.10. Ramsey has no compression of size O(k2−ε) for any

ε > 0 unless coNP ⊆ NP/ poly.

Proof. For our proof we give a weak cross-composition of dimension 2

from Refinement Ramsey to Ramsey. We define a polynomial equiv-

alence relation R such that all bit-strings that do not encode a valid

instance of Refinement Ramsey are equivalent. Of the remaining in-

stances, any two well formed instances (G1, k1) and (G2, k2) are equiv-

alent if and only if |V (G1)| = |V (G2)| and k1 = k2.

Let (G1, k), . . . , (Gt, k) be t instances of Refinement Ramsey, where

all the instances belong to the same equivalence class. We also assume

that
√
t is an integer. We can guarantee this condition by copying some

instances and thus increasing their number by (at most) a factor 2.

Now, we divide the t instances arbitrarily into
√
t groups of size

√
t

each. Then we perform a join operation for every two instances that are

in the same group, to get graphs Y1, . . . , Y√t. That is, if G1, . . . , Gp are

in the same group then we add an edge between any two vertices of

different graphs. We refer to the disjoint union of these
√
t graphs as G′.

That is,

G′ = ∪̇
√
t

i=1Yi.

436 Polynomial lower bounds

We output (G′, k′) as an instance of Ramsey where k′ = (k− 1)
√
t+ 1.

Now we show that (G′, k′) is a yes-instance of Ramsey if and only if

(Gi, k) is a yes instance of Refinement Ramsey for some i ∈ {1, . . . , t}.
We first assume that (Gi, k) is a yes-instance of Refinement Ram-

sey.

• Case 1: Gi has a clique of size k. In this case, we get a clique of size

k′ = (k− 1)
√
t+ 1 in G′ by combining this k-sized clique with all the

cliques of different graphs in Yj in which Gi belongs. This is possible

since all the graphs have a clique of size k − 1 (they are instances of

Refinement Ramsey) and all possible edges between any two graphs

are present.

• Case 2: Gi has an independent set of size k. In this case, we take√
t − 1 independent sets of size k − 1 from all Yj ’s except the one in

which Gi belongs. Then we combine it with the independent set of

size k in Gi to get an independent set of size k′ = (k− 1)
√
t+ 1 in G′.

This is because all the independent sets come from different Yj ’s and

there is no edge between them.

For the reverse direction we assume that (G′, k′) is a yes-instance of

Ramsey. We have the following two cases.

• Case 1: G′ has a clique of size (k−1)(
√
t−1)+k = (k−1)

√
t+1. This

clique has to come from one Yi since there is no edge between vertices

of two different Yi’s. Since there are
√
t graphs in Yi, there exists one

graph, say Gj , which contributes k vertices to the clique. Since the

adjacencies inside any of the original instances is not changed, (Gj , k)

is a yes-instance of Refinement Ramsey.

• Case 2: G′ has an independent set of size (k− 1)
√
t+ 1. In this case,

by the pigeonhole principle, at least k vertices come from some Yi.

Now, inside Yi, no two vertices of different Gj ’s can be part of the

independent set since the join operation adds all edges between two

vertices belonging to different graphs. Hence, all these k vertices come

from a graph Gj and thus (Gj , k) is a yes-instance of Refinement

Ramsey.

It is easy to see that the composition runs in time polynomial in

the input size. Also, we see that k′ =
√
t · nO(1). Thus by combining

Lemma 20.9 and Theorem 20.2, we get the desired result.

20.4 Ramsey 437

Bibliographic notes

The idea of using OR-distillation for obtaining polynomial lower bounds

for kernels is attributed to Dell and van Melkebeek (2014), who also

obtained the bounds for Vertex Cover, Feedback Vertex Set,

and d-Hitting Set.

The definition of weak composition originates in the work of Hermelin

and Wu (2012), see also Dell and Marx (2012). Our presentation of the

formalism of using weak cross composition is based on Bodlaender et al.

(2014). The presented lower bounds for kernelization of Vertex Cover

and d-Hitting Set are taken from Dell and Marx (2012).

Ramsey’s theorem is due to Ramsey (1930). The fact that Ramsey

is FPT was observed by Khot and Raman (2002) as the special case of

a more general framework. The polynomial lower bound for Ramsey

follows the description from Kratsch (2014).

For more examples on polynomial kernel lower bounds see (Cygan

et al., 2012; Dell and Marx, 2012).

21

Extending distillation

In this chapter we conclude the overview of techniques for obtaining lower

bounds on kernelization. All bounds we discussed in this part of the book are

built on Theorem 17.3 about bounded OR-distillations of languages. It was re-

alized that this theorem can be extended in several ways. First, a result similar

to Theorem 17.3 can be obtained for “oracle communication protocols”. We

use communication protocols to obtain a “structural” lower bound on the ker-

nelization of Point Line Cover. Then we briefly look at the settings where we

can exploit co-nondeterminism and discuss kernelization for Ramsey. Finally,

we discuss AND-composition and AND-distillation and how these concepts can

be used to obtain lower kernelization bounds for problems like Treewidth.

21.1 Oracle Communication Protocol

In this section, we define a two-player communication protocol.

Suppose we have two players, Alice and Bob. Let L ⊆ {0, 1}∗ be a

language. Alice has a string x ∈ {0, 1}∗, and she wants to know whether

x ∈ L. For example, let L be CNF-SAT. Then, Alice wants to know

whether the formula she has is satisfiable or not. However, she is not very

powerful (that is, she is just a polynomial time machine), while Bob is

very powerful. Of course, one way for Alice to find out the answer is

to send the whole of x to Bob and ask him. However, sending messages

to Bob are very expensive, and thus Alice first wants to “compress” x

to something equivalent but much smaller than x, and only then send

438

21.1 Oracle Communication Protocol 439

it to Bob. Since Alice wants to compress her instance, the idea of

polynomial kernelization or polynomial compression immediately comes

into picture. What makes the two-player communication protocol more

powerful is that Alice does not need to send the whole input in one

go. She can send a part of it and based on the answer of Bob, she

can send some other part or something else, and use all these pieces of

information to decide whether x ∈ L. This adaptivity of Alice in a

two-player communication protocol is what makes it more powerful.

In what follows, we formalize this idea and see where it can bring us.

Definition 21.1 (Oracle Communication Protocol). An oracle com-

munication protocol P for a language L is a communication protocol

between two players. The first player is given the input x and has to

run in time polynomial in the length of the input; the second player is

computationally unbounded but is not given any part of x. At the end

of the protocol, the first player should be able to decide whether x ∈ L.

The cost of the protocol is the number of bits of communication from

the first player to the second player.

We refer to the second player as an oracle. Observe that the bits

communicated from the second player to the first player do not count

in the cost.

The first player is modeled by a polynomial time Turing machine M ,

and the second player by a function f . The machine M has a special or-

acle query tape, oracle query symbol and oracle answer tape. Whenever

M writes the special oracle query symbol on the oracle query tape, in a

single computation step the contents of the answer tape is replaced by

f(q), where q represents the contents of the oracle query tape at that

time. In the oracle communication protocol, the second player has no

access to the input. To model this, the function f is independent of the

input given to M . Moreover, we assume that the oracle query tape is

write-only and one way, so that the previous queries are available to the

function. This is used to model that the strategy used by the second

player can be adaptive. We can also assume that f(q) takes no more

than a polynomial number of bits in the input size for any q. This as-

sumption is valid because if f(q) does not satisfy this property, then we

can truncate the later bits as the machine M cannot read all of them

given that it is a polynomial time Turing machine. Next, we define the

notion of communication transcript.

440 Extending distillation

Definition 21.2 (Communication Transcript). Let P be an oracle com-

munication protocol for a language L. A communication transcript on

a given input x consists of the sequence of all queries the protocol P

makes on input x as well as the answers f(q) to each of the oracle queries

q. That is, P stores the content of M ’s oracle query tape at the end of

the protocol as well as every answer given along its execution.

We say that an oracle communication protocol decides a parameter-

ized problem Q ⊆ Σ∗ × N if M with oracle f accepts an input (x, k) if

and only if (x, k) ∈ Q. The cost cost(k) of the protocol is the maximum

number of bits written on the oracle query tape over all inputs x with

parameter k.

21.2 Hardness of communication

In this section we prove a theorem that is analogous to Theorem 17.3, on

which all compression lower bounds seen so far were based. Let us remind

that Theorem 17.3 says that if there is a polynomially-bounded OR-

distillation algorithm from a language L ⊆ {0, 1}∗ into a language R ⊆
{0, 1}∗, then L ∈ NP/ poly, or equivalently, L ∈ coNP/ poly. In other

words, if there is a polynomial-time algorithm that, for input strings

x1, x2, . . . , xt(n) of length n where t(n) is some polynomial, outputs a

string y of length at most t(n) log t(n) such that y ∈ R if and only if at

least one of the strings xi is in L, then L ∈ NP/poly.

The proof for the next theorem is similar to Theorem 17.3. One can

skip this proof in the first reading.

Theorem 21.3. Let L be a language and t : N → N \ {0} be a poly-

nomially bounded function such that the problem of deciding whether at

least one out of t(n) inputs of length at most n belongs to L has an oracle

communication protocol of cost O(t(n) log t(n)). Then L ∈ NP/ poly.

Proof. Suppose that deciding whether at least one out of t(n) inputs of

length at most n belongs to L has an oracle communication protocol

P of cost O(t(n) log t(n)) In other words, this means that we have an

oracle communication protocol P of cost O(t(n) log t(n)) for the lan-

guage OR(L) consisting of strings of the form x1#x2# . . .#xt(n) such

that for at least one index i it holds that xi ∈ L. Here, recall that a

deterministic oracle communication protocol P is modeled by a deter-

ministic polynomial-time Turing machine M and a function f . To prove

21.2 Hardness of communication 441

the theorem, we design a nondeterministic polynomial time Turing ma-

chine with polynomial advice, which given an input string x, outputs

Yes on at least one path if x ∈ L, and No on all paths if x /∈ L.

We start with the following observation, which is the key insight be-

hind the arguments that follow. An instance x of bitsize n belongs to

L (that is, does not belong to L) if and only if there exists a sequence

x2, . . . , xt(n) of instances of bitsize n such that P(x, x2, . . . , xt(n)) re-

jects. For the forward direction, given x /∈ L, we take xi = x for

i ∈ {1, 2, . . . , t(n)}. Clearly, since x /∈ L, it holds that P(x, x2, . . . , xt(n))

rejects. For the reverse direction, note that if P(x, x2, . . . , xt(n)) rejects,

then we know that x, x2, . . . xt(n) /∈ L. Then, in particular, x /∈ L.

We device the proof system for L as follows. It includes as advice both

a large set A of communication transcripts and the value of t(n). The

definition of A will be determined later. Here, it is crucial to understand

that every transcript in A (by the definition of being a transcript) is not

an arbitrary string, but it describes a sequence of questions asked by the

first player and the “correct” answer given to each one of these questions

by the second player. We have no means to compute these answers since

the second player is “all powerful”, but we do not need to do that since

the answers are simply “given” to us.

Given an input instance x of bitsize n, we proceed as follows:

(i) Guess a sequence x2, . . . , xt(n), where each xi has bitsize n.

(ii) For every communication transcript τ in A, perform the following

computation:

• Run the first player on input (x, x2, . . . , xt(n)). Whenever the first

player sends a bit to the second player (by writing on the oracle

query tape), verify that it agrees with the corresponding bit in

τ . If a disagreement is detected, proceed to the next transcript

(if one exists). Whenever the first player expects a bit from the

second player (by reading from the oracle answer tape), use the

corresponding bit in τ . If no such bit exists, proceed to the next

transcript (if one exists).

• If the first player rejects, then accept.

(iii) If no run in the previous step terminated with the decision to accept,

then reject.

Let us see what does the computation above achieve.

• x /∈ L: In this case, x ∈ L. Then, for any choice of x2, . . . , xt(n), it holds

that P(x, x2, . . . , xt(n)) accepts. Consider some such choice x2, . . . , xt(n).

442 Extending distillation

Then, for any communication transcript τ in A, one of the following

occurs.

– If an inconsistency is detected, then we do not accept (we proceed

to the next transcript).

– Otherwise, no inconsistency is detected. This means that the first

player obtains answers to all of the questions that it asks, and all of

these answers are exactly the answers that the second player would

have supplied. This implies that we have an accurate simulation of

P(x, x2, . . . , xt(n)), and therefore the first player accepts. Thus, the

proof system does not accept.

This means that the choice of x2, . . . , xt(n) leads to rejection. Since this

choice was arbitrary, the proof system says No on all computational

paths.

• x ∈ L: In this case, x /∈ L. Suppose that for every x′ /∈ L, there is a

choice of x2, . . . , xt(n) such that the transcript τ resulting from running

the protocol P on (x′, x2, . . . , xt(n)) belongs to A, and P rejects on τ .

Then, we have a computation path where the proof system says Yes.

In what follows we show that indeed there exists a setA of the “desired

kind” (that makes the proof of the case where x ∈ L goes through) of

size polynomial in n. By desired kind, we mean that for every x ∈ L,

there is a choice of x2, . . . , xt(n) such that the transcript τ resulting from

running the protocol P on (x, x2, . . . , xt(n)) is in A, and P rejects on

τ . Clearly, if we take A to be the set of all transcripts, then it is a

set of the “desired kind”—to see this, consider the proof of the forward

direction of the key observation mentioned earlier. However, the problem

is that the set of all transcripts can be huge, and our advice must be of

polynomial size. Thus, we need A to be both of the “desired kind” and

of size polynomial in n This will also show that the running time of the

constructed machine is polynomial in n.

Consider instances x1, . . . , xt(n) of L of bitsize n, and let T (x1, . . . , xt(n))

denote the communication transcript of P on input (x1, . . . , xt(n)). We

think of T as a function mapping the input to its transcript. Since

the second player is not given the input (x1, . . . , xt(n)), the transcript

T (x1, . . . , xt(n)) is determined solely by the bits sent from the first player

to the second player. Therefore, the number of such distinct transcripts

is at most 2cost(n)+1, where cost(n) denotes the cost of the protocol

on inputs consisting of t(n) instances of bitsize n each. We say that

a rejecting transcript τ covers an instance x ∈ L of bitsize n if there

exists a sequence x2, . . . , xt(n) of instances of bitsize n each such that

21.2 Hardness of communication 443

T (x, x2, . . . , xt(n)) = τ . From the discussion above, it suffices to show

that a small A exists which covers every x ∈ L. We construct A in the

following iterative way.

We start with As = ∅ and successively pick a rejecting communication

transcript τ that covers the largest number of instances x ∈ L of length

n that were not covered so far, and add τ to A. This should remind us

the proof strategy we employed in Theorem 17.3. We keep doing so until

there are no more instances x ∈ L of bitsize n left to cover.

Consider a step in the construction of A and let U denote the set of

uncovered instances x ∈ L of bitsize n at the beginning of the step. Since

every tuple in U t(n) is mapped by T to one of the rejecting transcripts

above and there are less than 2cost(n)+1 distinct such transcripts, there

exists a rejecting transcript τ∗ such that at least a fraction 1
2cost(n)+1 of

the tuples in U t(n) are mapped by T to this particular τ∗. That is,

|T −1(τ∗) ∩ U t(n)| ≥ |U|t(n)

2cost(n)+1
.

By Lemma 17.4, τ∗ covers at least |U|
2(cost(n)+1)/t(n) instances x ∈ U . Let

ϕ(n) = 1
2(cost(n)+1)/t(n) .

Let e be the base of the natural logarithm. In every step, we are

covering a ϕ fraction of the remaining instances in L. Initially, there are

at most 2n instances to start with, so after ` steps, we are left with at

most

(1− ϕ(n))`· 2n ≤ e−ϕ(n)`· 2n

instances. Thus, there will be no instances left to cover after O(n/ϕ(n))

steps. Clearly, n/ϕ(n) is polynomially bounded in n if 1/ϕ(n) is polyno-

mially bounded in n. However, 1/ϕ(n) = 2(cost(n)+1)/t(n) is polynomially

bounded in t(n) and hence in n (for polynomially bounded t(n)) as long

as cost(n) = O(t(n) log t(n)). Thus, A covers all instances in L and the

number of transcripts, as well as the length of each transcript, is poly-

nomially bounded. So, the advise length is polynomially bounded in n.

Also, the running time of the proof system is also polynomially bounded

in n and hence the resulting algorithm for L is suitable for NP/ poly.

This finishes the proof.

Note that we have described the model where Alice is a deterministic

Turing machine M . One can get other variants of oracle communication

protocols by

• allowing M to be randomized, or

444 Extending distillation

• allowing M to be a polynomial time conondeterministic Turing ma-

chine.

In particular, when M is a polynomial time conondeterministic Tur-

ing machine, whenever there are multiple possible valid executions (as

in the case of conondeterministic protocols), one can define the cost as

the maximum cost over all of them, i.e., we consider the worst case.

Then Theorem 21.3 can be proved even for the model where the first

player can be conondeterministic. The only difference in the proof is

that for conontederministic protocols, we define T (x1, . . . , xt(n)) to be

an arbitrary transcript of an execution on which P produces the cor-

rect output. The first step of the proof system remains the same. In the

second step, instead of deterministically simulating the first player, now

we simulate nondeterministically. The advise remains the same. Clearly,

if x /∈ L, then being a conondeterministic protocol, none of the tran-

scripts of P will reject and hence the proof system will say No. If x ∈ L
then we argue as before that that is a polynomial sized advise which

covers all the instances in L. Clearly, if (x, x2, . . . , xt(n)) /∈ Or(L) then

there will be a valid path in P which will lead to a rejection. Here, the

proof system will guess that path, validate it, and then finally accept

the string. The counting arguments carry over the same way as in the

deterministic case.

As an example of an immediate application of Theorem 21.3, let us see

how it can be applied to d-Hitting Set. In Theorem 20.8, we provide

a lower bound on the kernel size for this problem. Now, Theorem 21.3

gives an even stronger lower bound for d-Hitting Set.

Theorem 21.4. Let d ≥ 2 and ε be a positive real number. There is no

protocol of cost O(kd−ε) for d-Hitting Set unless coNP ⊆ NP/ poly.

Proof. Let us assume that we have a protocol P of cost O(kd−ε) for

d-Hitting Set. Let L denote 3-SAT and let φ1, . . . , φt(n) be instances

of 3-SAT of length at most n. In Theorem 20.8, we gave a weak cross-

composition of dimension d from L to d-Hitting Set. In particular, the

size of the parameter in the constructed instance of d-Hitting Set was

O(n3t1/d). By applying this polynomial time reduction and running the

protocol P for d-Hitting Set on the instance obtained after reduction,

we obtain a protocol for OR(L), whose cost is

O((n3 · t(n)
1
d)d−ε).

Since (d− ε) < d, the last expression is bounded by O(t(n)) for a poly-

21.3 Lower bounds for Point Line Cover 445

nomial t(n) with a sufficiently large exponent. Theorem 21.3 then shows

that L is in coNP, which is equivalent to coNP ⊆ NP/ poly.

Let us note that by the above discussion on conondeterministic pro-

tocols, Theorem 21.4 holds even when the first player is conondetermin-

istic.

21.3 Lower bounds for Point Line Cover

We have earlier seen that Vertex Cover admits a kernel with at most

2k vertices and O(k2) edges and thus it admits a kernel of size O(k2).

We also showed that Vertex Cover does not admit any kernel or

compression of bitsize O(k2−ε) for any ε > 0 unless coNP ⊆ NP/ poly

(Theorem 20.4). Observe that graphs with m edges (and no isolated

vertices) can be represented with O(m logm) bits. Thus, if we have a

kernel with O(k2−ε) edges then it would imply that we have kernel of size

O(k2−ε′) and thus Vertex Cover does not admit a kernel withO(k2−ε)
edges. One can similarly show that there is no kernel for Vertex Cover

with at most O(k1−ε) vertices.

However, besides Vertex Cover, there are not so many known lower

bounds on “specific parts of kernels” matching the known upper bounds.

For example, we know that d-Hitting Set admits a kernel with uni-

verse size O(kd−1) and total bitsize O(kd). However, the lower bound

kd−ε on the size of the kernel rules out only a possibility of a kernel

with the universe size O(k1−ε). So there is still a large gap between he

known upper and lower bounds on the size of the universe in a kernel

for d-Hitting Set. A similar situation occurs for many other problems,

including Feedback Vertex Set and Odd Cycle Transversal.

However, we will now see how a simple strategy can actually be used

to derive a non-trivial lower bound on part of the input for a specific

problem. Our example is the Point Line Cover problem. Recall that

in this problem, we are given a set of n points P in the plane, and a

positive integer k. The task is to decide whether there is a set of at most

k lines in the plane that cover all the points in P.

In the beginning of this book, we gave a very simple kernel for this

problem with at most k2 points. Now we show a lower bound matching

this upper bound. That is, we address the question of whether there

exists a kernel with k2−ε points for some ε > 0. It is not hard to show,

by the PPT reduction from Vertex Cover, that Point Line Cover

446 Extending distillation

is unlikely to have a kernel of bitsize k2−ε for ε > 0. However, ruling out

a kernel with k2−ε points requires new ideas.

In what follows, we give an outline of an argument that shows that

unless coNP ⊆ NP/ poly, there is no kernel for Point Line Cover with

less than k2−ε points for some ε > 0. We will use the following strategy.

(A) Obtain a lower bound on the size/cost of ker-

nel/compression/protocol. For Point Line Cover, we show

that it admits no oracle communication protocol of cost O(k2−ε)
unless coNP ⊆ NP/ poly.

(B) Obtain a kernel/compression/protocol in the parameter for which we

want to prove the lower bound. For Point Line Cover, we give a

an oracle communication protocol of cost O(n log n) which can decide

instances with n points.

Finally, compare the bounds in (A) and (B) to get the desired lower

bound on the parameter in question. In particular, the existence of a

kernel with O(k2−ε) points for Point Line Cover combined with (B)

would contradict (A).

We start with a size bound, for which the following lemma will be

useful. The proof of Lemma 21.5 is based on a polynomial parameter

transformation from Vertex Cover to Point Line Cover that maps

k to 2k. We do not provide this proof here.

Lemma 21.5 (Kratsch et al. (2016)). There is a polynomial-time re-

duction from Vertex Cover to Point Line Cover which maps in-

stances (G, k) of Vertex Cover to equivalent instances (P, 2k) of

Point Line Cover.

Let us remind that by Theorem 20.4, Vertex Cover parameterized

by k does not admit a polynomial compression with bitsize O(k2−ε), un-

less coNP ⊆ NP/ poly for any ε > 0. Hence by Lemma 21.5, Point Line

Cover does not admit a polynomial compression with bitsize O(k2−ε)
as well. But this lower bound does not rule out the existence of a kernel

for Point Line Cover with O(k2−ε) points. Indeed, the best-known

polynomial-time encoding of an arbitrary Point Line Cover instance

with n points requires roughly n2 bits. Thus the lower bound O(k2−ε)
on the bitsize provides us only with an O(k1−ε) lower bound on the

number of points.

21.3 Lower bounds for Point Line Cover 447

Theorem 21.6. Let ε > 0. The Point Line Cover problem ad-

mits no oracle communication protocol of cost O(k2−ε) for deciding in-

stances (P, k), unless coNP ⊆ NP/ poly.

Proof. For a contradiction, assume that Point Line Cover admits

an oracle communication protocol P of cost O(k2−ε) that decides any

instance (P, k). We will use the communication protocol P to design a

protocol for Vertex Cover of the same cost. Given an instance (G, k)

of Vertex Cover, we first apply Lemma 21.5 and obtain an instance

(P, 2k) of Point Line Cover such that G has a vertex cover of size k if

and only if 2k lines cover all the points in P. Now we apply P on (P, 2k)

and obtain a protocol of cost O(k2−ε) for Vertex Cover. However, by

Theorem 21.4, we know that Vertex Cover does not admit a protocol

of cost O(k2−ε) unless coNP ⊆ NP/ poly. This completes the proof.

Theorem 21.6 proves the requirement of (A). If we could somehow

show that Point Line Cover admits an oracle communication proto-

col of cost O(n(log n)O(1)) on n-points instances, then that would imme-

diately imply that unless coNP ⊆ NP/ poly there is no kernel for Point

Line Cover with less than k2−ε points for some ε > 0. Next we outline

such an oracle communication protocol for Point Line Cover.

Informally, the idea of the communication protocol we will describe

later is based on the following generic idea. Let L ⊆ {0, 1}∗ denote a

language. Suppose that we are able to group all strings of length n into

some f(n) classes such that any two strings in the same class either both

belong to L or both do not belong to L. Let Z denote a set of size f(n)

containing a representative from each equivalence class and furthermore

let us assume that the set Z is computable. Now one can use the set Z

to obtain an oracle communication protocol for L of cost O(log f(n)). In

this protocol, the second player (Bob) wants to know the input the first

player (Alice) is holding. Towards this, Alice and Bob do as follows.

Given an input x, Alice computes the representative y contained in the

set Z such that x and y belong to the same class. Bob computes the set

Z and arranges them in the lexicographical order. Now, Bob find the

string y Alice is holding by doing a binary search on Z. That is, when

Bob sends an input z, Alice, compares it with her string and returns

whether her string is equal to z, larger than z or smaller than z. This can

be conveyed in a constant number of bits, and thus in O(log f(n)) bits

Bob can know the string Alice is holding. Once Bob knows the string,

it just solves it and returns Yes or No accordingly. This communication

protocol has cost O(log f(n)).

448 Extending distillation

We will show that, essentially, there are at most nO(n) distinct inputs

on n points for Point Line Cover. We assume the presence of an

arbitrary but fixed Cartesian coordinate system. All geometric objects

are referenced in the context of this coordinate system. We use px and

py to denote the x and y coordinates, respectively, of a point p. A set of

points in the plane is said to be in general position if no three of them

are collinear; a set of points which is not in general position is said to

be degenerate. For two points p 6= q in the plane, we use pq to denote

the unique line in the plane which passes through p and q; we say that

the line pq is defined by the pair p, q.

Let a, b, c be three points in the plane. We say that the orientation

of the ordered triple 〈a, b, c〉 is +1 if the points lie in counter-clockwise

position, −1 if they lie in clockwise position and 0 if they are collinear.

Formally, let

M(〈a, b, c〉) =

1 ax ay
1 bx by
1 cx cy

 .

Then, orientation(〈a, b, c〉) = sgn(detM(〈a, b, c〉)) where sgn is the sign

function and det is the determinant function. Note that the determinant

above is zero if and only if the rows are linearly dependent, in which

case, without loss of generality, 〈1, ax, ay〉 = λ〈1, bx, by〉 + µ〈1, cx, cy〉.
Comparing the first coordinates on both sides of the inequality, we see

that µ = 1− λ, which is equivalent to saying that one of the points is a

convex combination of the other two. Hence orientation(〈a, b, c〉) is zero

exactly when a, b, and c are collinear.

Let P = 〈p1, · · · , pn〉 be an ordered set of points, where pi = (xi, yi) =

P[i]. Denote by
(

[n]
3

)
the set of ordered triples 〈i, j, k〉 where i < j <

k and i, j, k ∈ [n]. Define σ :
(

[n]
3

)
7→ {+1, 0,−1} to be the function

σ(〈i, j, k〉) = orientation(pi, pj , pk). The function σ is called the order

type of P. Observe that the order type of a point set depends on the

order of points and not just on the set of points. Two point sets P,Q
of the same size n are said to be combinatorially equivalent if there

exist orderings P ′ of P and Q′ of Q such that the order types of P ′ and

Q′—which are both functions of type
(

[n]
3

)
7→ {+1, 0,−1}—are identical.

Otherwise we say that P and Q are combinatorially distinct. If two order

types come from combinatorially equivalent (distinct) point sets, we call

the order types combinatorially equivalent (distinct).

It is not difficult to see that combinatorial distinction is a correct cri-

21.3 Lower bounds for Point Line Cover 449

terion for telling non-equivalent instances of Point Line Cover apart.

Formally, we prove the following.

Lemma 21.7. Let (P, k), (Q, k) be two instances of Point Line Cover.

If the point sets P,Q are combinatorially equivalent, then (P, k) and

(Q, k) are equivalent instances of Point Line Cover.

Proof. Let P,Q be combinatorially equivalent, let |P| = |Q| = n, and

let P ′,Q′ be orderings of P and Q, respectively, with identical order

types. Observe first that the combinatorial equivalence provides us with

a natural bijection π : P 7→ Q, defined as follows. Let p ∈ P, and let

i ∈ [n] be such that P ′[i] = p. Then π(p) = Q′[i].
For any subset T ⊆ P, let π(T) denote the set {π(t) : t ∈ T}. Let

S ⊆ P be collinear. For any triple a, b, c ∈ π(S), we have that

orientation(〈a, b, c〉) = orientation(〈π(a), π(b), π(c)〉) = 0,

where the first equality follows from the combinatorial equivalence of

P and Q and the second equality follows from the collinearity of every

triple of points in S. This implies that every triple of points in π(S) are

collinear, which is equivalent to saying that π(S) is a collinear subset of

Q. Similarly, since π is a bijection, if π(S) is collinear for some S ⊆ P,

then S is also collinear. Thus, S is a collinear subset of P if and only if

π(S) is a collinear subset of Q.

Let (P, k) be a yes-instance, and let L be a set of at most k lines

which cover all points in P. Without loss of generality, each of the lines

in L passes through at least two points in P since we can always replace

a line through a single point by a line through two or more points. For

each ` ∈ L, denote by S` the subset of points of P that ` covers. Since S`
is collinear, so is π(S`) and thus we can define `′ to be the line through

π(S`). Then, L′ = {`′ : ` ∈ L} covers Q since for every q ∈ Q there is

line ` ∈ L that covers π−1(q). This implies that (Q, k) is a yes-instance.

Again, since π is a bijection, we have that if (Q, k) is a yes-instance,

then (P, k) is a yes-instance. Thus, (P, k) is a yes-instance if and only if

(Q, k) is a yes-instance.

We are interested in order types is because of the following lemma,

which we state without the proof.

Lemma 21.8 (Alon (1986)). There are at most nO(n) combinatorially

distinct order types defined by n points in R2. Furthermore, there exists

an algorithm which enumerates, for each n ∈ N, all order types defined

by n points in the plane.

450 Extending distillation

Now using Lemmata 21.7 and 21.8, we are ready to describe the de-

sired oracle communication protocol for Point Line Cover.

Lemma 21.9. There is an oracle communication protocol of cost O(n log n)

for deciding instances of Point Line Cover with n points.

Proof. We describe the claimed oracle communication protocol for de-

ciding Point Line Cover instances. Alice and Bob both use the

following scheme to represent order types as strings over the alphabet

{+1, 0,−1}. Recall that the order type of an ordered set of n points

P = 〈1, . . . , n〉 is a certain function σ :
(

[n]
3

)
7→ {+1, 0,−1}. To form the

string representing σ, we first arrange the set
(

[n]
3

)
in increasing lexico-

graphic order to get a list L. Then we replace each x ∈ L by σ(x). This

gives us the desired string; we denote it the Order Type Representation

of the ordered set, or OTR for short. Observe that each OTR can be

encoded using O(n3) bits.

From Lemma 21.8 we know that the number of combinatorially dis-

tinct order types of n-point sets is nO(n). We use this in the following

protocol to decide Point Line Cover.

(i) Alice sends the value n of the number of points in the input set to

Bob in binary encoding.

(ii) Alice fixes an arbitrary ordering of the input point set. She then

computes the OTR of this ordered set.

(iii) Bob generates a list of all nO(n) possible order types; by Lemma 21.8

this is a computable task. He then computes the OTRs of these order

types and sorts them in lexicographically increasing order.

(iv) Alice and Bob now engage in a conversation where Bob uses binary

search on the sorted list to locate the OTR which Alice holds. Bob

sends the median OTR M in his list to Alice. Alice replies, in two

bits, whether the OTR she holds is smaller, equal to, or larger than M

in lexicographic order. If the answer is not “equal”, Bob prunes his

list accordingly, throwing out all OTRs which cannot be the one held

by Alice. By repeating this procedure O(log(nO(n))) = O(n log n)

times, Bob is left with a single OTR n which is identical to the one

held by Alice.

(v) Bob now computes the size of a smallest point-line cover of any point

set which has the order type n, and sends this number to Alice.

Alice compares this number with the input k and answers Yes or

No accordingly.

It is not difficult to see that Alice can do her part of this procedure in

21.4 Lower bounds using co-nondeterminism 451

polynomial time, and that all tasks which Bob has to do are computable.

The total cost of the protocol is log n + O(n log n) = O(n log n), as

claimed.

Theorem 21.10. Let ε > 0. Unless coNP ⊆ NP/ poly, there is no

polynomial-time algorithm that reduces every instance (P, k) of Point

Line Cover to an equivalent instance with O(k2−ε) points.

Proof. By Lemma 21.9, such a kernelization would directly give an oracle

communication protocol for Point Line Cover of cost O(k2−ε′): Given

an instance (P, k), Alice applies the (polynomial-time) kernelization that

generates an equivalent instance with O(k2−ε) points. Then she proceeds

by using the protocol from the proof of Lemma 21.9.

As we have already showed in Theorem 21.6, there is no O(k2−ε′) pro-

tocol for Point Line Cover for any ε′ > 0, unless coNP ⊆ NP/ poly.

This completes the proof.

21.4 Lower bounds using co-nondeterminism

Let us also mention the usage of co-nondeterminism to derive lower

bounds. Here, we only state (without details) the relevant definition,

theorem to serve as a tool for proofs, and an example of an application.

Definition 21.11 (Co-nondeterministic OR-cross-composition). Let L ⊆
Σ∗ be a language, letR be a polynomial equivalence relation and let Q ⊆
Σ∗×N be a parameterized problem. We say that L co-nondeterministically

cross-composes intoQ (with respect toR) if there is a co-nondeterministic

algorithm A which, given t strings x1, x2, . . . , xt belonging to the same

equivalence class of R, takes time polynomial in
∑t
i=1 |xi| and outputs

on each computation path an instance (x∗, k∗) ∈ Σ∗ ×N such that the

following conditions hold:

(i) k∗ is bounded by to(1)(maxti=1 |xi|)O(1).

(ii) If at least one instance xi is a yes-instance, then all computation

paths lead to the output of a yes-instance (x∗, k∗).

(iii) Otherwise, if all instances xi are no-instances, then at least one com-

putation path leads to the output of a no-instance.

The proof is along the similar lines as Theorem 17.8 and it invokes

Theorem 21.3 inside the proof.

452 Extending distillation

Theorem 21.12 (Kratsch (2014)). Let L ⊆ Σ∗ be an NP-hard lan-

guage. If L co-nondeterministically cross-composes into a parameterized

problem Q, then Q does not admit a polynomial compression, unless

coNP ⊆ NP/ poly.

Using Theorem 21.12, one can show the following theorem.

Theorem 21.13 (Kratsch (2014)). Ramsey does not admit a polyno-

mial compression unless coNP ⊆ NP/ poly.

21.5 AND-distillations and AND-compositions

A very natural question is whether the results on distillations and com-

positions obtained in the previous chapters are valid if one would like to

substitute OR with AND. While the answer to this question is yes, the

proofs for AND are much more complicated.

Let us define a t-bounded AND-distillation algorithm by replacing the

second condition of a distillation algorithm (Definition 17.1) with the

requirement that the output string y belongs to R if and only if all the

input strings xi belong to L. The following theorem is the analogue of

Theorem 17.3 for OR-distillation. However, the proof of this theorem is

much more complicated.

Theorem 21.14 (Drucker (2015)). Let L,R ⊆ Σ∗ be two languages. If

there exists a polynomially-bounded AND-distillation of L into R, then

L ∈ coNP/ poly.

Having Theorem 21.14 at hand, one can use it similarly to Theo-

rem 17.3. In particular, AND-cross-composition is defined by replacing

condition (ii) of cross-composition by requiring that the resulting in-

stance (y, k) belongs to Q if and only if all the input strings xi belong

to L. The proof of Theorem 17.8 is oblivious to whether we use the OR

function or the AND function; the outcome of the constructed distilla-

tion will be just an instance of AND(R) instead of OR(R). Therefore,

by replacing the usage of Theorem 17.3 with that of Theorem 21.14, we

obtain the following result.

Theorem 21.15. Assume that an NP-hard language L AND-cross-

composes into a parameterized language Q. Then Q does not admit a

polynomial compression, unless NP ⊆ coNP/ poly.

21.5 AND-distillations and AND-compositions 453

As an example of a problem admitting a trivial AND-cross-composition

take the Treewidth problem: given a graph G and a parameter k, ver-

ify whether tw(G) ≤ k. Since treewidth of a disjoint union of a fam-

ily of graphs is equal to the maximum over the treewidths of these

graphs, the disjoint union yields an AND-cross-composition from the

unparameterized version of Treewidth into the parameterized one.

Computing the treewidth of a graph is NP-hard, so by Theorem 21.15

we infer that Treewidth does not admit a polynomial kernel, unless

NP ⊆ coNP/ poly. The same reasoning can be performed for other graph

parameters that behave similarly under the disjoint union, for instance

for pathwidth, cut-width and rankwidth.

Exercises

Problem 21.1. Show that if L ⊆ {0, 1}∗ × N has a kernel of size f(k), then L has
an oracle communication protocol of cost f(k).

Problem 21.2. Use Theorem 21.15 to show that Edge Clique Cover does not
admit a polynomial kernel.

Bibliographic notes

Our exposition of Oracle Communication Protocol follows the work of

Dell and van Melkebeek (2014). The bound for Point Line Cover

follows the paper of Kratsch et al. (2016). Lemma 21.8 is due to Alon

(1986). The proof that Ramsey does not admit a polynomial kernel can

be found in Kratsch (2014). Theorem 21.14 is due to Drucker (2015). A

shorter proof of this theorem is announced by Dell (2014).

Part FOUR

BEYOND KERNELIZATION

22

Turing kernelization

In this chapter we discuss Turing kernelization. We define what a Turing ker-

nel is and give examples of such kernels for Clique (vc), Max Leaf Sub-

tree, and Planar Longest Cycle.

In Part III we discussed the framework for ruling out the existence

of polynomial kernels for many parameterized problems. However, such

lower bounds are definitely not the end of the story. Even if we do not

have a polynomial kernel, an algorithm producing a polynomial (in the

input length) number of outputs of size polynomial in the parameter and

such that the original instance can be solved once all of the output in-

stances are solved, would be still a desirable option from a practitioner’s

point of view. In other words, even if it turns out to be impossible to

reduce an input to a single small equivalent input, the following type

of preprocessing would still be desirable: a preprocessing algorithm that

“splits” the input (x, k) into poly(|x|) instances of size poly(k), such

that once their answers are known, the answer to (x, k) can efficiently

be found.

In Section 17.3.2, we discussed the problem of finding a clique in a

graph G where the parameter is the vertex cover number of G. More

precisely, in the Clique (vc) problem we are given a graph G, integers

k, ` and a vertex cover S ⊆ V (G) of G such that |S| = k. The parameter

is k and the task is to decide whether G has a clique on ` vertices. As

we have already seen in Section 17.3.2, Clique (vc) does not admit a

polynomial compression unless coNP ⊆ NP/ poly.

However, the set I = V (G) \ S is an independent set, and hence no

clique of G can have more than one vertex from I. Thus if C is a clique

457

458 Turing kernelization

of size ` in an n-vertex graph G, then at least `− 1 vertices of C should

be in S. Without loss of generality, the set I can be assumed to be

non-empty. Therefore, C should be contained in at least one of the |I|
sets {v} ∪ S, where v ∈ I. Moreover, for every v ∈ V (G), the set S is

also a vertex cover of the induced subgraph G[S ∪{v}]. This yields that

(G,S, k, `) is a yes-instance of Clique (vc) if and only if at least one of

the |I| instances (G[S ∪ {v}], S, k, `), v ∈ I, is a yes-instance of Clique

(vc).

To summarize, Clique (vc) exhibits an interesting behavior. While

the problem is unlikely to admit a polynomial kernel, there is a polyno-

mial time algorithm producing at most n instances with at most k + 1

vertices each, such that the original instance is a yes-instance if and only

if at least one of the output instances is a yes-instance.

The type of “kernelization” we have seen for Clique (vc) can be

formalized as follows. Suppose that we have an oracle which can answer

“short” questions: For a parameterized problem Q and a function f , the

oracle can answer if a given instance of size at most f(k) belongs to Q or

not. Then, a Turing kernelization is an algorithm solving the problem in

polynomial time and by making use of a polynomial number of queries

to the oracle. More precisely,

Definition 22.1 (Turing kernelization). LetQ be a parameterized prob-

lem and let f : N→ N be a computable function. A Turing kernelization,

or a Turing kernel, for Q of size f is an algorithm that decides whether

a given instance (x, k) ∈ Σ∗ × N belongs to Q in time polynomial in

|x|+k, when given access to an oracle that decides membership in Q for

any instance (x′, k′) with |x′|, k′ ≤ f(k) in a single step.

As in the case of normal kernels, we say that a Turing kernel is poly-

nomial if f is a polynomial function. Few remarks are in order. First,

normal polynomial kernels are polynomial Turing kernels too. This is

just because in polynomial time they produce an instance that can be

decided in one oracle call. Secondly, a Turing kernelization is an adaptive

algorithm: its action and queries can depend on the answers to previous

queries.

With this definition at hand, our discussion about Clique (vc) can

be summarized in the following theorem.

Theorem 22.2. Clique (vc) admits a Turing kernel of size O(k2).

22.1 Planar Longest Cycle 459

Proof. For a given instance (G,S, k, `) of Clique (vc), for every v ∈
V (G) we construct an instance (G[S∪{v}], S, k, `) of Clique (vc). Thus

we end up with at most |V (G)| instances and (G,S, k, `) is a yes-instance

if and only if at least one of the produced instances is a yes-instance.

Since the size of each of the new instances is O(k2), the oracle can make

decisions on instances of such size. Then, Turing kernelization routine

makes at most |V (G)| calls to the oracle. If the answer to at least one

call is yes, we return yes. Otherwise we return no.

22.0.1 Max Leaf Subtree

Our next example is Max Leaf Subtree. Let us remind that this is

the problem of deciding whether a given graph G contains a tree with at

least k leaves. This problem does not admit a polynomial compression,

see Problem 22.5 . On the other hand, by Theorem 3.8, when the input

graph G is connected, the complexity of the problem changes and Max

Leaf Subtree admits a polynomial kernel. This allows us to construct

a Turing kernel for this problem.

Theorem 22.3. The Max Leaf Subtree problem admits a Turing

kernel of size O(k2).

Proof. Let (G, k) be an instance of Max Leaf Subtree, where G is an

n-vertex graph and C1, . . . , Cr are the connected components of G. For

each of the connected components Ci, we invoke Theorem 3.8. As the

result, we obtain at most r ≤ n instances (C ′i, k
′), where |V (C ′i)| = O(k)

and k′ ≤ k. Moreover, (G, k) is a yes-instance if and only if at least

one (C ′i, k
′) is a yes-instance. Since the size of each of the new instances

is O(k2), it can be processed by the corresponding oracle. Then Turing

kernelization routine makes at most r calls to an oracle for each instance

(C ′i, k
′). If any of these answers is positive, then we can return yes, and

otherwise it is safe to return no.

22.1 Planar Longest Cycle

In this section we construct a Turing kernelization for Planar Longest

Cycle. The problem does not admit a polynomial compression unless

coNP ⊆ NP/ poly, see Problem 22.6. This kernel differs from the Tur-

ing kernels we considered before. The kernelization algorithms for Max

Leaf Subtree and Clique (vc) did not exploit the full power of the

460 Turing kernelization

definition of a Turing kernel—we did not fully take advantage of the

presence of an oracle (which is able to answer queries about instances

of size polynomial in the parameter) in the following sense. Our queries

were independent, while a Turing kernel can work adaptively, formulat-

ing its next question based on the answers it has received so far. Our

last example of a Turing kernelization takes the full advantage of the

oracle.

We say that a connected graph G is 3-connected if for every set S ⊆
V (G) of size at most 2, G−S is connected. Let us remark that we do not

exclude the option that G can have at most three vertices. The crucial

property of 3-connected planar graphs is that they have sufficiently large

cycles. More precisely,

Theorem 22.4 (Chen and Yu (2002)). Every n-vertex 3-connected pla-

nar graph contains a cycle of length at least nlog3 2.

From the perspective of kernelization, Theorem 22.4 shows that Pla-

nar Longest Cycle admits a trivial polynomial kernel on 3-connected

graphs: if the input graph has at least klog2 3 vertices, then it contains

a cycle of length at least k. The idea behind the Turing kernelization is

as follows.

For a planar graph G, we construct in polynomial time a tree decom-

position (T, χ) of G such that

• The intersection of every two different bags of the decomposition is of

size at most 2.

• For every bag χ(a) of the decomposition, if we contract all edges of G

except the edges with two endpoints in χ(a), then the resulting minor

of G is 3-connected.

By Theorem 22.4, if there is a bag of (T, χ) with more than klog2 3

vertices, then G is a yes-instance of Planar Longest Cycle. (If a

minor of G contains a cycle of length at least k, so does G.) When every

bag of (T, χ) is of size at most klog2 3, we run an algorithm very similar to

the dynamic programming algorithms on graphs of bounded treewidth

we discussed in Section 14.4. The most crucial difference is that instead

of going through all possible subsets of each of the bags, we send a query

to the oracle.

22.1 Planar Longest Cycle 461

Let us formalize first what is the tree decomposition we want to con-

struct.

For two adjacent nodes a, b of T , the set of vertices χ(a) ∩ χ(b) is

called the adhesion of edge ab.

Definition 22.5 (Torso of a tree decomposition). For a node a ∈ V (T)

of a tree decomposition (T, χ), the torso of a is the graph Ha obtained

from G[χ(a)] by adding all the edges uv such that u, v ∈ χ(a) ∩ χ(b),

where b 6= a.

In other words, let a1, . . . , ap be the nodes of T adjacent to a. Then

we construct Ha from G[χ(a)] by turning each of the sets χ(a) ∩ χ(ai)

into a clique. Let us note that a torso is not necessary a subgraph or a

minor of the graph G.

Definition 22.6 (Separators and minimal separators). For a pair of

vertices u, v from the same connected component of a graph G, a ver-

tex set S is a (u, v)-separator if u, v /∈ S and u and v are in different

connected components of G−S. A (u, v)-separator is minimal, if it does

not contain any other (u, v)-separator as a proper subset. Finally, a set

S is a minimal separator if S is a minimal (u, v)-separator for some

u, v ∈ V (G).

Let us remark that a minimal separator S can properly contain an-

other minimal separator S′. Indeed, this can happen if S′ separates other

pair of vertices than S.

The following theorem is a reformulation of the classical result of Tutte

(1966).

Theorem 22.7 (Tutte (1966)). Every graph G has a tree decomposition

(T, χ) such that

• each torso of (T, χ) is 3-connected and is a minor of G,

• for every pair of nodes a, b ∈ V (T), a 6= b, |χ(a) ∩ χ(b)| ≤ 2.

By the result of Hopcroft and Tarjan (1973) this decomposition can

be computed in linear time.

We refer a tree decomposition satisfying conditions of Theorem 22.7

as a Tutte decomposition.

Definition 22.8. By Planar Longest Cycle oracle, we mean an

oracle that, for a given planar graph G with at most k + (3k + 1)klog2 3

vertices, decides if G contains a cycle of length at least k.

462 Turing kernelization

We remark that in the definition of Planar Longest Cycle oracle,

one can change requirement on the size of the graph to any polynomial

of sufficiently high degree. We selected the polynomial to be k + (3k +

1)klog2 3 in the definition just because this is the minimum requirement

for the proof of Theorem 22.10 to go through. Similarly, we use (3k +

1)klog2 3 in the auxiliary Lemma 22.9 in order to be able to plug it in

later in the proof of Theorem 22.10.

Lemma 22.9. Let G be a planar graph with at most (3k + 1)klog2 3

vertices and containing no cycle of length at least k. Let u, v be a pair of

adjacent vertices in G. Then the maximum length of a uv-path in G can

be identified in at most k calls to the Planar Longest Cycle oracle.

Proof. We prove the lemma by the following self-reduction arguments.

Because u and v are adjacent and there is no k-cycle in G, we conclude

that there is no uv-path in G of length k − 1 or more.

We construct graph G1 by adding to G a new vertex w and making

it adjacent to u and v. Notice that G is still planar and has at most

(3k + 1)klog2 3 + 1 vertices. We query the Planar Longest Cycle

oracle about G1. If the answer is affirmative—there is a cycle of length

at least k in G1—then this cycle should pass through w and is of length

exactly k. Then the graph G, in this situation, has a uv-path of length

k − 2 and does not have a uv-path of length at least k − 1.

Now it should be clear how to proceed. We continue with this construc-

tion for each i ∈ {1, . . . , k− 1}. Specifically, the graph Gi is constructed

from G by adding i new vertices w1, w2, . . . , wi and connecting u and v

by a path uw1w2 · · ·wiv of length i+ 1. Again, Gi is planar and has at

most (3k+ 1)klog2 3 + i ≤ (3k+ 1)klog2 3 +k vertices. Moreover, if Gi has

no k-cycle, then there is no uv-path in G of length at least k − i− 1.

For i = 1 to k − 1, we ask the oracle whether Gi contains a k-cycle.

Then for the minimum i such that the oracle confirms the existence of

a k-cycle in Gi, we conclude that the maximum length of a uv-path in

graph G is k − i− 1.

We are ready to give the Turing kernelization for Planar Longest

Cycle.

Theorem 22.10. Planar Longest Cycle admits a polynomial Tur-

ing kernel.

Proof. We prove the theorem by providing a polynomial time algorithm

that is using O(kn) queries to the Planar Longest Cycle oracle.

22.1 Planar Longest Cycle 463

Let us observe that every cycle in a graph is contained entirely in a

2-connected component of that graph. We can use the linear time algo-

rithm of Hopcroft and Tarjan to compute the 2-connected components

of the input planar graph G, and solve the problem on each of them

separately.

From now on, we assume that G is 2-connected. We use Theorem 22.7

to construct a Tutte decomposition (T, χ) of G. By Theorem 22.7, every

torso Ha of (T, χ), a ∈ V (T), is a minor of G (and hence planar), and 3-

connected. Therefore, if there is a torso Ha with at least klog2 3 vertices,

then by Theorem 22.4, Ha contains a cycle with at least k vertices.

Because every torso is a minor of G, this implies that G also contains a

cycle with at least k vertices.

Let us note that because G is 2-connected, for every pair of adjacent

nodes a and b of T , the size of χ(a) ∩ χ(b) is exactly 2. Let {u, v} =

χ(a)∩ χ(b). In each torso Ha of size more than 2 and containing {u, v},
these vertices are adjacent. Indeed, let x be a vertex of Ha different from

u and v, and let y be a vertex of G such that x and y are in different

connected components Cx and Cy of G−{u, v}. Because the graph G is

2-connected, there are paths Pu and Pv from x to y such that Pu avoids

u and Pv avoids v. The union of this paths contains a cycle C passing

through u and v. Moreover, V (C) ∩ Cy is a uv-path with all internal

vertices outside Cx, and thus u and v should be adjacent in the torso

Ha.

We root the tree at some node r and proceed bottom-up from leaves

to r. For a node a ∈ V (T) we will refer to the subtree of T rooted at a

by Ta. We define

Va =
⋃

a∈Va
χ(a).

For each leaf a ∈ V (T) we use the oracle to compute the following.

We query the oracle if the torso Ha contains a cycle of length at least

k. If the answer is yes, we conclude that G contains a cycle of length

at least k and stop. Otherwise, let b be the parent of a and let {u, v}
be the adhesion χ(a) ∩ χ(b). Then u and v are adjacent in Ha and by

making use of Lemma 22.9, in at most k calls to the oracle, we compute

in polynomial time the maximum length of a uv-path in Ha.

For a non-leaf node a ∈ V (T), a 6= r, let C = {c1, . . . , c`} be its

set of children and p be its parent node. Let us note that due to the

2-connectivity condition, we have that the size of χ(a)∩χ(ci) is exactly

2 for each 1 ≤ i ≤ `. Suppose inductively that for node a and for each

464 Turing kernelization

of its children ci ∈ C, we computed the maximum length ki of a path

in G[Vci] with the endpoints in the adhesion χ(ci) ∩ χ(a). We also can

assume that ki ≤ k − 2 because otherwise we are able to conclude that

G contains a cycle of length at least k. Since the torso Ha is planar, by

Euler’s formula (Theorem 13.1) there are at most 3 · |V (Ha)| ≤ 3klog2 3

edges in Ha. Because every pair of vertices from the same adhesion is

adjacent, we have that ` ≤ 3klog2 3.

We construct an auxiliary graph Fa from G[χ(a)] by adding for every

child ci ∈ C a path of length ki connecting the pair of vertices from

χ(a) ∩ χ(ci). The properties of the auxiliary graph Fa are summarized

in the following claims.

Claim 22.11. Graph Fa is a subgraph of G[Va] and thus it is planar.

Indeed, graph Fa can be obtained from G[Va] by deleting for every

child ci of a all edges except edges of a path of length ki with endpoints

in χ(a) ∩ χ(ci).

Claim 22.12. Graph Fa has at most 3 · klog2 3k vertices.

This claim follows because Fa is formed from the klog2 3-vertex graph

Ha by adding ` ≤ 3klog2 3 paths, each of length at most k − 2. Thus it

has at most klog2 3 + 3 · klog2 3(k − 2) ≤ 3 · klog2 3k vertices.

Claim 22.13. There is a cycle of length at least k in G[Va] if and only

if there a cycle of length at least k in Fa.

This is true because the intersection of the longest cycle in G[Va] with

each of the graphs G[Vci] is either empty or of length ki. Thus if G[Va]

contains a cycle of length t, so does Fa. The opposite assertion holds

because Fa is a subgraph of G[Va]

Claim 22.14. Let b be the parent of a in T and {u, v} = χ(a) ∩ χ(b).

If G[Va] has no cycle of length at least k, then the maximum length of

a uv-path in G[Va] is equal to the maximum length of a uv-path in Fa.

The arguments proving this claim are as for Claim 22.13.

Let a be a non-root node, b be its parent and let {u, v} = χ(a) ∩
χ(b). Now assuming that the maximum lengths ki of paths in G[Vci] are

computed, we can in polynomial time, and by making use of at most

k calls to the oracle, correctly decide whether G[Va] contains a cycle

of length at least k, and if the answer is negative then compute the

maximum length of a uv-path in G[Va] as follows:

22.1 Planar Longest Cycle 465

• Construct the auxiliary graph Fa. Since the values ki are known, this

construction takes polynomial time.

• By Claim 22.12, Fa has at most 3·klog2 3k vertices and by Claim 22.11,

it is planar. Thus we can use Lemma 22.9, which in at most k calls

to the oracle, decides in polynomial time whether Fa contains a cycle

of length at least k, and if the answer is negative then compute the

maximum length of a uv-path in Fa. By Claims 22.13 and 22.14, for

both possible outputs, we can make exactly the same conclusion about

G[Va].

Thus by proceeding inductively from leaves to root, we are able to

construct in polynomial time and by making use of O(nk) calls to the

oracle, the graph Fr for the root vertex r. By querying the oracle about

Fr, we decide whether G = G[Vr] contains a cycle of length at least k.

22.1.1 Hardness of Turing kernelization

As of now, there is no known framework for refuting the existence of Tur-

ing kernelizations under standard complexity assumptions. As a mean

to cope with the lack of progress on this subject, a hierarchy for kernel-

ization called the WK-hierarchy was defined by Hermelin et al. (2015),

and some problems were conjectured to be hard for Turing kernelization.

In particular, the class of WK[1]-complete problems includes problems

such as Hitting Set parameterized by the number of sets, Connected

Vertex Cover parameterized by the solution size, and Min-Ones-r-

SAT. All WK[1]-complete problems are equivalent through PPTs, and

it is conjectured that none of these problems admits a polynomial Turing

kernel.

Let us now elaborate more on this hierarchy. Towards the definition

of the WK-hierarchy, we need to consider the following definition.

Definition 22.15. For integers t ≥ 0 and d ≥ 1, the classes of formulas

Γt,d and ∆t,d are defined inductively as follows.

Γ0,d = {λ1 ∧ · · · ∧ λc | c ∈ {1, . . . , d}, λ1, . . . , λc are literals}.
∆0,d = {λ1 ∨ · · · ∨ λc | c ∈ {1, . . . , d}, λ1, . . . , λc are literals}.
Γt+1,d = {∧i∈Iδi | I 6= ∅ is a finite set, δi ∈ ∆t,d for all i ∈ I}.
∆t+1,d = {∨i∈Iδi | I 6= ∅ is a finite set, δi ∈ Γt,d for all i ∈ I}.

In addition, Γt,d-WSAT(k log n) is the problem where, given a formula

466 Turing kernelization

φ ∈ Γt,d with n variables and an integer k, the objective is to decide

whether φ has a satisfying assignment that assigns true to exactly k

variables. Here, the parameter is k log n.

Then, the WK-hierarchy is defined as follows.

Definition 22.16. Let t ≥ 1 be an integer. Then,

WK[t] =
⋃

d∈N
[Γt,d-WSAT(k log n)]≤ppt,

where [L]≤ppt denotes the closure of L under PPTs.

The basic problems complete for this hierarchy are given in the fol-

lowing theorem. Here, Γ−t,d (Γ+
t,d) is the restriction of Γ−t,d to formulas

that contain only negative (resp. positive) literals.

Theorem 22.17 (Hermelin et al. (2015)). Let t ≥ 1 be an integer. Then,

• Γ−1,2-WSAT(k log n) is WK[1]-complete.

• Γ−t,1-WSAT(k log n) is WK[1]-complete for odd t > 1.

• Γ+
t,1-WSAT(k log n) is WK[1]-complete for even t > 1.

Problems that are WK[1]-hard are conjectured not to have polyno-

mial Turing kernels. Among the problems shown to be W[1]-complete,

we have Clique parameterized by k log n (note that parameterization

by k alone would have not made sense for our purpose since then the

problem is W[1]-hard, and our objective is to refute the existence of

polynomial Turing kernels for problems that are in FPT), Min-Ones-

r-SAT with r ≥ 3 parameterized by k, the upper bound on the number

of variables assigned true, Hitting Set parameterized by the number

of sets, Set Cover parameterized by the number of elements, Con-

nected Vertex Cover parameterized by the solution size, Cycle

Packing parameterized by the sought number of cycles, and Steiner

Tree parameterized by the solution size (including the number of ter-

minals). In particular, to prove that a problem is WK[1]-hard, it suffices

to given a PPT from a problem already known to be WK[1]-hard.

Exercises

Problem 22.1. Show that Clique parameterized by the maximum vertex degree
admits a polynomial Turing kernel.

22.1 Planar Longest Cycle 467

Problem 22.2. A graph G is a grid graph if it is an induced subgraph of �t for
some t ∈ N. Show that Longest Path parameterized by the solution size admits a
quadratic Turing kernel on subgraphs of grid graphs.

Problem 22.3. Show that Longest Cycle parameterized by the solution size ad-
mits a quadratic Turing kernel on subgraphs of grid graphs.

Problem 22.4. A disk graph G is the intersection graph of a set of disks D in the
(Euclidean) plane. That is, there is a bijective function f : V (G) → D such that
any two vertices are adjacent in G if and only if their disks f(u) and f(v) intersect.
It is known that for any clique C in G, there exist O(1) points in the plane such
that for every vertex v ∈ V (C), it holds that f(v) contains at least one of these
points (Har-Peled et al., 2018).

Show that Clique parameterized by the solution size admits a linear Turing kernel
on disk graphs (where the geometric representation is given as input).

Problem 22.5. Show that the Max Leaf Subtree problem, studied in the chapter,
does not admit a polynomial compression with parameter k unless coNP ⊆ NP/ poly.

Problem 22.6. Show that the Planar Longest Cycle, studied in the chapter, does
not admit a polynomial compression with parameter k unless coNP ⊆ NP/poly.

Bibliographic notes

The formal foundation for Turing kernelization is the concept of ora-

cle Turing machines (see Flum and Grohe (2006)), where we constrain

the power of the oracle to being able to answer only queries that are

short in terms of the parameter. The definition of Turing kernelization

is from Binkele-Raible et al. (2012).

The first example of Turing kernels of polynomial size were obtained

for the Directed Max Leaf problem by Binkele-Raible et al. (2012),

see also (Daligault and Thomassé, 2009) for further improvements. Cur-

rently, the smallest known kernel for Max Leaf Subtree on connected

graphs has at most 3.75k vertices (Estivill-Castro et al., 2005).

The Turing kernel for Longest Path is due to Jansen (2017), who

was first to exploit the adaptiveness in the definition of Turing ker-

nelization. In this paper, it was also shown that Longest Path ad-

mits a polynomial Turing kernel on bounded-degree and K3,t-minor-free

graphs. These results were significantly extended to classes of graphs

excluding a fixed graph as a topological minor by Jansen et al. (2017).

Our exposition of the theorem of Tutte (1966) follows Jansen (2017).

The WK-hierarchy is defined in (Hermelin et al., 2015), and we refer

interested readers to that work for further details on it. In this regard,

we remark that it is not known whether Longest Path WK[1]-hard.

Finally, we point out a discussion on Turing kernelization by Weller

468 Turing kernelization

(2013), and refer to the work by Jansen and Marx (2015) for Turing ker-

nels for several subgraph isomorphism and packing problems. Exercises

22.2, 22.3 and 22.4 are due to Bart M.P. Jansen (private communica-

tion).

23

Lossy kernelization

All the kernels we have seen in this book are lossless. That is, an input in-

stance is a yes-instance if and only if the reduced instance is a yes-instance.

What about kernels that are “lossy” in nature? In these kind of kernels, as

before, given an instance we would like the kernelization algorithm to output

a reduced instance of size polynomial in the parameter; however we relax the

notion of equivalence in the following way. Given a solution to the reduced

instance (some approximate solution, say a c-approximate solution) we return

a solution to the original instance that is an αc-approximate solution to the

original instance. The factor α is the loss we incurred while going from reduced

instance to the original instance. Observe that the kernel lower bounds we have

shown for various problems no more hold in this setting. In this chapter we

first setup the formal framework to study lossy kernels, and then give lossy

kernels for Connected Vertex Cover, Partial Vertex Cover, Cycle

Packing and Steiner Tree.

Despite the success of kernelization, the basic definition has an impor-

tant drawback: “theoretically it does not combine well with approxima-

tion algorithms or with heuristics”. This is a serious problem since after

all the ultimate goal of parameterized algorithms, or for that matter of

any algorithmic paradigm, is to eventually solve the given input instance.

Thus, the application of a preprocessing algorithm is always followed by

an algorithm that finds a solution to the reduced instance. In practice,

even after applying a preprocessing procedure, the reduced instance may

not be small enough to be solved to optimality within a reasonable time

bound. In these cases one gives up on optimality and resorts to ap-

proximation algorithms or heuristics instead. Thus it is crucial that the

469

470 Lossy kernelization

solution obtained by an approximation algorithm or heuristic when run

on the reduced instance provides a good solution to the original instance,

or at least some meaningful information about the original instance. The

current definition of kernels allows for kernelization algorithms with the

unsavory property that running an approximation algorithm or heuris-

tic on the reduced instance provides no insight whatsoever about the

original instance. In particular, the only thing guaranteed by the defini-

tion of a kernel is that the reduced instance (I ′, k′) is a yes instance if

and only if the original instance (I, k) is. If we have an α-approximate

solution to (I ′, k′) there is no guarantee that we will be able to get an

α-approximate solution to (I, k), or even able to get any feasible solution

to (I, k).

The main reason that the existing notion of kernelization does not

combine well with approximation algorithms is that the definition of a

kernel is deeply rooted in decision problems. The starting point of our

new framework is an extension of kernelization to optimization problems.

This allows us to define α-approximate kernels. Loosely speaking an (α)-

approximate kernel of size g(k) is a polynomial time algorithm that given

an instance (I, k) outputs an instance (I ′, k′) such that |I ′|+ k′ ≤ g(k)

and any c-approximate solution s′ to the instance (I ′, k′) can be turned

in polynomial time into a (c · α)-approximate solution s to the original

instance (I, k) In this chapter we first setup the formal framework to

study lossy kernels and then give lossy kernels for Connected Ver-

tex Cover, Partial Vertex Cover, Cycle Packing and Steiner

Tree.

23.1 Framework

We will be dealing with approximation algorithms and solutions that are

not necessarily optimal, but at the same time relatively “close” to being

optimal. To properly discuss these concepts they have to be formally

defined. Our starting point is a parameterized analogue of the notion of

an optimization problem from the theory of approximation algorithms.

Definition 23.1 (Parameterized optimization problem). A parameter-

ized optimization (minimization or maximization) problem Π is a com-

putable function

Π: Σ∗ × N× Σ∗ → R ∪ {±∞}.

23.1 Framework 471

The instances of a parameterized optimization problem Π are pairs

(I, k) ∈ Σ∗ × N, and a solution to (I, k) is simply a string s ∈ Σ∗, such

that |s| ≤ |I| + k. The value of the solution s is Π(I, k, s). Just as for

“classical” optimization problems, the instances of Π are given as input,

and the algorithmic task is to find a solution with the best possible value,

where best means minimum for minimization problems and maximum

for maximization problems.

Definition 23.2 (Optimum value). For a parameterized minimization

problem Π, the optimum value of an instance (I, k) ∈ Σ∗ × N is

OPTΠ(I, k) = min
s∈Σ∗

|s|≤|I|+k

Π(I, k, s).

For a parameterized maximization problem Π, the optimum value of

(I, k) is

OPTΠ(I, k) = max
s∈Σ∗

|s|≤|I|+k

Π(I, k, s).

For an instance (I, k) of a parameterized optimization problem Π, an

optimal solution is a solution s such that Π(I, k, s) = OPTΠ(I, k).

When the problem Π is clear from context, we will often drop the

subscript and refer to OPTΠ(I, k) as OPT(I, k). Observe that in the

definition of OPTΠ(I, k), the set of solutions over which we are minimiz-

ing/maximizing Π is finite, therefore the minimum or maximum is well

defined. We remark that the function Π in Definition 23.1 depends both

on I and on k. Thus it is possible to define parameterized problems such

that an optimal solution s for (I, k) is not necessarily optimal for (I, k′).
Let us remind that for an instance (I, k), the size of the instance is

|I|+k while the integer k is referred to as the parameter of the instance.

For decision problems “solving” an instance means to determine whether

the input instance is a “yes” or a “no” instance to the problem. Next we

define what it means to “solve” an instance of a parameterized optimiza-

tion problem, and define fixed parameter tractability for parameterized

optimization problems.

Definition 23.3. Let Π be a parameterized optimization problem. An

algorithm for Π is an algorithm that given as input an instance (I, k),

outputs a solution s and halts. The algorithm solves Π if, for every

instance (I, k), the solution s output by the algorithm is optimal for

(I, k). We say that a parameterized optimization problem Π is decidable

if there exists an algorithm that solves Π.

472 Lossy kernelization

Definition 23.4 (FPT optimization problem). A parameterized opti-

mization problem Π is fixed parameter tractable (FPT) if there is an

algorithm that solves Π, such that the running time of the algorithm on

instances of size n with parameter k is upper bounded by f(k)nO(1) for

a computable function f .

We remark that Definition 23.3 differs from the usual formalization of

what it means to “solve” a decision problem. Solving a decision prob-

lem amounts to always returning “yes” on “yes”-instances and “no” on

“no”-instances. For parameterized optimization problems the algorithm

has to produce an optimal solution. This is analogous to the definition

of optimization problems most commonly used in approximation algo-

rithms.

Parameterizations by the value of the solution. At this point it is

useful to consider a few concrete examples, and to discuss the relation-

ship between parameterized optimization problems and decision vari-

ants of the same problem. For a concrete example, consider the Vertex

Cover problem. Here the input is a graph G, and the task is to find a

smallest possible vertex cover of G: a subset S ⊆ V (G) is a vertex cover

if every edge of G has at least one endpoint in S. This is quite clearly

an optimization problem. Indeed, the feasible solutions are the vertex

covers of G and the objective function is the size of S.

In the most common formalization of the Vertex Cover problem as

a decision problem parameterized by the solution size, the input instance

G comes with a parameter k and the instance (G, k) is a “yes” instance if

G has a vertex cover of size at most k. Thus, the parameterized decision

problem “does not care” whether G has a vertex cover of size even

smaller than k, the only thing that matters is whether a solution of size

at most k is present.

To formalize Vertex Cover as a parameterized optimization prob-

lem, we need to determine for every instance (G, k) which value to assign

to potential solutions S ⊆ V (G). We can encode the set of feasible so-

lutions by giving finite values for vertex covers of G and ∞ for all other

sets. We want to distinguish between graphs that do have vertex covers

of size at most k and the ones that do not. At the same time, we want the

computational problem of solving the instance (G, k) to become easier as

k decreases. A way to achieve this is to assign |S| to all vertex covers S

of G of size at most k, and k+1 for all other vertex covers. Thus, one can

formalize the Vertex Cover problem as a parameterized optimization

23.1 Framework 473

problem as follows.

V C(G, k, S) =

{ ∞ if S is not a vertex cover of G,

min(|S|, k + 1) otherwise.

Note that this formulation of Vertex Cover “cares” about solutions

of size less than k. One can think of k as a threshold: for solutions of

size at most k we care about what their size is, while all solutions of size

larger than k are equally bad in our eyes, and are assigned value k + 1.

Clearly any FPT algorithm that solves the parameterized optimiza-

tion version of Vertex Cover also solves the (parameterized) decision

variant. Using standard self-reducibility techniques, one can make an

FPT algorithm for the decision variant solve the optimization variant as

well.

We have seen how a minimization problem can be formalized as a

parameterized optimization problem parameterized by the value of the

optimum. Next we give an example for how to do this for maximization

problems. In the Cycle Packing problem we are given as input a graph

G, and the task is to find a largest possible collection C of pairwise vertex

disjoint cycles. Here a collection of vertex disjoint cycles is a collection C
of vertex subsets of G such that for every C ∈ C, G[C] contains a cycle

and for every C,C ′ ∈ C we have V (C) ∩ V (C ′) = ∅. We will often refer

to a collection of vertex disjoint cycles as a cycle packing.

We can formalize the Cycle Packing problem as a parameterized

optimization problem parameterized by the value of the optimum in a

manner similar to what we did for Vertex Cover. In particular, if C
is a cycle packing, then we assign it value |C| if |C| ≤ k and value k + 1

otherwise. If |C| is not a cycle packing, we give it value −∞.

CP (G, k, C) =

{ −∞ if C is not a cycle packing,

min(|C|, k + 1) otherwise.

Thus, the only (formal) difference between the formalization of parame-

terized minimization and maximization problems parameterized by the

value of the optimum is how infeasible solutions are treated. For mini-

mization problems infeasible solutions get value ∞, while for maximiza-

tion problems they get value −∞. However, there is also a “philosophi-

cal” difference between the formalization of minimization and maximiza-

tion problems. For minimization problems we do not distinguish between

feasible solutions that are “too bad”; solutions of size more than k are

all given the same value. On the other hand, for maximization prob-

474 Lossy kernelization

lems all solutions that are “good enough”, i.e. of size at least k + 1, are

considered equal.

Observe that the “capping” of the objective function at k + 1 does

not make sense for approximation algorithms if one insists on k being

the (un-parameterized) optimum of the instance I. The parameteriza-

tion discussed above is by the value of the solution that we want our

algorithms to output, not by the unknown optimum. We will discuss this

topic in more detail in the paragraph titled “Capping the objective

function at k + 1”, after the notion of approximate kernelization has

been formally defined.

Structrural parameterizations. We now give an example that demon-

strates that the notion of parameterized optimization problems is robust

enough to capture not only parameterizations by the value of the opti-

mum, but also parameterizations by structural properties of the instance

that may or may not be connected to the value of the best solution. In

the Optimal Linear Arrangement problem we are given as input a

graph G, and the task is to find a bijection σ : V (G)→ {1, . . . , n} such

that

val(σ,G) =
∑

uv∈E(G)

|σ(u)− σ(v)|

is minimized. A bijection σ : V (G)→ {1, . . . , n} is called a linear layout,

and val(σ,G) is called the value of the layout σ.

We will consider the Optimal Linear Arrangement problem for

graphs that have a relatively small vertex cover. This can be formalized

as a parameterized optimization problem as follows:

OLA((G,S), k, σ) =

−∞ if S is not vertex cover of G

of size at most k,

∞ if σ is not a linear layout,

val(σ,G) otherwise.

In the definition above the first case takes precendence over the second:

if S is not vertex cover of G of size at most k and σ is not a linear lay-

out, OLA((G,S), k, σ) returns −∞. This ensures that malformed input

instances do not need to be handled.

Note that the input instances to the parameterized optimization prob-

lem described above are pairs ((G,S), k) where G is a graph, S is a vertex

cover of G of size at most k and k is the parameter. This definition al-

lows algorithms for Optimal Linear Arrangement parameterized

by vertex cover to assume that the vertex cover S is given as input.

23.1 Framework 475

Kernelization of parameterized optimization problems. The no-

tion of a kernel (or kernelization algorithm) is a mathematical model for

polynomial time preprocessing for decision problems. We will now de-

fine the corresponding notion for parameterized optimization problems.

To that end we first need to define a polynomial time preprocessing

algorithm.

Definition 23.5 (Polynomial time preprocessing algorithm). Polyno-

mial time preprocessing algorithm A for a parameterized optimization

problem Π is a pair of polynomial time algorithms. The first one is called

the reduction algorithm, and computes a map RA : Σ∗×N→ Σ∗×N.

Given as input an instance (I, k) of Π, the reduction algorithm outputs

another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This

algorithm takes as input an instance (I, k) ∈ Σ∗ × N of Π, the output

instance (I ′, k′) of the reduction algorithm, and a solution s′ to the

instance (I ′, k′). The solution lifting algorithm works in time polynomial

in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k). Finally, if s′ is

an optimal solution to (I ′, k′) then s is an optimal solution to (I, k).

Observe that the solution lifting algorithm could contain the reduc-

tion algorithm as a subroutine. Thus, on input (I, k, I ′, k′, s′) the solution

lifting algorithm could start by running the reduction algorithm (I, k)

and produce a transcript of how the reduction algorithm obtains (I ′, k′)
from (I, k). Hence, when designing the solution lifting algorithm we may

assume without loss of generality that such a transcript is given as in-

put. For the same reason, it is not really necessary to include (I ′, k′) as

input to the solution lifting algorithm. However, to avoid starting every

description of a solution lifting algorithm with “we compute the instance

(I ′, k′) from (I, k)”, we include (I ′, k′) as input.

The notion of polynomial time preprocessing algorithms could be ex-

tended to randomized polynomial time preprocessing algorithms, by al-

lowing both the reduction algorithm and the solution lifting algorithm

to draw random bits, and fail with a small probability. With such an

extension it matters whether the solution lifting algorithm has access to

the random bits drawn by the reduction algorithm, because these bits

might be required to re-construct the transcript of how the reduction al-

gorithm obtained (I ′, k′) from (I, k). If the random bits of the reduction

476 Lossy kernelization

algorithm are provided to the solution lifting algorithm, the discussion

above applies.

A kernelization algorithm is a polynomial time preprocessing algo-

rithm for which we can prove an upper bound on the size of the output

instances in terms of the parameter of the instance to be preprocessed.

Thus, the size of a polynomial time preprocessing algorithm A is a func-

tion sizeA : N→ N defined as follows.

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

In other words, we look at all possible instances of Π with a fixed

parameter k, and measure the supremum of the sizes of the output of

RA on these instances. At this point, recall that the size of an instance

(I, k) is defined as |I| + k. Note that this supremum may be infinite;

this happens when we do not have any bound on the size of RA(I, k)

in terms of the input parameter k only. Kernelization algorithms are

exactly these polynomial time preprocessing algorithms whose output

size is finite and bounded by a computable function of the parameter.

Definition 23.6 (Kernel for optimization problem). A kernelization

(or kernel) for a parameterized optimization problem Π is a polynomial

time preprocessing algorithm A such that sizeA is upper bounded by a

computable function g : N→ N.

If the function g in Definition 23.6 is a polynomial, we say that Π

admits a polynomial kernel. Similarly, if g is a linear, quadratic or cubic

function of k we say that Π admits a linear, quadratic, or cubic kernel,

respectively.

One of the basic theorems in Parameterized Complexity is that a

decidable parameterized decision problem admits a kernel if and only if

it is fixed parameter tractable (Theorem 1.4). We now show that this

result also holds for parameterized optimization problems. We say that

a parameterized optimization problem Π is decidable if there exists an

algorithm that solves Π, where the definition of “solves” is given in

Definition 23.3.

Proposition 23.7. A decidable parameterized optimization problem Π

is FPT if and only if it admits a kernel.

Proof. The backwards direction is trivial; on any instance (I, k) one may

first run the reduction algorithm to obtain a new instance (I ′, k′) of size

bounded by a function g(k). Since the instance (I ′, k′) has bounded size

and Π is decidable one can find an optimal solution s′ to (I ′, k′) in time

23.1 Framework 477

upper bounded by a function g′(k). Finally one can use the solution

lifting algorithm to obtain an optimal solution s to (I, k).

For the forward direction we need to show that if a parameterized

optimization problem Π is FPT then it admits a kernel. Suppose there

is an algorithm that solves instances Π of size n with parameter k in time

f(k)nc. On input (I, k) the reduction algorithm runs the FPT algorithm

for nc+1 steps. If the FPT algorithm terminates after at most nc+1 steps,

the reduction algorithm outputs an instance (I ′, k′) of constant size. The

instance (I ′, k′) is hard-coded in the reduction algorithm and does not

depend on the input instance (I, k). Thus |I ′|+k′ is upper bounded by a

constant. If the FPT algorithm does not terminate after nc+1 steps the

reduction algorithm halts and outputs the instance (I, k). Note that in

this case f(k)nc > nc+1, which implies that f(k) > |I|. Hence the size

of the output instance is upper bounded by a function of k.

We now describe the solution lifting algorithm. If the reduction algo-

rithm outputs (I, k) then the solution lifting algorithm just returns the

same solution that it gets as input. If the reduction algorithm outputs

(I ′, k′) this means that the FPT algorithm terminated in polynomial

time, which means that the solution lifting algorithm can use the FPT

algorithm to output an optimal solution to (I, k) in polynomial time,

regardless of the solution to (I ′, k′) it gets as input. This concludes the

proof.

Parameterized approximation and approximate kernelization.

For some parameterized optimization problems we are unable to obtain

FPT algorithms, and we are also unable to find satisfactory polyno-

mial time approximation algorithms. In this case one might aim for

FPT-approximation algorithms, algorithms that run in time f(k)nc and

provide good approximate solutions to the instance.

Definition 23.8 (Parameterized approximation algorithm). Let α ≥ 1

be constant. A fixed parameter tractable α-approximation algorithm for

a parameterized optimization problem Π is an algorithm that takes as

input an instance (I, k), runs in time f(k)|I|O(1), and outputs a solution

s such that Π(I, k, s) ≤ α · OPT(I, k) if Π is a minimization problem,

and α ·Π(I, k, s) ≥ OPT(I, k) if Π is a maximization problem.

Note that Definition 23.8 only defines constant factor FPT-approximation

algorithms. The definition can in a natural way be extended to approxi-

mation algorithms whose approximation ratio depends on the parameter

k, on the instance I, or on both.

478 Lossy kernelization

We are now ready to define one of the key new concepts of the chap-

ter - the concept of an α-approximate kernel. We defined kernels by first

defining polynomial time preprocessing algorithms (Definition 23.5) and

then adding size constraints on the output (Definition 23.6). In a similar

manner we will first define α-approximate polynomial time preprocess-

ing algorithms, and then define α-approximate kernels by adding size

constraints on the output of the preprocessing algorithm.

Definition 23.9. Let α ≥ 1 be a real number and Π be a parameterized

optimization problem. An α-approximate polynomial time preprocessing

algorithm A for Π is a pair of polynomial time algorithms. The first one

is called the reduction algorithm, and computes a map RA : Σ∗ × N →
Σ∗ ×N. Given as input an instance (I, k) of Π, the reduction algorithm

outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This al-

gorithm takes as input an instance (I, k) ∈ Σ∗ × N of Π, the output

instance (I ′, k′) of the reduction algorithm, and a solution s′ to the in-

stance (I ′, k′). The solution lifting algorithm works in time polynomial

in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k). If Π is a mini-

mization problem, then

Π(I, k, s)

OPT(I, k)
≤ α · Π(I ′, k′, s′)

OPT(I ′, k′)
.

If Π is a maximization problem, then

Π(I, k, s)

OPT(I, k)
· α ≥ Π(I ′, k′, s′)

OPT(I ′, k′)
.

Definition 23.9 only defines constant factor approximate polynomial

time preprocessing algorithms. The definition can in a natural way be

extended to approximation ratios that depend on the parameter k, on

the instance I, or on both. Additionally, the discussion following Defini-

tion 23.5 also applies here. In particular, we may assume that the solu-

tion lifting algorithm also gets as input a transcript of how the reduction

algorithm obtains (I ′, k′) from (I, k). The size of an α-approximate poly-

nomial time preprocessing algorithm is defined in exactly the same way

as the size of a polynomial time preprocessing algorithm (from Defini-

tion 23.5).

Definition 23.10 (α-approximate kernelization). An α-approximate

23.1 Framework 479

kernelization (or α-approximate kernel) for a parameterized optimiza-

tion problem Π, and real α ≥ 1, is an α-approximate polynomial time

preprocessing algorithm A such that sizeA is upper bounded by a com-

putable function g : N→ N.

Just as for regular kernels, if the function g in Definition 23.10 is a

polynomial, we say that Π admits an α-approximate polynomial kernel.

If g is a linear, quadratic or cubic function, then Π admits a linear,

quadratic or cubic α-approximate kernel, respectively.

Proposition 23.7 establishes that a parameterized optimization prob-

lem Π admits a kernel if and only if it is FPT. Next we establish a similar

equivalence between FPT-approximation algorithms and approximate

kernelization.

Proposition 23.11. For every α ≥ 1 and decidable parameterized opti-

mization problem Π, Π admits a fixed parameter tractable α-approximation

algorithm if and only if Π has an α-approximate kernel.

The proof of Proposition 23.11 is identical to the proof of Proposi-

tion 23.7, but with the FPT algorithm replaced by the fixed parameter

tractable α-approximation algorithm, and the kernel replaced with the

α-approximate kernel. On an intuitive level, it should be easier to com-

press an instance than it is to solve it. For α-approximate kernelization

this intuition can be formalized.

Theorem 23.12. For every α ≥ 1 and decidable parameterized opti-

mization problem Π, Π admits a polynomial time α-approximation algo-

rithm if and only if Π has an α-approximate kernel of constant size.

The proof of Theorem 23.12 is simple. On the one hand, if there is an

α-approximate kernel of constant size one can brute force the reduced

instance and lift the optimal solution of the reduced instance to an α-

approximate solution to the original. On the other hand, if there is a

factor α approximation algorithm, the reduction algorithm can just out-

put any instance of constant size. Then, the solution lifting algorithm

can just directly compute an α-approximate solution to the original in-

stance using the approximation algorithm.

We remark that Proposition 23.11 and Theorem 23.12 also apply

to approximation algorithms and approximate kernels with a super-

constant approximation ratio. We also remark that with our definition

of α-approximate kernelization, by setting α = 1 we essentially get back

the notion of kernel for the same problem. The difference arises natu-

480 Lossy kernelization

rally from the different goals of decision and optimization problems. In

decision problems we aim to correctly classify the instance as a “yes”

or a “no” instance. In an optimization problem we just want as good

a solution as possible for the instance at hand. In traditional kerneliza-

tion, a yes/no answer to the reduced instance translates without change

to the original instance. With our definition of approximate kernels, a

sufficiently good solution (that is, a witness of a yes answer) will always

yield a witness of a yes answer to the original instance. However, the

failure to produce a sufficiently good solution to the reduced instance

does not stop us from succeeding at producing a sufficiently good solu-

tion for the original one. From the perspective of optimization problems,

such an outcome is a win.

Capping the objective function at k + 1. We now return to the

topic of parameterizing optimization problems by the value of the so-

lution, and discuss the relationship between (approximate) kernels for

such parameterized optimization problems and (traditional) kernels for

the parameterized decision version of the optimization problem.

Consider a traditional optimization problem, say Vertex Cover.

Here, the input is a graph G, and the goal is to find a vertex cover S

of G of minimum possible size. When parameterizing Vertex Cover

by the objective function value we need to provide a parameter k such

that solving the problem on the same graph G becomes progressively

easier as k decreases. In parameterized complexity this is achieved by

considering the corresponding parameterized decision problem where we

are given G and k and asked whether there exists a vertex cover of size

at most k. Here k is the parameter. If we also required an algorithm for

Vertex Cover to produce a solution, then the above parameterization

can be interpreted as follows. Given G and k, output a vertex cover of

size at most k or fail (that is, return that the algorithm could not find

a vertex cover of size at most k.) If there exists a vertex cover of size at

most k, then the algorithm is not allowed to fail.

A c-approximation algorithm for the Vertex Cover problem is an

algorithm that given G, outputs a solution S of size no more than c times

the size of the smallest vertex cover of G. So, how do approximation and

parameterization mix? For c ≥ 1, there are two natural ways to define a

parameterized c-approximation algorithm for Vertex Cover.

(a) Given G and k, output a vertex cover of size at most k or fail (that

is, return that the algorithm could not find a vertex cover of size at

23.1 Framework 481

most k.) If there exists a vertex cover of size at most k/c, then the

algorithm is not allowed to fail.

(b) Given G and k, output a vertex cover of size at most ck or fail (that

is, return that the algorithm could not find a vertex cover of size at

most ck.) If there exists a vertex cover of size at most k, then the

algorithm is not allowed to fail.

Note that if we required the approximation algorithm to run in polyno-

mial time, then both definitions above would yield exactly the definition

of polynomial time c-approximation algorithms, by a linear search or bi-

nary search for the appropriate value of k. In the parameterized setting

the running time depends on k, and the two formalizations are differ-

ent, but nevertheless equivalent up to a factor c in the value of k. That

is f(k) · nO(1) time algorithms and g(k) size kernels for parameteriza-

tion (b) translate to f(ck) · nO(1) time algorithms and g(ck) kernels for

parameterization (a) and vice versa.

By defining the parameterized optimization problem for Vertex Cover

in such a way that the objective function depends on the parameter k,

one can achieve either one of the two discussed formulations. By defining

V C(G, k, S) = min{|S|, k + 1}

for vertex covers S we obtain formulation (a). By defining

V C(G, k, S) = min{|S|, dcke+ 1}

for vertex covers S we obtain formulation (b). It is more meaningful

to define the computational problem independently of the (approxima-

tion factor of) algorithms for the problem. For this reason we stick to

formulation (a) in this chapter.

Reduction Rules and Strict α-Approximate Kernels. Kerneliza-

tion algorithms are commonly described as a set of reduction rules. Here

we discuss reduction rules in the context of parameterized optimization

problems. A reduction rule is simply a polynomial time preprocessing

algorithm, see Definition 23.5. The reduction rule applies if the output

instance of the reduction algorithm is not the same as the input in-

stance. Most kernelization algorithms consist of a set of reduction rules.

In every step the algorithm checks whether any of the reduction rules

apply. If a reduction rule applies, the kernelization algorithm runs the

reduction algorithm on the instance and proceeds by working with the

new instance. This process is repeated until the instance is reduced, i.e.

482 Lossy kernelization

none of the reduction rules apply. To prove that this is indeed a kernel

(as defined in Definition 23.6) one proves an upper bound on the size of

any reduced instance.

In order to be able to make kernelization algorithms as described

above, it is important that reduction rules can be chained. That is, sup-

pose that we have an instance (I, k) and run a preprocessing algorithm

on it to produce another instance (I ′, k′). Then we run another prepro-

cessing algorithm on (I ′, k′) to get a third instance (I?, k?). Given an

optimal solution s? to the last instance, we can use the solution lifting

algorithm of the second preprocessing algorithm to get an optimal so-

lution s′ to the instance (I ′, k′). Then we can use the solution lifting

algorithm of the first preprocessing algorithm to get an optimal solution

s to the original instance (I, k).

Unfortunately, one can not chain α-approximate polynomial time pre-

processing algorithms, as defined in Definition 23.9, in this way. In par-

ticular, each successive application of an α-approximate preprocessing

algorithm increases the gap between the approximation ratio of the solu-

tion to the reduced instance and the approximation ratio of the solution

to the original instance output by the solution lifting algorithm. For this

reason we need to define strict approximate polynomial time preprocess-

ing algorithms.

Definition 23.13. Let α ≥ 1 be a real number, and Π be a parameter-

ized optimization problem. An α-approximate polynomial time prepro-

cessing algorithm is said to be strict if, for every instance (I, k), reduced

instance (I ′, k′) = RA(I, k) and solution s′ to (I ′, k′), the solution s to

(I, k) output by the solution lifting algorithm when given s′ as input

satisfies the following.

• If Π is a minimization problem, then

Π(I, k, s)

OPT(I, k)
≤ max

{
Π(I ′, k′, s′)
OPT(I ′, k′)

, α

}
.

• If Π is a maximization problem, then

Π(I, k, s)

OPT(I, k)
≥ min

{
Π(I ′, k′, s′)
OPT(I ′, k′)

,
1

α

}
.

The intuition behind Definition 23.13 is that an α-strict approxi-

mate preprocessing algorithm may incur error on near-optimal solu-

tions, but that they have to preserve factor α-approximation. If s′ is

an α-approximate solution to (I ′, k′), then s must be a α-approximate

23.1 Framework 483

solution to (I, k) as well. Furthermore, if the ratio of Π(I ′, k′, s′) to

OPT(I ′, k′) is worse than α, then the ratio of Π(I, k, s) to OPT(I, k)

should not be worse than the ratio of Π(I ′, k′, s′) to OPT(I ′, k′).
We remark that a reduction algorithm RA and a solution lifting al-

gorithm that together satisfy the conditions of Definition 23.13, also au-

tomatically satisfy the conditions of Definition 23.9. Therefore, to prove

that RA and solution lifting algorithm constitute a strict α-approximate

polynomial time preprocessing algorithm, it is not necessary to prove

that they constitute a α-approximate polynomial time preprocessing al-

gorithm first. The advantage of Definition 23.13 is that strict α-appro-

ximate polynomial time preprocessing algorithms do chain—the compo-

sition of two strict α-approximate polynomial time preprocessing algo-

rithms is again a strict α-approximate polynomial time preprocessing

algorithm.

We can now formally define what a reduction rule is. A reduction rule

for a parameterized optimization problem Π is simply a polynomial time

algorithm computing a map RA : Σ∗ × N → Σ∗ × N. In other words, a

reduction rule is “half” of a polynomial time preprocessing algorithm.

A reduction rule is only useful if the other half is there to complete the

preprocessing algorithm.

Definition 23.14. A reduction rule is said to be α-safe for Π if there

exists a solution lifting algorithm, such that the rule together with the

solution lifting algorithm constitute a strict α-approximate polynomial

time preprocessing algorithm for Π. A reduction rule is safe if it is 1-safe.

In some cases even the final kernelization algorithm is a strict α-

approximate polynomial time preprocessing algorithm. This happens if,

for example, the kernel is obtained only by applying α-safe reduction

rules. Strictness yields a tigher connection between the quality of solu-

tions to the reduced instance and the quality of the solutions to the orig-

inal instance output by the solution lifting algorithms. Thus we would

like to point out which kernels have this additional property. For this

reason we define strict α-approximate kernels.

Definition 23.15. An α-approximate kernel A is called strict if A is

a strict α-approximate polynomial time preprocessing algorithm.

Polynomial Size Approximate Kernelization Schemes. In ap-

proximation algorithms, the best one can hope for is usually an approx-

imation scheme, that is an approximation algorithm that can produce

484 Lossy kernelization

a (1 + ε)-approximate solution for every ε > 0. The algorithm runs in

polynomial time for every fixed value of ε. However, as ε tends to 0 the

algorithm becomes progressively slower in such a way that the algorithm

cannot be used to obtain optimal solutions in polynomial time.

In the setting of approximate kernelization, we could end up in a

situation where it is possible to produce a polynomial (1+ε)-approximate

kernel for every fixed value of ε, but that the size of the kernel grows

so fast when ε tends to 0 that this algorithm cannot be used to give a

polynomial size kernel (without any loss in solution quality). This can

be formalized as a polynomial size approximate kernelization scheme.

Definition 23.16 (Polynomial size approximate kernelization scheme

(PSAKS)). A polynomial size approximate kernelization scheme (PSAKS)

for a parameterized optimization problem Π is a family of α-approximate

polynomial kernelization algorithms, with one such algorithm for every

α > 1.

Definition 23.16 states that a PSAKS is a family of algorithms, one

for every α > 1. However, many PSAKSes are uniform, in the sense

that there exists an algorithm that given α outputs the source code of

an α-approximate polynomial kernelization algorithm for Π. In other

words, one could think of a uniform PSAKS as a single α-approximate

polynomial kernelization algorithm where α is part of the input, and

the size of the output depends on α. From the definition of a PSAKS it

follows that the size of the output instances of a PSAKS when run on an

instance (I, k) with approximation parameter α can be upper bounded

by f(α) · kg(α) for some functions f and g independent of |I| and k.

Definition 23.17 (Efficient PSAKS). A size efficient PSAKS, or simply

an efficient PSAKS (EPSAKS) is a PSAKS such that the size of the

instances output when the reduction algorithm is run on an instance

(I, k) with approximation parameter α can be upper bounded by f(α)·kc
for a function f of α and constant c independent of I, k and α.

Notice here the analogy to efficient polynomial time approximation schemes,

which are nothing but α-approximation algorithms with running time

f(α) ·nc. A PSAKS is required to run in polynomial time for every fixed

value of α, but the running time is allowed to become worse and worse

as α tends to 1. We can define time-efficient PSAKSes analagously to

how we defined EPSAKSes.

Definition 23.18 (Time efficient PSAKS). A PSAKS is said to be

23.2 Cycle Packing 485

time efficient if (a) the running time of the reduction algorithm when

run on an instance (I, k) with approximation parameter α can be upper

bounded by f(α) · |I|c for a function f of α and constant c independent

of I, k, α, and (b) the running time of the solution lifting algorithm

when run on an instance (I, k), reduced instance (I ′, k′) and solution s′

with approximation parameter α can be upper bounded by f ′(α) · |I|c
for a function f ′ of α and constant c independent of I, k and α.

Just as we distinguished between normal and strict α-approximate ker-

nels, we say that a PSAKS is strict if it is a strict α-approximate kernel

for every α > 1.

The following facts are useful in later sections to show the desired

approximate kernels.

Fact 23.1. For any positive reals x, y, p and q, min
(
x
p ,

y
q

)
≤ x+y

p+q ≤
max

(
x
p ,

y
q

)

Fact 23.2. For any y ≤ 1
2 , (1− y) ≥

(
1
4

)y
.

23.2 Cycle Packing

In this section we design a strict polynomial size 6-approximate kernel for

the Cycle Packing problem. The Cycle Packing problem is formally

defined as follows.

CP (G, k, P) =

−∞ if P is not a set of vertex disjoint

cycles in G

min {|P |, k + 1} otherwise

In this subsection we give a polynomial size 6-approximate kernel. We

start by defining feedback vertex sets of a graph. Given a graph G and a

vertex subset F ⊆ V (G), F is called a feedback veretx set of G if G−F is

a forest. We will make use of the following well-known lemma of Erdős

and Pósa (1965) relating feedback vertex set and the number of vertex

disjoint cycles in a graph.

Lemma 23.19 (Erdős and Pósa (1965)). There exists a constant c′

such that every (multi) graph either contains k vertex disjoint cycles or

it has a feedback vertex set of size at most c′k log k. Moreover, there is

a polynomial time algorithm that takes a graph G and an integer k as

input, and outputs either k vertex disjoint cycles or a feedback vertex set

of size at most c′k log k.

486 Lossy kernelization

In our 6-approximate kernelization algorithm we apply the following

reduction rules in the given order exhaustively.

Reduction LCP.1. Compute a shortest cycle C in G. If |C| ≤ 6

then output G′ = G− C and k′ = k − 1.

Lemma 23.20. Reduction Rule LCP.1 is 6-safe.

Proof. The solution lifting algorithm takes a cycle packing P ′ of G′ and

adds the cycle C to it. The resulting cycle packing P is a cycle packing

in G with one more cycle. Thus CP (G, k, P) ≥ CP (G′, k′, P ′) + 1. Next

we show that OPT(G′, k′) ≥ OPT(G, k) − 6. To see this, consider an

optimal cycle packing P ∗ in G. Remove all cycles in P that contain a

vertex in C, to get a cycle packing P̃ in G′. Since |C| ≤ 6 it follows that

|P̃ | ≥ |P ∗|− 6, and hence OPT(G′, k′) ≥ OPT(G, k)− 6. Hence, we have

that

CP (G, k, P)

OPT(G, k)
≥ CP (G′, k′, P ′) + 1

OPT(G′, k′) + 6
≥ min

(
CP (G′, k′, P ′)
OPT(G′, k′)

,
1

6

)

The last transition follows from Fact 23.1. This concludes the proof.

Reduction LCP.2. If G has a vertex of degree at most 1, then

remove it.

Reduction LCP.3. If G has a degree 2 vertex u with neighbors x, y,

then delete u and add an edge (x, y).

It is easy to see that the Reduction Rules LCP.2 and LCP.3 are 1-safe.

Since Reduction Rule LCP.1 is not applicable while applying Reduction

rule LCP.3, the reduced instance after applying Reduction Rule LCP.3

will still be a simple graph. We are now almost in a position to prove the

size bound for the kernel. First we need to state another graph theoretic

lemma regarding feedback vertex sets in graphs with no short cycles.

Lemma 23.21 (Raman et al. (2006)). Let G be a graph on n vertices

with minimum degree 3, and no cycles of length at most 6. Then every

feedback vertex set of G has size at least
√
n/2.

Theorem 23.22. Cycle Packing admits a strict 6-approximate kernel

with O((k log k)2) vertices.

23.3 Partial Vertex Cover 487

Proof. The kernelization algorithm applies rules LCP.1, LCP.2 and LCP.3

exhaustively. Let (G, k) be the reduced instance. If |V (G)| < 2(c′k log k)2,

where c′ is the constant from Lemma 23.19, then we are done, so assume

that |V (G)| ≥ 2(c′k log k)2. By Lemma 23.21, every feedback vertex

set of G has size at least c′(k log k). Thus, executing the algorithm of

Lemma 23.19 will give us a cycle packing of size k, which the kerneliza-

tion algorithm may output. Since the kernel was obtained by an exhaus-

tive application of 6-safe rules, it follows that the kernel is strict.

23.3 Partial Vertex Cover

In the Partial Vertex Cover problem the input is a graph G on n

vertices, and an integer k. The task is to find a vertex set S ⊆ V (G) of

size k, maximizing the number of edges with at least one end-point in

S. We will consider the problem parameterized by the solution size k.

Note that the solution size is not the objective function value. We define

Partial Vertex Cover as a parameterized optimization problem as

follows.

PV C(G, k, S) =

{
−∞ |S| > k

Number of edges incident on S Otherwise

Partial Vertex Cover is W[1]-hard by Guo et al. (2007), thus we

do not expect an FPT algorithm or a kernel of any size to exist for this

problem.

Theorem 23.23. Partial Vertex Cover admits EPSAKS.

Proof. We give an α-approximate kernelization algorithm for the prob-

lem for every α > 1. Let ε = 1 − 1
α and β = 1

ε . Let (G, k) be the input

instance. Let v1, v2, . . . , vn be the vertices of G in the non-increasing or-

der of degree, i.e dG(vi) ≥ dG(vj) for all 1 ≥ i > j ≥ n. The kernelization

algorithm has two cases based on degree of v1.

Case 1: dG(v1) ≥ β
(
k
2

)
. In this case S = {v1, . . . , vk} is an α-approximate

solution. The number of edges incident to S is at least (
∑k
i=1 dG(vi))−(

k
2

)
, because at most

(
k
2

)
edges have both endpoints in S and they are

counted twice in the sum (
∑k
i=1 dG(vi)). The value of the optimum so-

lution is at most
∑k
i=1 dG(vi). Now consider the value, PV C(G,k,S)

OPT(G,k) .

PV C(G, k, S)

OPT(G, k)
≥ (
∑k
i=1 dG(vi))−

(
k
2

)
∑k
i=1 dG(vi)

≥ 1−
(
k
2

)

dG(v1)
≥ 1− 1

β
=

1

α
.

488 Lossy kernelization

The above inequality implies that S is an α-approximate solution. So

the kernelization algorithm outputs a trivial instance (∅, 0) in this case.

Case 2: dG(v1) < β
(
k
2

)
. Let V ′ = {v1, v2, . . . , vkdβ(k2)e+1}. In this case

the algorithm outputs (G′, k), where G′ = G[NG[V ′]]. We first claim that

OPT(G′, k) = OPT(G, k). Since G′ is a subgraph of G, OPT(G′, k) ≤
OPT(G, k). Now it is enough to show that OPT(G′, k) ≥ OPT(G, k).

Towards that, we prove that there is an optimum solution that contains

only vertices from the set V ′. Suppose not, then consider the solution

S which is lexicographically smallest in the ordered list v1, . . . vn. The

set S contains at most k − 1 vertices from V ′ and at least one from

V \ V ′. Since the degree of each vertex in G is at most dβ
(
k
2

)
e − 1

and |S| ≤ k, we have that |NG[S]| ≤ kdβ
(
k
2

)
e. This implies that there

exists a vertex v ∈ V ′ such that v /∈ NG[S]. Hence by including the

vertex v and removing a vertex from S \ V ′, we can cover at least as

many edges as S can cover. This contradicts our assumption that S is

lexicographically smallest. Since G′ is a subgraph of G, any solution

of G′ is also a solution of G. Thus we have shown that OPT(G′, k) =

OPT(G, k). So the algorithm returns the instance (G′, k) as the reduced

instance. Since G′ is a subgraph of G, in this case, the solution lifting

algorithm takes a solution S′ of (G′, k) as input and outputs S′ as a

solution of (G, k). Since OPT(G′, k) = OPT(G, k), it follows that

PV C(G, k, S′)
OPT(G, k)

=
PV C(G′, k, S′)
OPT(G′, k)

.

The number of vertices in the reduced instance is O(k · d 1
ε

(
k
2

)
e2) =

O(k5). The running time of the algorithm is polynomial in the size of

G. Since the algorithm either finds an α-approximate solution (Case 1)

or reduces the instance by a 1-safe reduction rule (Case 2), this kernel-

ization scheme is strict.

23.4 Connected Vertex Cover

In this section we design a PSAKS for Connected Vertex Cover.

The parameterized optimization problem Connected Vertex Cover

is defined as follows.

23.4 Connected Vertex Cover 489

CV C(G, k, S) =

∞ if S is not a connected vertex cover

of the graph G

min {|S|, k + 1} otherwise

We show that Connected Vertex Cover has a polynomial size

strict α-approximate kernel for every α > 1. Let (G, k) be the input

instance. Without loss of generality assume that the input graph G is

connected. Let d be the least positive integer such that d
d−1 ≤ α. In

particular, d = d α
α−1e. For a graph G and an integer k, define H to be

the set of vertices of degree at least k + 1. We define I to be the set of

vertices which are not in H and whose neighborhood is a subset of H.

That is, I = {v ∈ V (G) \H | NG(v) ⊆ H}. The kernelization algorithm

works by applying two reduction rules exhaustively. The first of the two

rules is the following.

Reduction LCVC.1. Let v ∈ I be a vertex of degree D ≥ d. Delete

NG[v] from G and add a vertex w such that the neighborhood of w

is NG(NG(v)) \ {v}. Then add k degree 1 vertices v1, . . . , vk whose

neighbor is w. Output this graph G′, together with the new parameter

k′ = k − (D − 1).

Lemma 23.24. Reduction Rule LCVC.1 is α-safe.

Proof. To show that Rule LCVC.1 is α-safe we need to give a solution

lifting algorithm to go with the reduction. Given a solution S′ to the

instance (G′, k′), if S′ is a connected vertex cover of G′ of size at most k′

the algorithm returns the set S = (S′ \ {w, v1, . . . , vk}) ∪NG[v]. Other-

wise the solution lifting algorithm returns V (G). We now need to show

that the reduction rule together with the above solution lifting algo-

rithm constitutes a strict α-approximate polynomial time preprocessing

algorithm.

First we show that OPT(G′, k′) ≤ OPT(G, k)− (D − 1). Consider an

optimal solution S∗ to (G, k). We have two cases based on the size of

S∗. If |S∗| > k then CV C(G, k, S) = k + 1; in fact OPT(G, k) = k + 1.

Furthermore, any connected vertex cover of G′ has value at most k′+1 =

k− (D− 1) + 1 ≤ OPT(G, k)− (D− 1). Now we consider the case when

|S∗| ≤ k. If |S∗| ≤ k then NG(v) ⊆ S∗, since the degree of all the vertices

in NG(v) is at least k + 1 and S∗ is a vertex cover of size at most k.

490 Lossy kernelization

Then (S∗ \NG[v])∪{w} is a connected vertex cover of G′ of size at most

|S∗| − (D − 1) = OPT(G, k)− (D − 1).

Now we show that CV C(G, k, S) ≤ CV C(G′, k′, S′) + D. If S′ is a

connected vertex cover of G′ of size strictly more than k′ then

CV C(G, k, S) ≤ k + 1 = k′ +D < k′ + 1 +D = CV C(G′, k′, S′) +D.

Suppose now that S′ is a connected vertex cover of G′ of size at most k′.
Then w ∈ S′ since w has degree at least k in G′. Thus |S| ≤ |S′|−1+D+

1 ≤ |S′| + D. Finally, G[S] is connected because G[NG[v]] is connected

and NG(NG[v]) = NG′(w) \ {v1, . . . , vk}. Hence S is a connected vertex

cover of G. Thus CV C(G, k, S) ≤ CV C(G′, k′, S′) + D. Therefore, we

have that

CV C(G, k, S)

OPT(G, k)
≤ CV C(G′, k′, S′) +D

OPT(G′, k′) + (D − 1)
≤ max

(
CV C(G′, k′, S′)
OPT(G′, k′)

, α

)
.

The last transition follows from Fact 23.1. This concludes the proof.

The second rule is easier than the first: if any vertex v has at least

k+ 1 false twins, then remove v. A false twin of a vertex v is a vertex u

such that uv /∈ E(G) and N(u) = N(v).

Reduction LCVC.2. If a vertex v has at least k + 1 false twins,

then remove v, i.e. output G′ = G− v and k′ = k.

Lemma 23.25. Reduction Rule LCVC.2 is 1-safe.

Proof. The solution lifting algorithm takes as input a set S′ to the

reduced instance and returns the same set S′ = S as a solution to

the original instance. To see that OPT(G′, k) ≤ OPT(G, k), consider

a smallest connected vertex cover S∗ of G. Again, we will distinguish

between two cases: either |S∗| > k or |S∗| ≤ k. If |S∗| > k then

OPT(G′, k) ≤ k + 1 = OPT(G, k). Thus, assume |S∗| ≤ k. Then, there

is a false twin u of v that is not in S∗, and therefore (S∗ \ {v}) ∪ {u} is

a connected vertex cover of G− v of size at most k.

Next we show that CV C(G, k, S) ≤ CV C(G′, k′, S′). If |S′| > k′ = k,

then clearly CV C(G, k, S) ≤ k + 1 = k′ + 1 = CV C(G′, k′, S′). So let

us assume that |S′| ≤ k. Observe that, as v has k + 1 false twins, all

vertices in N(v) have degree at least k+1 in G−v. Thus, N(v) ⊆ S′ = S

and S is a connected vertex cover of G, and hence CV C(G, k, S) ≤

23.5 Steiner Tree 491

CV C(G′, k′, S′). As a result,

CV C(G, k, S)

OPT(G, k)
≤ CV C(G′, k′, S′)

OPT(G′, k′)

This concludes the proof.

Lemma 23.26. Let (G, k) be an instance irreducible by rules LCVC.1

and LCVC.2, such that OPT(G, k) ≤ k. Then |V (G)| ≤ O(kd + k2).

Proof. Since OPT(G, k) ≤ k, G has a connected vertex cover S of size

at most k. We analyze separately the size of the three sets H, I and

V (G) \ (H ∪ I). First, H ⊆ S so |H| ≤ k. Furthermore, every vertex in

I has degree at most d− 1, otherwise Rule LCVC.1 applies. Thus, there

are at most
(
k
d−1

)
different subsets X of V (G) such that there is a vertex

v in I such that N(v) = I. Since each vertex v has at most k false twins

it follows that |I| ≤
(
k
d−1

)
· (k + 1) = O(kd).

Finally, every edge that has no endpoint in H, has at least one end-

point in S \H. Since each vertex in S \H has degree at most k, it follows

that there are at most k|S| ≤ k2 such edges. Each vertex that is neither

in H nor in I must be incident to at least one edge with no endpoint in

H. Thus there are at most 2k2 vertices in V (G)\ (I ∪H) concluding the

proof.

Theorem 23.27. Connected Vertex Cover admits a strict time

efficient PSAKS with O(kd
α
α−1 e + k2) vertices.

Proof. The kernelization algorithm applies the rules LCVC.1 and LCVC.2

exhaustively. If the reduced graph G has more than O(kd + k2) vertices

then, by Lemma 23.26, OPT(G, k) = k + 1 and the algorithm may re-

turn any conneccted vertex cover of G as an optimal solution. Thus the

reduced graph has at most O(kd +k2) vertices, since d = d α
α−1e the size

bound follows. The entire reduction procedure runs in polynomial time

(independent of α), hence the PSAKS is time efficient.

23.5 Steiner Tree

Let us remind that in the Steiner Tree problem we are given as input

a graph G, a subset R of V (G) whose vertices are called terminals and

a weight function w : E(G) → N. A Steiner tree is a subtree T of G

such that R ⊆ V (T), and the cost of a tree T is defined as w(T) =∑
e∈E(T) w(e). The task is to find a Steiner tree of minimum cost. We

492 Lossy kernelization

may assume without loss of generality that the input graph G is complete

and that w satisfies the triangle inequality: for all u, v, w ∈ V (G) we have

w(uw) ≤ w(uv)+w(vw). This assumption can be justified by adding for

every pair of vertices u,v the edge uv to G and making the weight of uv

equal the shortest path distance between u and v. If multiple edges are

created between the same pair of vertices, only the lightest edge is kept.

Most approximation algorithms for the Steiner Tree problem rely

on the notion of a k-restricted Steiner tree, defined as follows. A com-

ponent is a tree whose leaves coincide with a subset of terminals, and

a k-component is a component with at most k leaves. A k-restricted

Steiner tree S is a collection of k-components, such that the union of

these components is a Steiner tree T . The cost of S is the sum of the

costs of all the k-components in S. Thus an edge that appears in sev-

eral different k-components of S will contribute several times to the cost

of S, but only once to the cost of T . The following result by Borchers

and Du (1997) shows that for every ε > 0 there exists a k such that

the cost of the best k-restricted Steiner tree S is not more than (1 + ε)

times the cost of the best Steiner tree. Thus approximation algorithms

for Steiner Tree only need to focus on the best possible way to “piece

together” k-components to connect all the terminals.

Proposition 23.28 (Borchers and Du (1997)). For every k ≥ 1, graph

G, terminal set R, weight function w : E(G) → N and Steiner tree T ,

there is a k-restricted Steiner Tree S in G of cost at most (1 + 1
blog2 kc) ·

w(T).

Proposition 23.28 can easily be turned into a PSAKS for Steiner

Tree parameterized by the number of terminals, defined below.

ST ((G,R), k′, T) =

−∞ if |R| > k′

∞ if T is not a Steiner tree for R

w(T) otherwise

To get a (1 + ε)-approximate kernel it is sufficient to pick k based on ε,

compute for each k-sized subset R′ ⊆ R of terminals an optimal Steiner

tree for R′, and only keep vertices in G that appear in these Steiner

trees. This reduces the number of vertices of G to O(k|R|k), but the

edge weights can still be large making the bitsize of the kernel super-

polynomial in |R|. However, it is quite easy to show that keeping only

O(log |R|) bits for each weight is more than sufficient for the desired

precision.

23.5 Steiner Tree 493

Theorem 23.29. Steiner Tree parameterized by the number of ter-

minals admits a PSAKS.

Proof. Start by computing a 2-approximate Steiner tree T2 using the

classic factor 2 approximation algorithm, see e.g. Vazirani (2001). For

every vertex v /∈ R such that minx∈R w(vx) ≥ w(T2) delete v from

G as v may never participate in any optimal solution. By the triangle

inequality w e may now assume without loss of generality that for every

edge uv ∈ E(G) we have w(uv) ≤ 3w(T2) ≤ 6OPT(G,R,w).

Working towards a (1 + ε)-approximate kernel of polynomial size, set

k to be the smallest integer such that 1
blog2 kc ≤ ε/2. For each subset

R′ of R of size at most k, compute an optimal Steiner tree TR′ for the

instance (G,R′, w) in time O(3k|E(G)||V (G)|) using the algorithm of

Dreyfus and Wagner (1971). Mark all the vertices in V (TR′). After this

process is done, some O(k|R|k) vertices in G are marked. Obtain G′ from

G by deleting all the unmarked vertices in V (G)\R. Clearly every Steiner

tree in G′ is also a Steiner tree in G. We argue that OPT(G′, R,w) ≤
(1 + ε

2)OPT(G,R,w).

Consider an optimal Steiner tree T for the instance (G,R,w). By

Proposition 23.28 there is a k-restricted Steiner Tree S in G of cost

at most (1 + 1
blog2 kc) · w(T) ≤ (1 + ε

2)OPT(G,R,w). Consider a k-

component C ∈ S, and let R′ be the set of leaves of C - note that

these are exactly the terminals appearing in C. C is a Steiner tree for

R′, and so TR′ is a Steiner tree for R′ with w(TR′) ≤ w(C). Then

S ′ = (S \ {C}) ∪ {TR′} is a k-restricted Steiner Tree of cost no more

than (1+ ε
2)OPT(G,R,w). Repeating this argument for all k-components

of S we conclude that there exists a k-restricted Steiner Tree S in G of

cost at most (1 + ε
2)OPT(G,R,w), such that all k-components in S only

use marked vertices. The union of all of the k-components in S is then

a Steiner tree in G′ of cost at most (1 + ε
2)OPT(G,R,w).

We now define a new weight function ŵ : E(G′)→ N, by setting

ŵ(e) =

⌊
w(e) · 8|R|

ε · w(T2)

⌋

Note that since w(e) ≤ 3 · w(T2) it follows that ŵ(e) ≤ 24|R|
ε . Thus it

takes only O(log |R| + log 1
ε) bits to store each edge weight. It follows

that the bitsize of the instance (G′, R, ŵ) is |R|2O(1/ε)

. We now argue

that, for every c ≥ 1, a c-approximate Steiner tree T ′ for the instance

(G′, R, ŵ) is also a c(1 + ε)-approximate Steiner tree for the instance

(G,R,w).

494 Lossy kernelization

First, observe that the definition of ŵ implies that for every edge e we

have the inequality

w(e) ≤ ŵ(e) · ε · w(T2)

8|R| +
ε · w(T2)

8|R|
≤ ŵ(e) · ε · OPT(G,R,w)

4|R| +
ε · OPT(G,R,w)

4|R| .

In a complete graph that satisfies the triangle inequality, a Steiner tree

on |R| terminals has at most |R|−1 non-terminal vertices. Thus it follows

that T ′ has at most 2|R| edges. Therefore,

w(T ′) ≤ ŵ(T ′) · ε · OPT(G,R,w)

4|R| +
ε

2
OPT(G,R,w).

Consider now an optimal Steiner tree Q for the instance (G′, R,w). We

have that

w(Q) · 4|R|
ε · OPT(G,R,w)

≥ ŵ(Q),

which in turn implies that

OPT(G′, R,w) ≥ OPT(G′, R, ŵ) · ε · OPT(G,R,w)

4|R| .

We can now wrap up the analysis by comparing w(T ′) with OPT(G,R,w).

w(T ′) ≤ ŵ(T ′) · ε · OPT(G,R,w)

4|R| +
ε

2
OPT(G,R,w)

≤ c · OPT(G′, R, ŵ) · ε · OPT(G,R,w)

4|R| +
ε

2
OPT(G,R,w)

≤ c · OPT(G′, R,w) +
ε

2
OPT(G,R,w)

≤ c · (1 + ε/2) · OPT(G,R,w) +
ε

2
OPT(G,R,w)

≤ c · (1 + ε) · OPT(G,R,w)

This implies that T ′ is a c(1+ε)-approximate Steiner tree for the instance

(G,R,w), concluding the proof.

Exercises

Problem 23.1. Prove Proposition 23.11.

Problem 23.2. Show that Clique (vc) admits EPSAKS.

23.5 Steiner Tree 495

Problem 23.3. Show that Vertex Cover/Treewidth-η Modulator admits EP-
SAKS.

Problem 23.4. Show that Feedback Vertex Cover/Treewidth-η Modulator
admits EPSAKS.

Problem 23.5 (A). Show that Path Contraction admits PSAKS.

Problem 23.6 (A). Show that Tree Contraction admits PSAKS.

Problem 23.7. Show that if a parameterized optimization problem Π admits PTAS
(or EPTAS) then Π admits a constant size PSAKS (or EPSAKS) under any param-
eterization.

Problem 23.8. Show that Chromatic Number/VC admits a 3
2

-approximate kernel.

Bibliographic notes

The notion of lossy kernelization was defined by Lokshtanov et al. (2017),

and the kernels described in this chapter are from that work. The PSAKS

for Partial Vertex Cover (Theorem 23.23) is based on the work of

Marx (2008), and the PSAKS for Steiner Tree (Theorem 23.29) on

(Byrka et al., 2013). In (Lokshtanov et al., 2017), it was also shown how

to interpret the work of Fellows et al. (2016) as an approximate kernel for

Optimal Linear Arrangement parameterized by vertex cover num-

ber. The existence of EPSAKSes for the problems considered in this

chapter is an open problem. We refer to (Lokshtanov et al., 2017) and

Appendix of this book for additional open problems. We also remark

that definitions of parameterized optimization problems existing prior

to this work, particularly those given for parameterized approximation

algorithms by Marx (2008), could have also served as a basis to define

parameterized approximate kernels. The difference between the defini-

tions of parameterized optimization problems present here and those

currently used in parameterized approximation algorithms are mostly

notational.

The Connected Vertex Cover problem is known to admit a factor

2 approximation (Arkin et al., 1993; Savage, 1982), and is known not

to admit a factor (2− ε)-approximation algorithm assuming the Unique

Games conjecture (Khot and Regev, 2008). Further, an approximation

algorithm with ratio below 1.36 would imply that P = NP (Dinur and

Safra, 2005). From the perspective of kernelization, it is easy to show

that Connected Vertex Cover admits a kernel with at most 2k

vertices (Cygan et al., 2015), where k is the solution size. On the other

496 Lossy kernelization

hand, Dom et al. (2014) showed that Connected Vertex Cover does

not admit a kernel of polynomial size, unless NP ⊆ coNP/Poly.

The 6-approximate kernel described for Cycle Packing is not the

best known. Lokshtanov et al. (2017) already developed a PSAKS for this

problem. Cycle Packing admits a factor O(log n) approximation algo-

rithm (Salavatipour and Verstraëte, 2005), and is known not to admit an

approximation algorithm (Friggstad and Salavatipour, 2011) with factor

O((log n)
1
2 ε) for any ε > 0, unless all problems in NP can be solved in

randomized quasi-polynomial time. With respect to kernelization, Cy-

cle Packing is known not to admit a polynomial kernel (Bodlaender

et al., 2011), unless NP ⊆ coNP/Poly.

The observation that a lossy pre-processing can simultaneously achieve

a better size bound than normal kernelization algorithms as well as a

better approximation factor than the ratio of the best approximation

algorithms is not new. In particular, motivated by this observation Fel-

lows et al. (2018) initiated the study of lossy kernelization. Fellows et al.

(2018) proposed a definition of lossy kernelization called α-fidelity ker-

nels. Essentially, an α-fidelity kernel is a polynomial time preprocessing

procedure such that an optimal solution to the reduced instance trans-

lates to an α-approximate solution to the original. Unfortunately this

definition suffers from the same serious drawback as the original defini-

tion of kernels—it does not combine well with approximation algorithms

or with heuristics. Indeed, in the context of lossy preprocessing this

drawback is even more damning, as there is no reason why one should

allow a loss of precision in the preprocessing step, but demand that the

reduced instance has to be solved to optimality. Furthermore, the def-

inition of α-fidelity kernels is usable only for problems parameterized

by the value of the optimum, and falls short for structural parameter-

izations. Even though the definition of α-approximate kernels crucially

differs from the definition of α-fidelity kernels (Fellows et al., 2018), it

seems that most of the preprocessing algorithms that establish the ex-

istence of α-approximate kernels can be used to establish the existence

of α-fidelity kernels and vice versa.

The work by Lokshtanov et al. (2017) also contains a framework to

obtain hardness results concerning approximate kernels. This framework

was devised by amalgamating the notion of cross-compositions, used

to show kernelization lower bounds, with gap-creating reductions, used

to show hardness of approximation bounds, thus defining gap creating

cross-compositions. Having set up the framework, it is shown that for

any α ≥ 1, Longest Path does not admit an α-approximate kernel of

23.5 Steiner Tree 497

polynomial size unless NP ⊆ coNP/Poly. Other stronger lower bounds,

which require additional work on top of the basic framework, are then

given for Set Cover and Hitting Set.

We refer to (Eiben et al., 2018; Siebertz, 2017; Krithika et al., 2016;

Agrawal et al., 2017; Dvořák et al., 2017) for further work on lossy

kernels. Exercises 23.5 and 23.6 are taken from (Krithika et al., 2016).

Appendix A

Open problems

In this chapter we provide a list of some of the most interesting (in our

opinion) open problems concerning kernelization. A comprehensive list

of open problems in Parameterized Complexity can be found at

http://fptschool.mimuw.edu.pl/opl.pdf. We also do not mention here

open questions concerning lossy kernelization: The concluding part of

Lokshtanov et al. (2017) contains a lot of open questions about this

subject.

A.1 Polynomial kernels

Directed Feedback Vertex Set

Input: A directed graph G and an integer k.

Question: Is there a set X of k vertices such that each directed cycle

of G contains a member of X?

The problem was shown to be in FPT by Chen et al. (2008). The

running time of the algorithm is 4kk!nO(1). It remains open whether Di-

rected Feedback Vertex Set admits a polynomial kernel parame-

terized by k. The special case where the input is a planar directed graph

is also open. The undirected variant of the problem, Feedback Ver-

tex Set, admits a polynomial a kernel with O(k2) vertices Thomassé

(2010) (see Chapter 5).

Planar Vertex Deletion

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k vertices of G such

that G−X is planar?

499

http://fptschool.mimuw.edu.pl/opl.pdf

500 Open problems

Planar Vertex Deletion is solvable in time kO(k)n, see Jansen

et al. (2014). Whether it admits a polynomial (in k) kernel is open. This

problem can be seen as a special case of F-deletion, which is defined

as follows. Let F be a finite set of graph. Then for a given graph G

and an integer k, we seek for a set of vertices X of size k such that

G − X contains no graph from F as a minor. Thus Planar Vertex

Deletion is exactly F for F = {K5,K3,3}. When the set F contains at

least planar graph, F-deletion admits a kernel of size kf(F) for some

function f , see Fomin et al. (2012b).

Interval Completion

Input: A graph G and an integer k.

Question: Can G be transformed into an interval graph by adding at

most k edges?

Let us remind that a graph G is interval graph if it is an intersec-

tion graph of open intervals of the real line. Bliznets et al. (2016) gave

an algorithm solving Interval Completion in time kO(
√
k)nO(1). No

polynomial (in k) kernel is known for this problem. Related comple-

tion problems, namely, Chordal Completion and Proper Interval

Completion, admit polynomial kernels, see Kaplan et al. (1999) and

Bessy and Perez (2013).

Partition into Monotone Subsequences

Input: A permutation π of {1, . . . , n} and an integer k.

Question: Is it possible to parition π in at most k monotone

subsequences?

For example, the permutation π = (1, 5, 4, 2, 3, 6) can be partitioned

into two monotone subsequences, one increasing and one decreasing,

namely (1, 3, 6) and (5, 4, 2). This problem is equivalent to deciding

whether a permutation graph admits a cocoloring with at most k col-

ors. The problem was shown to be in FPT by Heggernes et al. (2013).

The running time of their algorithm is 2O(k2 log k)nO(1). It remains open

whether Partition into Monotone Subsequences admits a poly-

nomial kernel parameterized by k.

Vertex Multiway Cut

Input: A graph G with a set of terminals T , and an integer k.

Question: Is there a set of vertices X ⊆ V (G) \ T of size at most k

such that in the graph G − X no pair of terminals from T is in the

same connected component? In other words, for every pair of distinct

vertices p, r ∈ T every s, t-path in G contains a vertex of X.

A.2 Structural kernelization bounds 501

Vertex Multiway Cut is solvable in time 2k ·nO(1). It is not known

whether it admits a polynomial kernel when parameterized by k. The

variant of the problem where X is allowed to contain terminals admits

a polynomial kernel, see Kratsch and Wahlström (2012). Kratsch and

Wahlström (2012) gave a randomized kernel with kt+1 vertices, which

is polynomial when the number of terminals t is a constant. Pilipczuk

et al. (2014) proved that the problem admits a polynomial kernel on

planar graphs.

T -Cycle

Input: A graph G with a set of terminals T .

Question: Is there a cycle in G containing all vertices of T? Here the

parameter is the cardinality of T .

For the special case T = V (G), T -Cycle is equivalent to deciding

whether G is Hamiltonian. The problem was shown to be solvable in

time 2|T | · nO(1) by Björklund et al. (2012). Wahlström (2013) proved

that T -Cycle admits a polynomial compression of size O(|T |3). How-

ever, this is a compression that maps a graph G with terminal set T

to a matrix M whose entries are polynomials. Then the determinant

polynomial of M contains a certain type of term if and only if (G,T) is

a yes-instance of T -Cycle. Finding the required terms in the determi-

nant polynomial is not known to be in NP and thus the standard trick

of transforming a polynomial compression into a polynomial kernel does

not work here. Whether T -Cycle admits a polynomial kernel is open.

More generally, we are not aware of any strong evidence that there exist

problems which do not admit a polynomial kernel but admit a polyno-

mial compression. Finding an example demonstrating that polynomial

compression is a strictly more general concept than polynomial kernel-

ization, is an extremely interesting open problem.

A.2 Structural kernelization bounds

Vertex Cover

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k vertices of G such

that G−X is edgeless?

By Chen et al. (2001), Vertex Cover admits a kernel with 2k

502 Open problems

vertices, see Chapter 6. By the lower bounds of Dell and van Melke-

beek (2014), see Chapter 20, it is unlikely that Vertex Cover ad-

mits a kernel of bitsize k2−ε for any ε > 0. However, this does not

rule out that Vertex Cover admits a kernel with (2 − ε) vertices for

some ε > 0. There is a common misconception that lower bounds on

non-approximability of a problem automatically yield the corresponding

lower bounds for kernels. In particular, the result of Dinur and Safra

(2005) that the optimization version of Vertex Cover is NP-hard to

approximate to within a factor of 1.3606 does not imply directly that

a kernel with 1.3606k vertices for Vertex Cover would imply that

P = NP. Similarly, the existence of a (2 − ε) vertex kernel does not di-

rectly refute the Unique Game Conjecture. We are not aware of (1 + ε)k

lower bound on the number of vertices in kernel for the problem for any

0 < ε < 1. Thus the problem of obtaining lower bounds on the number

of vertices in a kernel for Vertex Cover is widely open. The problem is

interesting even for a very special case, when the input graph is planar.

Similar questions are valid for Feedback Vertex Set and d-Hitting

Set, as we explain below.

Feedback Vertex Set

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k vertices of G such

that G−X is a forest?

By Thomassé (2010) (see also, Chapter 5), Feedback Vertex Set

admits a kernel with O(k2) vertices. As it was shown by Dell and van

Melkebeek (2014), the problem does not admit a polynomial compres-

sion with bitsize O(k2−ε), unless coNP ⊆ NP/ poly. However, whether

Feedback Vertex Set admits a kernel with O(k2−ε) vertices is open.

d-Hitting Set

Input: A universe U , a family A of sets over U , where each set in A is

of size at most d, and an integer k.

Question: Does there exist a set X ⊆ U of size at most k that has a

nonempty intersection with every set of A?

By Dell and van Melkebeek (2014), d-Hitting Set does not admit a

polynomial compression with bitsize O(kd−ε), unless coNP ⊆ NP/ poly.

Abu-Khzam (2010b) showed that d-Hitting Set admits a kernel with

at most (2d − 1)kd−1 + k elements. Could it be that d-Hitting Set

admits a kernel with a polynomial in k number of elements, where the

A.3 Deterministic kernels 503

degree of the polynomial does not depend on d? This does not look like

a plausible conjecture, but we do not know how to refute it either.

Cluster Vertex Deletion

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k vertices of G such

that G − X is a cluster graph? Here, a cluster graph is a graph where

every connected component is a clique.

Le et al. (2018) showed that the problem admits a kernel with O(k5/3)

vertices. The existence of a linear-vertex kernel for Cluster Vertex

Deletion is open.

Feedback Vertex Set in Tournaments

Input: A tournament G and an integer k.

Question: Is there a set X of k vertices such that each directed cycle

of G contains a member of X?

Similar to Cluster Vertex Deletion, Le et al. (2018) gave a sub-

quadratic O(k5/3) (in the number of vertices) kernel. No linear-vertex

kernel for Feedback Vertex Set in Tournaments is known.

Edge Dominating Set

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k edges of G such that

G− V (X) is edgeless?

Xiao et al. (2013) gave a kernel for this problem with O(k2) vertices

and of size O(k3). Whether these upper bounds are optimal is open.

A.3 Deterministic kernels

In Chapters 10 and 11, we saw how matroid based techniques can be used

to obtain polynomial kernels. Specifically, we made use of a computation

of representative families for linear representations of gammoids. Since

all known efficient constructions of linear representations of gammoids

are randomized, the kernels based on them are randomized. However,

there is no evidence that the only way of constructing polynomial kernels

for the problem in Chapters 10 and 11 is by making use of gammoids.

This brings to the following set of questions.

504 Open problems

Odd Cycle Transversal

Input: A graph G and an integer k.

Question: Does there exist a set X ⊆ V (G) of at most k vertices of G

such that G−X is bipartite?

Recall that a randomized polynomial kernel for Odd Cycle Transver-

sal parameterized by k was given by Kratsch and Wahlström (2014) (see

Chapter 10). The existence of a deterministic polynomial kernel for Odd

Cycle Transversal is open even when the input graph is planar.

Almost 2-SAT

Input: A CNF formula ϕ, where every clause consists of at most two

literals, and an integer k.

Question: Is it possible to make ϕ satisfiable by deleting at most k

clauses?

Vertex Cover Above LP

Input: A graph G and an integer k.

Question: Does there exist a set X of at most k vertices of G such

that G−X is edgeless?

Note that this is the same problem as Vertex Cover, but the name

Vertex Cover Above LP indicates of an above guarantee parame-

terization with the optimum solution lp(G) to the linear programming

relaxation of the problem as a lower bound. That is, the parameter is

k − lp(G).

Subset Feedback Vertex Set

Input: A graph G with a set of terminal vertices T and an integer k.

Question: Does there exist a set X of at most k vertices of G such

that graph G−X has no cycle passing through any vertex of T?

Let us note that Feedback Vertex Set is the special case of Subset

Feedback Vertex Set when T = V (G). A randomized polynomial

in k kernel for Subset Feedback Vertex Set was obtained by Hols

and Kratsch (2018). This algorithm also uses a linear representation of

a gammoid.

So far, even the existence of deterministic quasi-polynomial time ker-

nels for these problems is open.

A.4 Turing kernels 505

A.4 Turing kernels

Longest Path

Input: A graph G and an integer k.

Question: Does there exist a path in G of length at least k?

Longest Path is solvable in time 2O(k)nO(1), however it does not ad-

mit a polynomial kernel when parameterized by k, see Chapter 17. On

the other hand, as it was shown by Jansen (2017), it admits a polynomial

Turing kernel when the input graph is planar, see also Chapter 22. The

existence of Turing kernel for Longest Path was lifted to graphs ex-

cluding a fixed graph as a topological minor by Jansen et al. (2017). The

existence of a polynomial Turing kernel for Longest Path on general

graphs is open. Similar questions are open for Longest Cycle (finding

a cycle of length at least k) or finding a cycle of length exactly k.

In general, the reason why we have no evidence that Longest Path

does not admit a polynomial Turing kernel on general graphs, is the

lack of tools for obtaining such type of results. Developing instruments

which can be used to rule out polynomial Turing kernels is a big research

challenge. Hermelin et al. (2015) constructed a large group of problems

that equivalently (un)likely have Turing kernels.

Appendix B

Graphs and SAT Notation

A graph is a pair G = (V,E) of sets such that E is a set of 2-elements

subsets of V . The elements of V are the vertices and the elements of E

are the edges of G. Sometimes the vertex set of a graph G is referred to

as V (G) and its edge set as E(G). In this book graphs are always finite,

i.e. the sets V and E are finite, and simple, which means that not two

elements of E are equal. Unless specified otherwise, we use parameters

n = |V | and m = |E|. An edge of an undirected graph with endpoints u

and v is denoted by {u, v}; the endpoints u and v are said to be adjacent,

and one is said to be a neighbor of the other. In a directed graph an arc

going from vertex u to vertex v is denoted by (u, v). In arc a = (u, v), u

is the tail and v is the head of a. Often we write edge {u, v} or (u, v) as

uv. Graph G/e is obtained from G by contracting edge e = uv, which is

removal of edge e and identifying its endpoints u and v.

The complement of undirected graph G = (V,E) is denoted by G; its

vertex set is V and its edge set is E = {{u, v} : {u, v} /∈ E, u 6= v}.
For any non-empty subset W ⊆ V , the subgraph of G induced by W is

denoted by G[W]; its vertex set is W and its edge set consists of all those

edges of E with both endpoints in W . For S ⊆ V we often use G−S to

denote the graph G[V \S]. We also write G− v instead of G−{v}. The

neighborhood of a vertex v in G is NG(v) = {u ∈ V : {u, v} ∈ E} and

the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. For a vertex set

S ⊆ V we denote by NG(S) the set
⋃
v∈S NG(v)\S. We denote by dG(v)

the degree of a vertex v in graph G. We may omit indices if the graph

under consideration is clear from the context. The minimum degree of

a graph G is denoted by δ(G). The maximum degree of a graph G is

denoted by ∆(G). A graph G is called r-regular if all vertices of G have

degree r. A 3-regular graph is also called a cubic graph.

506

Graphs and SAT Notation 507

A walk of length k is a non-empty graph W = (V,E) of the form

V = {v0, v1, . . . , vk} E = {v0v1, v1v2, . . . , vk−1vk}.

A walk is a path, if the vi are all distinct. If P = v0v1 . . . vk is a path,

then the graph obtained fro P by adding edge xkx0 is called a cycle of

length k. The girth of a graph G is the shortest length of a cycle in G. A

Hamiltonian path (cycle) in a graph G is a path (cycle) passing through

all vertices of G. We denote by d(v, w) the distance between v and w in

the graph G, which is the shortest length of a path between v and w.

For any integer k ≥ 1 and any vertex v of G, we denote by Nk(v) the

set of all vertices w satisfying d(v, w) = k.

A matching M in graph G is a set of pairwise non-adjacent edges,

a vertex of G is saturated if it is incident to an edge in the matching.

Otherwise the vertex is unsaturated. For a given a matching M , an al-

ternating path is a path in which the edges belong alternatively to the

matching and not to the matching. An augmenting path is an alternat-

ing path that starts from and ends on unsaturated vertices. A perfect

matching is a matching M covering all vertices of the graph, i.e. every

vertex of the graph is an endpoint of an edge in M .

A nonempty graph G is connected if for every pair u, v of its vertices

there is a path between u and v. A connected component of the graph is

its maximal connected subgraph. A vertex v is a cutvertex of a graph, if

the number of connected components in G is less that in G− v. In other

words, cut vertex separates some connected component of G. A tree T is

a connected graph without cycles. A forest F is a graph without cycle;

thus all the connected components of F are trees. A spanning tree T of

a graph G is a tree such that V (T) = V (G) and E(T) ⊆ E(G).

An independent set I of a graph G = (V,E) is a subset of the vertex set

V such that the vertices of I are pairwise non-adjacent. The maximum

size of an independent set of a graph G is denoted by α(G). A clique C of

a graph G = (V,E) is a subset of the vertex set V such that the vertices

of C are pairwise adjacent. By ω(G) we denote the maximum clique-size

of a graph G. Let us remark that α(G) = ω(G). A dominating set D

of a graph G = (V,E) is a subset of the vertex set V such that every

vertex of V \D has a neighbor in D. By γ(G) we denote the minimum

size of a dominating set of a graph G.

A coloring of a graph G assigns a color to each vertex of G such

that adjacent vertices receive distinct colors. The chromatic number of

G denoted by χ(G) is the minimum k such that there is coloring of G

using k colors.

508 Graphs and SAT Notation

A vertex cover C of a graph G = (V,E) is a subset of the vertex set

V such that C covers the edge set E, i.e. every edge of G has at least

one endpoint in C. An edge cover C of a graph G = (V,E) is a subset

of the edge set E such that C covers the vertex set V , i.e. every vertex

of G is endpoint of at least one of the edges in C.

Two graphs G = (V,E) and H = (W,F) are isomorphic, denoted by

G ∼= H, if there is a bijection I : V → W such that for all u, v ∈ V

holds {u, v} ∈ E ⇔ {f(u), f(v)} ∈ F . Such a bijection I is called an

isomorphism. If G = H, it is called an automorphism. A mapping

h : V → W is a homomorphism from graph G = (V,E) to graph H =

(W,F) if for all u, v ∈ V : {u, v} ∈ E implies {f(u), f(v)} ∈ F .

For more information on Graph Theory we refer to the textbooks by

Bondy and Murty Bondy and Murty (2008), Diestel Diestel (2005) and

Berge Berge (1973).

SAT notation

Let Vars = {x1, x2, . . . , xn} be a set of Boolean variables. A variable x

or a negated variable ¬x is called a literal. A propositional formula ϕ is

in conjunctive normal form, or is a CNF formula, if it is of the form:

ϕ = C1 ∧ C2 ∧ . . . ∧ Cm.

Here, each Ci is a clause of the form

Ci = `i1 ∨ `i2 ∨ . . . ∨ `iri ,

where `ij are literals of some variables of Vars. The number of literals ri
in a clause Ci is called the length of the clause, and is denoted by |Ci|.
The size of formula ϕ is defined as |ϕ| =

∑m
i=1 |Ci|. The set of clauses

of a CNF formula is usually denoted by Cls.

For q ≥ 2, a CNF formula ϕ is in q-CNF if every clause from ϕ has at

most q literals. If ϕ is a formula and X a set of variables, then we denote

by ϕ − X the formula obtained from ϕ after removing all the clauses

that contain a literal of a variable from X.

For a CNF formula ϕ on variables Vars, a truth assignment is a map-

ping ψ : Vars → {⊥,>}. Here, we denote the false value as ⊥, and the

truth value as >. This assignment can be naturally extended to literals

by taking ψ(¬x) = ¬ψ(x) for each x ∈ Vars. A truth assignment ψ

satisfies a clause C of ϕ if and only if C contains some literal ` with

Graphs and SAT Notation 509

ψ(`) = >; ψ satisfies formula ϕ if it satisfies all the clauses of ϕ. A for-

mula is satisfiable if it is satisfied by some truth assignment; otherwise

it is unsatisfiable.

The notion of a truth assignment can be naturally generalized to par-

tial assignments that valuate only some subset X ⊆ Vars; i.e., ψ is a

mapping from X to {⊥,>}. Here, a clause C is satisfied by ψ if and

only if C contains some literal ` whose variable belongs to X, and which

moreover satisfies ψ(`) = >.

Appendix C

Problem Definitions

2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals.
Question:
Does there exist a satisfying assignment
for ϕ?

3-Coloring

Input:
A graph G.
Question:
Does there exist a coloring
c : V (G) → {1, 2, 3} such that
c(u) 6= c(v) for every uv ∈ E(G)?

d-Hitting Set

Input:
A universe U , a family A of sets over U ,
where each set in A is of size at most d,
and an integer k.
Question:
Does there exist a set X ⊆ U of size at
most k that has a nonempty intersection
with every set of A?

d-Set Packing

Input:
A universe U , a family A of sets over U ,
where each set in A is of size at most d,
and an integer k.
Question:
Does there exist a family A′ ⊆ A of k
pairwise-disjoint sets?

d-Subset CSP

Input:
A universe U , a family C of subsets of
size at most d of U , oracle access to a

function f :
(U
≤k

)
× C → {0, 1}, and an

integer k.
Question:
Does there exist a set X ⊆ U of size
at most k such that for every c ∈ C,
f(X, c) = 1?

(k, n− k)-MaxCut

Input:
A graph G, and integers k and p.
Question:
Does there exist a partition A] B of
V (G) such that |A| = k and at least p
edges of G have one endpoint in A and
the other endpoint in B?

K1,d-Packing

Input:
A graph G and an integer k.
Question:
Does G contain at least k vertex-disjoint
copies of the star K1,d?

(n− k)-Set Cover

Input:
A universe U of size n, a family F over
U , and an integer k.
Question:
Does there exist a subfamily F ′ ⊆ F of
size at most n− k such that

⋃F ′ = U?

510

Problem Definitions 511

Almost 2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals, and an
integer k.
Question:
Is it possible to make ϕ satisfiable by
deleting at most k clauses?

Almost Induced Matching

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G − X is an
induced matching?

Capacitated Vertex Cover

Input:
A graph G, a capacity func-
tion cap : V (G)→ N+ and an integer k.
Question:
Does there exist a set X of k vertices of
G that is a vertex cover in G for which
there is a mapping from E(G) to X such
that (i) for every edge e ∈ E(G) mapped
to a vertex v ∈ X, v is incident to e, and
(ii) at most cap(v) edges are mapped to
every vertex v ∈ X?

Clique

Input:
A graph G and an integer k.
Question:
Does there exist a set of k vertices of G
that is a clique in G?

CNF-SAT

Input:
A CNF formula ϕ.
Question:
Does there exist a satisfying assignment
for ϕ?

Component Order Connectivity

Input:
A graph G, and integers k and `.
Question:
Does there exist a set X of at most
k vertices such that every connected
component of G−X consists of at most
` vertices?

Cluster Editing

Input:
A graph G and an integer k.
Question:

Does there exist a set A ⊆
(V (G)

2

)
of

size at most k such that the graph
(V (G), (E(G) \ A) ∪ (A \ E(G))) is a
cluster graph? Here, a cluster graph is a
graph where every connected component
is a clique.

Cluster Vertex Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is a cluster
graph? Here, a cluster graph is a graph
where every connected component is a
clique.

Cograph Completion

Input:
A graph G and an integer k.
Question:
Does there exist a set F ⊆ V (G)× V (G)
such that G′ = (V (G), E(G) ∪ F) is a
cograph, i.e. G′ does not contain P4 as
an induced subgraph?

Colored Red-Blue Dominating Set

Input:
A bipartite graph G with bipartition
classes R]B = V (G), an integer ` and a
partition of R into ` sets R1, R2, . . . , R`.
Question:
Does there exist a set X ⊆ R that con-
tains exactly one element of every set Ri,
1 ≤ i ≤ ` and such that NG(X) = B?

Connected Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is connected
and NG[X] = V (G)?

Connected Vertex Cover

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is connected
and G−X is edgeless?

512 Problem Definitions

Cycle Packing

Input:
A graph G and an integer k.
Question:
Does there exist in G a family of k
pairwise vertex-disjoint cycles?

Digraph Pair Cut

Input:
A directed graph G, a designated vertex
s ∈ V (G), a family of pairs of vertices

F ⊆
(V (G)

2

)
, and an integer k.

Question:
Does there exist a set X of at most k
vertices of G, such that for each pair
{u, v} ∈ F , at least one vertex among
u and v is not reachable from s in the
graph G−X.

Disjoint Factors

Input:
A word w over an alphabet
Γ = {γ1, γ2, . . . , γs}.
Question:
Does there exist pairwise disjoint sub-
words u1, u2, . . . , us of w such that each
ui is of length at least two and begins
and ends with γi?

Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that NG[X] = V (G)?

Dual Coloring

Input:
A graph G and an integer k.
Question:
Does there exist a coloring
c : V (G)→ [n− k] such that c(u) 6= c(v)
for every edge uv?

Edge Clique Cover

Input:
A graph G and an integer k.
Question:
Does there exist k subgraphs
H1, H2, . . . , Hk of G such that each

Hi is a clique and E(G) =
⋃k

i=1 E(Hi)?

Edge Disjoint Cycle Packing

Input:
A graph G and an integer k.
Question:
Does there exist in G a family of k
pairwise edge-disjoint cycles?

Edge Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most
k edges of G such that G − V (X) is
edgeless?

Feedback Arc Set in Tournaments

Input:
A tournament G and an integer k.
Question:
Does there exist a set X of at most k
edges of G such that G−X is acyclic?

Feedback Vertex Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is a forest?

Hamiltonian Path

Input:
A graph G.
Question:
Does there exist a simple path P in G
such that V (P) = V (G)?

Hitting Set

Input:
A universe U , a family A of sets over U ,
and an integer k.
Question:
Does there exist a set X ⊆ U of size at
most k that has a nonempty intersection
with every element of A?

Independent Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is edgeless
and NG[X] = V (G)?

Problem Definitions 513

Independent Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is edgeless?

Longest Cycle

Input:
A graph G and an integer k.
Question:
Does there exist a cycle of G of length
at least k?

Longest Path

Input:
A graph G and an integer k.
Question:
Does there exist a path in G of length
at least k?

Max Leaf Spanning Tree

Input:
A graph G and an integer k.
Question:
Does there exist a spanning tree of G
with at least k leaves?

Max Leaf Subtree

Input:
A graph G and an integer k.
Question:
Does there exist a subgraph of G that is
a tree with at least k leaves?

Max-r-Lin-2

Input:
A system S of m linear equations,
e1, . . . , em, in n variables z1, . . . , zn over
F2 , and integer k. Each equation ej
is of the form

∑
i∈Ij zi = bj , where

∅ 6= Ij ⊆ {1, . . . , n} is of size at most r,
and has a positive integral weight wj .
Question:
Does there exist an assignment to
z1, . . . , zn such that the total weight of
the satisfied equations is at least k?

Max-Lin-2

Input:
A system S of m linear equations,
e1, . . . , em, in n variables z1, . . . , zn over
F2 , and integer k. Each equation ej
is of the form

∑
i∈Ij zi = bj , where

∅ 6= Ij ⊆ {1, . . . , n}, and has a positive
integral weight wj .
Question:
Does there exist an assignment to
z1, . . . , zn such that the total weight of
the satisfied equations is at least k?

Max-r-SAT

Input:
A CNF formula ϕ where every clause
consists of at most r literals, and an
integer k.
Question:
Does there exist an assignment ψ that
satisfies at least k clauses of ϕ?

Max-Er-SAT

Input:
A CNF formula ϕ where every clause
consists of exactly r literals and these
literals correspond to different variables,
and an integer k.
Question:
Does there exist an assignment ψ that
satisfies at least k clauses of ϕ?

Max-Internal Spanning Tree

Input:
A graph G and an integer k.
Question:
Does there exist a spanning tree of G
with at least k internal vertices?

MaxCut

Input:
A graph G and an integer k.
Question:
Does there exist a partition A] B of
V (G) such that at least k edges of G
have one endpoint in A and the second
endpoint in B?

Maximum Satisfiability

Input:
A CNF formula ϕ and an integer k.
Question:
Does there exist an assignment ψ that
satisfies at least k clauses of ϕ?

514 Problem Definitions

Min-Ones-2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals, and an
integer k.
Question:
Does there exist an assignment ψ that
satisfies ϕ and sets at most k variables
to true?

Min-Weight-2-IP

Input:
An instance I of integer programming
with two variables per inequality (IP2),
and an integer k.
Question:
Does I have a feasible solution of weight
at most k?

Multicolored Biclique

Input:
A bipartite graph G with bipartition
classes A] B = V (G), an integer k, a
partition of A into k sets A1, A2, . . . , Ak,
and a partition of B into k sets
B1, B2, . . . , Bk.
Question:
Does there exist a set X ⊆ A ∪ B that
contains exactly one element of every set
Ai and Bi, 1 ≤ i ≤ ` and that induces a
complete bipartite graph Kk,k in G?

Non-Blocker

Input:
A graph G and an integer k.
Question:
Does there exist a set X ⊆ V (G) of at
least k vertices such that every vertex in
X has a neighbor outside X?

Odd Cycle Transversal

Input:
A graph G and an integer k.
Question:
Does there exist a set X ⊆ V (G) of at
most k vertices of G such that G−X is
bipartite?

Odd Subgraph

Input:
A graph G and an integer k.
Question:
Does there exist a subgraph of G on
k edges where all vertices are of odd
degrees?

Optimal Linear Arrangement

Input:
A graph G and an integer k.
Question:
Does there exist a bijection
σ : V (G) → {1, . . . , n} such that∑

uv∈E(G) |σ(u)− σ(v)| ≤ k?

Partial Vertex Cover

Input:
A graph G and integers k and r.
Question:
Does there exist a set X of at most k
vertices of G such that at least r edges
of G are incident to at least one vertex
of X?

Planar Vertex Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is planar?

Planar Longest Cycle

Input:
A planar graph G and an integer k.
Question:
Does there exist a cycle in G of length
at least k?

Path Packing

Input:
A graph G and an integer k.
Question:
Does there exist in G a family of k
pairwise vertex disjoint paths of length
k?

Point Line Cover

Input:
A set P of points on the plane and an
integer k.
Question:
Does there exist a family L of at most k
lines on the plane such that every point
in P lies on some line from L?

Ramsey

Input:
A graph G and an integer k.
Question:
Does there exist a set X of exactly k
vertices of G such that G[X] is a clique
or G[X] is edgeless?

Problem Definitions 515

Red-Blue Dominating Set

Input:
A bipartite graph G with bipartition
classes R]B = V (G) and an integer k.
Question:
Does there exist a set X ⊆ R of size at
most k such that NG(X) = B?

Set Cover

Input:
A universe U , a family F over U , and an
integer k.
Question:
Does there exist a subfamily F ′ ⊆ F of
size at most k such that

⋃F ′ = U?

Set Splitting

Input:
A universe U and a family F of sets over
U .
Question:
Does there exist a set X ⊆ U such that
A ∩ X 6= ∅ and A \ X 6= ∅ for every
A ∈ F?

Steiner Tree

Input:
A graph G, a set K ⊆ V (G), and an
integer k.
Question:
Does there exist a connected subgraph
of G that contains at most k edges and
contains all vertices of K?

Treewidth

Input:
A graph G and an integer k.
Question:
Is the treewidth of G at most k?

Treewidth-η Modulator

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most
k vertices of G such that G − X has
treewidth at most η?

Vertex Cover Above LP

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is edgeless?
Note that this is the same problem as
Vertex Cover, but the name Vertex
Cover Above LP is usually used in
the context of above guarantee parame-
terization with an optimum solution to
a linear programming relaxation as a
lower bound.

Vertex Cover

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most
k vertices of G such that G − X is
edgeless?

References

Abu-Khzam, Faisal N. 2010a. An improved kernelization algorithm for r-Set
Packing. Information Processing Letters, 110(16), 621–624.

Abu-Khzam, Faisal N. 2010b. A kernelization algorithm for d-Hitting Set. J.
Computer and System Sciences, 76(7), 524–531.

Abu-Khzam, Faisal N., and Khuzam, Mazen Bou. 2012. An improved kernel
for the Undirected Planar Feedback Vertex Set Problem. Pages 264–273
of: Proceedings of the 7th International Symposium on Parameterized and
Exact Computation (IPEC). Lecture Notes in Comput. Sci., vol. 7535.
Springer.

Abu-Khzam, Faisal N., Collins, Rebecca L., Fellows, Michael R., Langston,
Michael A., Suters, W. Henry, and Symons, Christopher T. 2004. Ker-
nelization Algorithms for the Vertex Cover Problem: Theory and Exper-
iments. Pages 62–69 of: Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments and the 1st Workshop on Analytic Algo-
rithmics and Combinatorics (ALENEX/ANALC). SIAM.

Abu-Khzam, Faisal N., Fellows, Michael R., Langston, Michael A., and Suters,
W. Henry. 2007. Crown Structures for Vertex Cover Kernelization. The-
ory of Computing Systems, 41(3), 411–430.

Agarwal, Amit, Charikar, Moses, Makarychev, Konstantin, and Makarychev,
Yury. 2005. O(

√
logn) approximation algorithms for Min UnCut, Min

2CNF deletion, and directed cut problems. Pages 573–581 of: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing (STOC).
ACM.

Agrawal, Akanksha, Kolay, Sudeshna, Lokshtanov, Daniel, and Saurabh,
Saket. 2016a. A faster FPT algorithm and a smaller kernel for Block
Graph Vertex Deletion. Pages 1–13 of: Proceedings of the 12th Latin
American Theoretical Informatics Symposium (LATIN). Lecture Notes
in Comput. Sci., vol. 9644. Springer.

Agrawal, Akanksha, Lokshtanov, Daniel, Mouawad, Amer E., and Saurabh,
Saket. 2016b. Simultaneous Feedback Vertex Set: A parameterized per-
spective. Pages 7:1–7:15 of: Proceedings of the 33rd International Sympo-
sium on Theoretical Aspects of Computer Science (STACS). Leibniz In-

516

References 517

ternational Proceedings in Informatics (LIPIcs), vol. 47. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.

Agrawal, Akanksha, Saurabh, Saket, and Tale, Prafullkumar. 2017. On the
parameterized complexity of contraction to generalization of trees. Pages
1:1–1:12 of: Proceedings of the 12th International Symposium on Param-
eterized and Exact Computation (IPEC). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 89. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Alber, Jochen, Bodlaender, Hans L., Fernau, Henning, Kloks, Ton, and Nie-
dermeier, Rolf. 2002. Fixed parameter algorithms for dominating set and
related problems on planar graphs. Algorithmica, 33(4), 461–493.

Alber, Jochen, Fernau, Henning, and Niedermeier, Rolf. 2004a. Parameter-
ized complexity: exponential speed-up for planar graph problems. J.
Algorithms, 52(1), 26–56.

Alber, Jochen, Fellows, Michael R., and Niedermeier, Rolf. 2004b. Polynomial-
time data reduction for dominating set. J. ACM, 51(3), 363–384.

Alber, Jochen, Betzler, Nadja, and Niedermeier, Rolf. 2006. Experiments on
data reduction for optimal domination in networks. Annals OR, 146(1),
105–117.

Alon, Noga. 1986. The number of polytopes, configurations and real matroids.
Mathematika, 33(1), 62–71.

Alon, Noga, Yuster, Raphael, and Zwick, Uri. 1995. Color-coding. J. ACM,
42(4), 844–856.

Alon, Noga, Gutin, Gregory, Kim, Eun Jung, Szeider, Stefan, and Yeo, Anders.
2011. Solving MAX-r-SAT above a tight lower bound. Algorithmica,
61(3), 638–655.

Arkin, Esther M., Halldórsson, Magnús M., and Hassin, Refael. 1993. Approx-
imating the Tree and Tour Covers of a graph. Information Processing
Letters, 47(6), 275–282.

Arnborg, Stefan, and Proskurowski, Andrzej. 1989. Linear time algorithms for
NP-hard problems restricted to partial k-trees. Discrete Applied Mathe-
matics, 23(1), 11–24.

Arnborg, Stefan, Lagergren, Jens, and Seese, Detlef. 1991. Easy problems for
tree-decomposable graphs. J. Algorithms, 12(2), 308–340.

Arnborg, Stefan, Courcelle, Bruno, Proskurowski, Andrzej, and Seese, Detlef.
1993. An Algebraic Theory of Graph Reduction. J. ACM, 40(5), 1134–
1164.

Arora, Sanjeev, and Barak, Boaz. 2009. Computational Complexity — A Mod-
ern Approach. Cambridge University Press.

Bafna, Vineet, Berman, Piotr, and Fujito, Toshihiro. 1999. A 2-approximation
algorithm for the undirected feedback vertex set problem. SIAM Journal
on Discrete Mathematics, 12(3), 289–297.

Baker, Brenda S. 1994. Approximation algorithms for NP-complete problems
on planar graphs. J. ACM, 41(1), 153–180.

Balasubramanian, R., Fellows, Michael R., and Raman, Venkatesh. 1998. An
Improved Fixed-Parameter Algorithm for Vertex Cover. Information Pro-
cessing Letters, 65(3), 163–168.

518 References

Bansal, Nikhil, Blum, Avrim, and Chawla, Shuchi. 2004. Correlation Cluster-
ing. Machine Learning, 56(1-3), 89–113.

Bar-Yehuda, Reuven, Geiger, Dan, Naor, Joseph, and Roth, Ron M. 1998.
Approximation algorithms for the feedback vertex set problem with ap-
plications to constraint satisfaction and Bayesian inference. SIAM J.
Computing, 27(4), 942–959.

Bartlett, Andrew, Chartier, Timothy P., Langville, Amy N., and Rankin, Tim-
othy D. 2008. Integer Programming model for the Sudoku problem. The
Journal of Online Mathematics and Its Applications, 8.

Basavaraju, Manu, Francis, Mathew C., Ramanujan, M. S., and Saurabh,
Saket. 2016. Partially Polynomial Kernels for Set Cover and Test Cover.
SIAM J. Discrete Math., 30(3), 1401–1423.

Bellman, Richard. 1962. Dynamic programming treatment of the travelling
salesman problem. J. ACM, 9, 61–63.

Berge, Claude. 1973. Graphs and hypergraphs. North-Holland Mathematical
Library, vol. 6. Amsterdam: North-Holland Publishing Co.

Bessy, Stephane, and Perez, Anthony. 2013. Polynomial kernels for Proper In-
terval Completion and related problems. Information and Computation,
231(0), 89 – 108.

Bessy, Stéphane, Fomin, Fedor V., Gaspers, Serge, Paul, Christophe, Perez,
Anthony, Saurabh, Saket, and Thomassé, Stéphan. 2011. Kernels for
Feedback Arc Set In Tournaments. J. Computer and System Sciences,
77(6), 1071–1078.

Binkele-Raible, Daniel, Fernau, Henning, Fomin, Fedor V., Lokshtanov,
Daniel, Saurabh, Saket, and Villanger, Yngve. 2012. Kernel(s) for prob-
lems with no kernel: On out-trees with many leaves. ACM Transactions
on Algorithms, 8(4), 38.

Björklund, Andreas, Husfeldt, Thore, and Taslaman, Nina. 2012. Shortest
cycle through specified elements. Pages 1747–1753 of: Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM.

Bliznets, Ivan, Fomin, Fedor V., Pilipczuk, Marcin, and Pilipczuk, Micha l.
2016. Subexponential parameterized algorithm for Interval Completion.
Pages 1116–1131 of: Proceedings of the 27th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). SIAM.

Bodlaender, Hans L. 1996. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Computing, 25(6), 1305–
1317.

Bodlaender, Hans L. 2006. Treewidth: Characterizations, applications, and
computations. Pages 1–14 of: Proceedings of the 32nd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lec-
ture Notes in Comput. Sci., vol. 4271. Springer.

Bodlaender, Hans L. 2009. Kernelization: New upper and lower bound tech-
niques. Pages 17–37 of: Proceedings of the 4th International Workshop
on Parameterized and Exact Computation (IWPEC). Lecture Notes in
Comput. Sci., vol. 5917. Springer.

References 519

Bodlaender, Hans L., and de Fluiter, Babette. 1996. Reduction algorithms
for constructing solutions in graphs with small treewidth. Pages 199–
208 of: Proceedings of the Second Annual International Conference on
Computing and Combinatorics (COCOON). Lecture Notes Comp. Sci.,
vol. 1090. Springer.

Bodlaender, Hans L., and Hagerup, Torben. 1998. Parallel algorithms with
optimal speedup for bounded treewidth. SIAM J. Comput., 27, 1725–
1746.

Bodlaender, Hans L., and Penninkx, Eelko. 2008. A Linear Kernel for Planar
Feedback Vertex Set. Pages 160–171 of: Proceedings of the 3rd Inter-
national Workshop on Parameterized and Exact Computation (IWPEC).
Lecture Notes in Comput. Sci., vol. 5018. Springer.

Bodlaender, Hans L., and van Antwerpen-de Fluiter, Babette. 2001. Reduction
algorithms for graphs of small treewidth. Inform. and Comput., 167, 86–
119.

Bodlaender, Hans L., and van Dijk, Thomas C. 2010. A Cubic Kernel for
Feedback Vertex Set and Loop Cutset. Theory of Computing Systems,
46(3), 566–597.

Bodlaender, Hans L., Penninkx, Eelko, and Tan, Richard B. 2008. A Linear
Kernel for the k-Disjoint Cycle Problem on Planar Graphs. Pages 306–
317 of: Proceedings of the 19th International Symposium on Algorithms
and Computation (ISAAC). Lecture Notes in Comput. Sci., vol. 5369.
Springer.

Bodlaender, Hans L., Fomin, Fedor V., Lokshtanov, Daniel, Penninkx, Eelko,
Saurabh, Saket, and Thilikos, Dimitrios M. 2009a. (Meta) Kerneliza-
tion. Pages 629–638 of: Proceedings of the 50th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE.

Bodlaender, Hans L., Downey, Rodney G., Fellows, Michael R., and Hermelin,
Danny. 2009b. On problems without polynomial kernels. J. Computer
and System Sciences, 75(8), 423–434.

Bodlaender, Hans L., Thomassé, Stéphan, and Yeo, Anders. 2011. Kernel
bounds for disjoint cycles and disjoint paths. Theoretical Computer Sci-
ence, 412(35), 4570–4578.

Bodlaender, Hans L., Jansen, Bart M. P., and Kratsch, Stefan. 2013. Kernel
bounds for path and cycle problems. Theoretical Computer Science, 511,
117–136.

Bodlaender, Hans L., Jansen, Bart M. P., and Kratsch, Stefan. 2014. Kernel-
ization Lower Bounds by Cross-Composition. SIAM Journal on Discrete
Mathematics, 28(1), 277–305.

Bodlaender, Hans L., Cygan, Marek, Kratsch, Stefan, and Nederlof, Jesper.
2015. Deterministic single exponential time algorithms for connectivity
problems parameterized by treewidth. Information and Computation,
243, 86–111.

Bodlaender, Hans L., Drange, P̊al Grøn̊as, Dregi, Markus S., Fomin, Fe-
dor V., Lokshtanov, Daniel, and Pilipczuk, Micha l. 2016a. A ckn 5-
approximation algorithm for treewidth. SIAM Journal on Computing,
45(2), 317–378.

520 References

Bodlaender, Hans L., Fomin, Fedor V., Lokshtanov, Daniel, Penninkx, Eelko,
Saurabh, Saket, and Thilikos, Dimitrios M. 2016b. (Meta) Kernelization.
J. ACM, 63(5), 44:1–44:69.

Bollobás, Béla. 1965. On generalized graphs. Acta Math. Acad. Sci. Hungar,
16, 447–452.

Bonamy, Marthe, and Kowalik, Lukasz. 2016. A 13k-kernel for planar feedback
vertex set via region decomposition. Theoretical Computer Science, 645,
25–40.

Bondy, Adrian, and Murty, Ram M. 2008. Graph theory. Graduate Texts in
Mathematics, vol. 244. New York: Springer.

Bonsma, Paul S., Brüggemann, Tobias, and Woeginger, Gerhard J. 2003. A
Faster FPT Algorithm for Finding Spanning Trees with Many Leaves.
Pages 259–268 of: Proceedings of the 28th Symposium on Mathematical
Foundations of Computer Science (MFCS). Lecture Notes in Comput.
Sci., vol. 2747. Springer.

Borchers, Al, and Du, Ding-Zhu. 1997. The k-Steiner Ratio in Graphs. SIAM
Journal on Computing, 26(3), 857–869.

Brooks, Leonard R. 1941. On colouring the nodes of a network. Proc. Cam-
bridge Philos. Soc., 37, 194–197.

Bunch, James R., and Hopcroft, John E. 1974. Triangular factorization and
inversion by fast matrix multiplication. Mathematics of Computation,
28(125), 231–236.

Burrage, Kevin, Estivill-Castro, Vladimir, Fellows, Michael R., Langston,
Michael A., Mac, Shev, and Rosamond, Frances A. 2006. The Undirected
Feedback Vertex Set Problem Has a Poly(k) Kernel. Pages 192–202 of:
Proceedings of the 2nd International Workshop on Parameterized and Ex-
act Computation (IWPEC). Lecture Notes in Comput. Sci., vol. 4169.
Springer.

Buss, Jonathan F., and Goldsmith, Judy. 1993. Nondeterminism within P.
SIAM J. Computing, 22(3), 560–572.

Byrka, Jaroslaw, Grandoni, Fabrizio, Rothvoß, Thomas, and Sanità, Laura.
2013. Steiner Tree Approximation via Iterative Randomized Rounding.
J. ACM, 60(1), 6:1–6:33.

Cai, Leizhen, and Cai, Yufei. 2015. Incompressibility of H-Free Edge Modifi-
cation Problems. Algorithmica, 71(3), 731–757.

Cai, Liming, Chen, Jianer, Downey, Rodney G., and Fellows, Michael R. 1997.
Advice Classes of Parameterized Tractability. Ann. Pure Appl. Logic,
84(1), 119–138.

Cao, Yixin, and Chen, Jianer. 2012. Cluster Editing: Kernelization Based on
Edge Cuts. Algorithmica, 64(1), 152–169.

Chekuri, Chandra, and Chuzhoy, Julia. 2016. Polynomial bounds for the Grid-
Minor Theorem. J. ACM, 63(5), 40:1–40:65.

Chen, Guantao, and Yu, Xingxing. 2002. Long Cycles in 3-Connected Graphs.
J. Combinatorial Theory Ser. B, 86(1), 80–99.

Chen, Jianer, and Lu, Songjian. 2009. Improved Parameterized Set Splitting
Algorithms: A Probabilistic Approach. Algorithmica, 54(4), 472–489.

References 521

Chen, Jianer, and Meng, Jie. 2012. A 2k kernel for the cluster editing problem.
J. Comput. Syst. Sci., 78(1), 211–220.

Chen, Jianer, Kanj, Iyad A., and Jia, Weijia. 2001. Vertex cover: further
observations and further improvements. J. Algorithms, 41(2), 280–301.

Chen, Jianer, Fernau, Henning, Kanj, Iyad A., and Xia, Ge. 2007. Parametric
Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel
Size. SIAM J. Computing, 37(4), 1077–1106.

Chen, Jianer, Liu, Yang, Lu, Songjian, O’Sullivan, Barry, and Razgon, Igor.
2008. A fixed-parameter algorithm for the directed feedback vertex set
problem. J. ACM, 55(5).

Chen, Xue, and Zhou, Yuan. 2017. Parameterized algorithms for Constraint
Satisfaction problems above average with global cardinality constraints.
Pages 358–377 of: Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM.

Chen, Zhi-Zhong, Jiang, Tao, and Lin, Guohui. 2003. Computing Phylogenetic
Roots with Bounded Degrees and Errors. SIAM J. Comput., 32(4), 864–
879.

Chleb́ık, Miroslav, and Chleb́ıková, Janka. 2008. Crown reductions for the
Minimum Weighted Vertex Cover problem. Discrete Applied Mathemat-
ics, 156(3), 292–312.

Chor, Benny, Fellows, Michael R., and Juedes, David W. 2004. Linear Kernels
in Linear Time, or How to Save k Colors in O(n2) Steps. Pages 257–
269 of: Proceedings of the 30th Workshop on Graph-Theoretic Concepts
in Computer Science (WG). Lecture Notes in Comput. Sci., vol. 3353.
Springer.

Chuzhoy, Julia. 2015. Improved Bounds for the Flat Wall Theorem. Pages
256–275 of: Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM.

Chuzhoy, Julia. 2016. Improved Bounds for the Excluded Grid Theorem.
CoRR, abs/1602.02629.

Condon, Anne, Edelsbrunner, Herbert, Emerson, E. Allen, Fortnow, Lance,
Haber, Stuart, Karp, Richard M., Leivant, Daniel, Lipton, Richard J.,
Lynch, Nancy, Parberry, Ian, Papadimitriou, Christos H., Rabin, Michael,
Rosenberg, Arnold, Royer, James S., Savage, John, Selman, Alan L.,
Smith, Carl, Tardos, Eva, and Vitter, Jeffrey Scott. 1999. Chal-
lenges for Theory of Computing: Report for an NSF-Sponsored Work-
shop on Research in Theoretical Computer Science. Available at
https://www.cse.buffalo.edu/ selman/report/Report.html.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein,
Clifford. 2009. Introduction to Algorithms (3. ed.). MIT Press.

Corneil, Derek G., Perl, Yehoshua, and Stewart, Lorna K. 1985. A linear
recognition algorithm for cographs. SIAM J. Computing, 14, 926–934.

Courcelle, Bruno. 1990. The monadic second-order logic of graphs I: Recog-
nizable sets of finite graphs. Information and Computation, 85, 12–75.

Courcelle, Bruno. 1992. The Monadic Second-order Logic of Graphs III:
Treewidth, Forbidden Minors and Complexity Issues. Informatique
Théorique, 26, 257–286.

522 References

Crowston, Robert, Gutin, Gregory, and Jones, Mark. 2010. Note on Max Lin-2
above average. Inf. Process. Lett., 110(11), 451–454.

Crowston, Robert, Jones, Mark, and Mnich, Matthias. 2012a. Max-Cut Pa-
rameterized above the Edwards-Erdős Bound. Pages 242–253 of: Pro-
ceedings of the 39th International Colloquium of Automata, Languages
and Programming (ICALP). Lecture Notes in Comput. Sci., vol. 7391.
Springer.

Crowston, Robert, Gutin, Gregory, Jones, Mark, and Yeo, Anders. 2012b.
A New Lower Bound on the Maximum Number of Satisfied Clauses in
Max-SAT and Its Algorithmic Applications. Algorithmica, 64(1), 56–68.

Crowston, Robert, Jones, Mark, Muciaccia, Gabriele, Philip, Geevarghese,
Rai, Ashutosh, and Saurabh, Saket. 2013. Polynomial Kernels for lambda-
extendible Properties Parameterized Above the Poljak-Turzik Bound.
Pages 43–54 of: IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). Leibniz In-
ternational Proceedings in Informatics (LIPIcs), vol. 24. Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Crowston, Robert, Fellows, Michael R., Gutin, Gregory, Jones, Mark, Kim,
Eun Jung, Rosamond, Frances A., Ruzsa, Imre Z., Thomassé, Stéphan,
and Yeo, Anders. 2014. Satisfying more than half of a system of linear
equations over GF(2): A multivariate approach. J. Computer and System
Sciences, 80(4), 687–696.

Cygan, Marek, Kratsch, Stefan, Pilipczuk, Marcin, Pilipczuk, Micha l, and
Wahlström, Magnus. 2011. Clique cover and graph separation: New in-
compressibility results. CoRR, abs/1111.0570.

Cygan, Marek, Pilipczuk, Marcin, Pilipczuk, Micha l, and Wojtaszczyk,
Jakub Onufry. 2012. Kernelization hardness of connectivity problems in
d-degenerate graphs. Discrete Applied Mathematics, 160(15), 2131–2141.

Cygan, Marek, Kratsch, Stefan, Pilipczuk, Marcin, Pilipczuk, Micha l, and
Wahlström, Magnus. 2014a. Clique Cover and Graph Separation: New
Incompressibility Results. ACM Transactions on Computation Theory,
6(2), 6:1–6:19.

Cygan, Marek, Pilipczuk, Marcin, Pilipczuk, Micha l, and Wojtaszczyk,
Jakub Onufry. 2014b. Solving the 2-Disjoint Connected Subgraphs Prob-
lem Faster Than 2n. Algorithmica, 70(2), 195–207.

Cygan, Marek, Fomin, Fedor V., Kowalik, Lukasz, Lokshtanov, Daniel, Marx,
Dániel, Pilipczuk, Marcin, Pilipczuk, Micha l, and Saurabh, Saket. 2015.
Parameterized Algorithms. Springer.

Cygan, Marek, Grandoni, Fabrizio, and Hermelin, Danny. 2017. Tight kernel
bounds for problems on graphs with small degeneracy. ACM Transactions
on Algorithms, 13(3), 43:1–43:22.

Daligault, Jean, and Thomassé, Stéphan. 2009. On finding directed trees
with many leaves. Pages 86–97 of: Proceedings of the 4th International
Workshop on Parameterized and Exact Computation (IWPEC). Lecture
Notes in Comput. Sci., vol. 5917. Springer.

Daligault, Jean, Gutin, Gregory, Kim, Eun Jung, and Yeo, Anders. 2010. FPT

References 523

algorithms and kernels for the Directed k-Leaf problem. J. Computer and
System Sciences, 76(2), 144–152.

de Fluiter, Babette. 1997. Algorithms for Graphs of Small Treewidth. Ph.D.
thesis, Utrecht University.

Dehne, Frank K. H. A., Fellows, Michael R., and Rosamond, Frances A. 2003.
An FPT Algorithm for Set Splitting. Pages 180–191 of: Proceedings of the
29TH International Workshop on Graph-Theoretic Concepts in Computer
Science (WG). Lecture Notes in Comput. Sci., vol. 2880. Springer.

Dehne, Frank K. H. A., Fellows, Michael R., Rosamond, Frances A., and Shaw,
Peter. 2004. Greedy Localization, Iterative Compression, Modeled Crown
Reductions: New FPT Techniques, an Improved Algorithm for Set Split-
ting, and a Novel 2k Kernelization for Vertex Cover. Pages 271–280 of:
Proceedings of the 1st International Workshop on Parameterized and Ex-
act Computation (IWPEC). Lecture Notes in Comput. Sci., vol. 3162.
Springer.

Dehne, Frank K. H. A., Fellows, Michael R., Fernau, Henning, Prieto-
Rodriguez, Elena, and Rosamond, Frances A. 2006. NONBLOCKER:
Parameterized Algorithmics for minimum dominating set. Pages 237–
245 of: SOFSEM 2006: Theory and Practice of Computer Science, 32nd
Conference on Current Trends in Theory and Practice of Computer Sci-
ence, Meŕın, Czech Republic, January 21-27, 2006, Proceedings.

Dell, Holger. 2014. AND-compression of NP-complete Problems: Streamlined
Proof and Minor Observations. Pages 184–195 of: Proceedings of the
9th International Symposium on Parameterized and Exact Computation
(IPEC). Lecture Notes in Comput. Sci., vol. 8894. Springer.

Dell, Holger, and Marx, Dániel. 2012. Kernelization of packing problems.
Pages 68–81 of: Proceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM.

Dell, Holger, and van Melkebeek, Dieter. 2014. Satisfiability Allows No Non-
trivial Sparsification unless the Polynomial-Time Hierarchy Collapses. J.
ACM, 61(4), 23.

Demaine, Erik D., and Hajiaghayi, MohammadTaghi. 2005. Bidimensionality:
new connections between FPT algorithms and PTASs. Pages 590–601
of: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM.

Demaine, Erik D., and Hajiaghayi, MohammadTaghi. 2008a. The Bidimen-
sionality Theory and Its Algorithmic Applications. Comput. J., 51(3),
292–302.

Demaine, Erik D., and Hajiaghayi, MohammadTaghi. 2008b. Linearity of grid
minors in treewidth with applications through bidimensionality. Combi-
natorica, 28(1), 19–36.

Demaine, Erik D., Fomin, Fedor V., Hajiaghayi, MohammadTaghi, and Thi-
likos, Dimitrios M. 2005. Subexponential Parameterized Algorithms on
Graphs of Bounded Genus and H-minor-free Graphs. J. ACM, 52(6),
866–893.

DeMillo, Richard A., and Lipton, Richard J. 1978. A probabilistic remark on
algebraic program testing. Information Processing Letters, 7, 193–195.

524 References

Diestel, Reinhard. 2005. Graph theory. 3rd edn. Graduate Texts in Mathe-
matics, vol. 173. Berlin: Springer-Verlag.

Dinur, Irit, and Safra, Samuel. 2005. On the hardness of approximating min-
imum vertex cover. Ann. of Math. (2), 162(1), 439–485.

Dom, Michael, Guo, Jiong, Hüffner, Falk, Niedermeier, Rolf, and Truß, Anke.
2010. Fixed-parameter tractability results for feedback set problems in
tournaments. J. Discrete Algorithms, 8(1), 76–86.

Dom, Michael, Lokshtanov, Daniel, and Saurabh, Saket. 2014. Kernelization
lower bounds through colors and IDs. ACM Transactions on Algorithms,
11(2), 13.

Dorn, Frederic, Fomin, Fedor V., and Thilikos, Dimitrios M. 2008. Subexpo-
nential parameterized algorithms. Computer Science Review, 2(1), 29–39.

Downey, Rodney G., and Fellows, Michael R. 1999. Parameterized complexity.
New York: Springer-Verlag.

Downey, Rodney G., and Fellows, Michael R. 2013. Fundamentals of Param-
eterized Complexity. Texts in Computer Science. Springer.

Drange, P̊al Grøn̊as, Dregi, Markus Sortland, Fomin, Fedor V., Kreutzer,
Stephan, Lokshtanov, Daniel, Pilipczuk, Marcin, Pilipczuk, Micha l,
Reidl, Felix, Villaamil, Fernando Sánchez, Saurabh, Saket, Siebertz, Se-
bastian, and Sikdar, Somnath. 2016a. Kernelization and Sparseness: the
Case of Dominating Set. Pages 31:1–31:14 of: Proceedings of the 33rd
International Symposium on Theoretical Aspects of Computer Science
(STACS). LIPIcs, vol. 47. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik.

Drange, P̊al Grøn̊as, Dregi, Markus S., and van ’t Hof, Pim. 2016b. On the
Computational Complexity of Vertex Integrity and Component Order
Connectivity. Algorithmica, 76(4), 1181–1202.

Dreyfus, Stuart E., and Wagner, Robert A. 1971. The Steiner problem in
graphs. Networks, 1(3), 195–207.

Drucker, Andrew. 2015. New Limits to Classical and Quantum Instance Com-
pression. SIAM Journal on Computing, 44(5), 1443–1479.

Dvořák, Pavel, Feldmann, Andreas Emil, Knop, Dušan, Masař́ık, Tomáš, To-
ufar, Tomáš, and Veselý, Pavel. 2017. Parameterized Approximation
Schemes for Steiner Trees with Small Number of Steiner Vertices. CoRR,
abs/1710.00668.

Dvorák, Zdenek, and Lidický, Bernard. 2017. Independent Sets near the
lower bound in bounded degree graphs. Pages 28:1–28:13 of: Proceed-
ings of the 34th International Symposium on Theoretical Aspects of Com-
puter Science (STACS). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 66. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Dvorak, Zdenek, and Mnich, Matthias. 2014. Large Independent Sets in
Triangle-Free Planar Graphs. Pages 346–357 of: Proceedings of the 22nd
Annual European Symposium on Algorithms (ESA). Lecture Notes in
Comput. Sci., vol. 8737. Springer.

Edmonds, Jack, and Fulkerson, Delbert R. 1965. Transversals and Matroid
Partition. Defense Technical Information Center.

References 525

Eiben, Eduard, Kumar, Mithilesh, Mouawad, Amer E., Panolan, Fahad, and
Siebertz, Sebastian. 2018. Lossy Kernels for connected dominating set on
sparse graphs. Pages 29:1–29:15 of: Proceedings of the 35th International
Symposium on Theoretical Aspects of Computer Science (STACS). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 96. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Erdős, Paul, and Pósa, Louis. 1965. On independent circuits contained in a
graph. Canadian J. Math., 17, 347–352.

Erdős, Paul, and Rado, Richard. 1960. Intersection theorems for systems of
sets. J. London Math. Soc., 35, 85–90.

Estivill-Castro, Vladimir, Fellows, Michael R., Langston, Michael A., and
Rosamond, Frances A. 2005. FPT is P-Time Extremal Structure I. Pages
1–41 of: Proceedings of the First Workshop Algorithms and Complexity
in Durham (ACID), vol. 4.

Feige, Uriel. 1998. A Threshold of ln n for Approximating Set Cover. J. ACM,
45(4), 634–652.

Feige, Uriel, Hajiaghayi, MohammadTaghi, and Lee, James R. 2008. Im-
proved Approximation Algorithms for Minimum Weight Vertex Sepa-
rators. SIAM J. Computing, 38(2), 629–657.

Fellows, Michael R. 2003. Blow-Ups, Win/Win’s, and Crown Rules: Some
New Directions in FPT. In: Proceedings of the 29th Workshop on Graph-
Theoretic Concepts in Computer Science (WG). Lecture Notes in Com-
put. Sci., vol. 2880. Springer.

Fellows, Michael R. 2006. The Lost Continent of Polynomial Time: Prepro-
cessing and Kernelization. Pages 276–277 of: Proceedings of the 2nd Inter-
national Workshop on Parameterized and Exact Computation (IWPEC).
Lecture Notes in Comput. Sci., vol. 4169. Springer.

Fellows, Michael R., and Langston, Michael A. 1989. On Search, Decision
and the Efficiency of Polynomial-Time Algorithms (Extended Abstract).
Pages 501–512 of: Proceedings of the 21st Annual ACM Symposium on
Theory of Computing (STOC). ACM.

Fellows, Michael R., and Rosamond, Frances A. 2007. The Complexity Ecology
of Parameters: An Illustration Using Bounded Max Leaf Number. Pages
268–277 of: Proceedings of the 3rd Conference on Computability in Europe
(CiE). Lecture Notes in Comput. Sci., vol. 4497. Springer.

Fellows, Michael R., Heggernes, Pinar, Rosamond, Frances A., Sloper, Chris-
tian, and Telle, Jan Arne. 2004. Finding k Disjoint Triangles in an Ar-
bitrary Graph. Pages 235–244 of: Proceedings of the 30th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lec-
ture Notes in Comput. Sci., vol. 3353. Springer.

Fellows, Michael R., Lokshtanov, Daniel, Misra, Neeldhara, Mnich, Matthias,
Rosamond, Frances A., and Saurabh, Saket. 2009. The Complexity Ecol-
ogy of Parameters: An Illustration Using Bounded Max Leaf Number.
Theory of Computing Systems, 45(4), 822–848.

Fellows, Michael R., Guo, Jiong, Moser, Hannes, and Niedermeier, Rolf. 2011.
A generalization of Nemhauser and Trotters local optimization theorem.
J. Computer and System Sciences, 77(6), 1141–1158.

526 References

Fellows, Michael R., Hermelin, Danny, Rosamond, Frances A., and Shachnai,
Hadas. 2016. Tractable Parameterizations for the Minimum Linear Ar-
rangement Problem. ACM Transactions on Computation Theory, 8(2),
6:1–6:12.

Fellows, Michael R., Kulik, Ariel, Rosamond, Frances A., and Shachnai, Hadas.
2018. Parameterized approximation via fidelity preserving transforma-
tions. J. Comput. Syst. Sci., 93, 30–40.

Flum, Jörg, and Grohe, Martin. 2006. Parameterized Complexity Theory.
Texts in Theoretical Computer Science. An EATCS Series. Berlin:
Springer-Verlag.

Fomin, Fedor V., and Saurabh, Saket. 2014. Kernelization methods for fixed-
parameter tractability. Pages 260–282 of: Tractability. Cambridge Univ.
Press, Cambridge.

Fomin, Fedor V., and Strømme, Torstein. 2016. Vertex Cover Structural Pa-
rameterization Revisited. Pages 171–182 of: Proceedings of the 42nd In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science
(WG). Lecture Notes in Comput. Sci., vol. 9941. Springer.

Fomin, Fedor V., and Villanger, Yngve. 2012. Treewidth computation and
extremal combinatorics. Combinatorica, 32(3), 289–308.

Fomin, Fedor V., Lokshtanov, Daniel, Saurabh, Saket, and Thilikos, Dim-
itrios M. 2010. Bidimensionality and Kernels. Pages 503–510 of: Proceed-
ings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM.

Fomin, Fedor V., Lokshtanov, Daniel, Raman, Venkatesh, and Saurabh, Saket.
2011a. Bidimensionality and EPTAS. Pages 748–759 of: Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM.

Fomin, Fedor V., Golovach, Petr A., and Thilikos, Dimitrios M. 2011b. Con-
traction obstructions for treewidth. J. Combinatorial Theory Ser. B,
101(5), 302–314.

Fomin, Fedor V., Lokshtanov, Daniel, Misra, Neeldhara, Philip, Geevarghese,
and Saurabh, Saket. 2011c. Hitting forbidden minors: Approximation
and Kernelization. Pages 189–200 of: Proceedings of the 28th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 9. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Fomin, Fedor V., Lokshtanov, Daniel, Saurabh, Saket, and Thilikos, Dim-
itrios M. 2012a. Linear kernels for (connected) dominating set on H-
minor-free graphs. Pages 82–93 of: Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM.

Fomin, Fedor V., Lokshtanov, Daniel, Misra, Neeldhara, and Saurabh, Saket.
2012b. Planar F-Deletion: Approximation, Kernelization and Optimal
FPT Algorithms. Pages 470–479 of: Proceedings of the 53rd Annual Sym-
posium on Foundations of Computer Science (FOCS). IEEE.

Fomin, Fedor V., Gaspers, Serge, Saurabh, Saket, and Thomassé, Stéphan.
2013. A linear vertex kernel for maximum internal spanning tree. J.
Computer and System Sciences, 79(1), 1–6.

References 527

Fomin, Fedor V., Jansen, Bart M. P., and Pilipczuk, Micha l. 2014. Prepro-
cessing subgraph and minor problems: When does a small vertex cover
help? J. Comput. System Sci., 80(2), 468–495.

Fomin, Fedor V., Todinca, Ioan, and Villanger, Yngve. 2015a. Large Induced
Subgraphs via Triangulations and CMSO. SIAM J. Comput., 44(1), 54–
87.

Fomin, Fedor V., Lokshtanov, Daniel, Misra, Neeldhara, Ramanujan, M. S.,
and Saurabh, Saket. 2015b. Solving d-SAT via Backdoors to Small
Treewidth. Pages 630–641 of: Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM.

Fomin, Fedor V., Lokshtanov, Daniel, Saurabh, Saket, and Thilikos, Dim-
itrios M. 2016a. Bidimensionality and Kernels. CoRR, abs/1606.05689.

Fomin, Fedor V., Lokshtanov, Daniel, Panolan, Fahad, and Saurabh, Saket.
2016b. Efficient Computation of Representative Families with Applica-
tions in Parameterized and Exact Algorithms. J. ACM, 63(4), 29:1–29:60.

Fomin, Fedor V., Lokshtanov, Daniel, Misra, Neeldhara, Philip, Geevarghese,
and Saurabh, Saket. 2016c. Hitting Forbidden Minors: Approximation
and Kernelization. SIAM Journal on Discrete Mathematics, 30(1), 383–
410.

Fomin, Fedor V., Lokshtanov, Daniel, Panolan, Fahad, and Saurabh, Saket.
2017. Representative Families of Product Families. ACM Transactions
on Algorithms, 13(3), 36:1–36:29.

Fomin, Fedor V., Lokshtanov, Daniel, and Saurabh, Saket. 2018. Excluded
Grid Minors and Efficient Polynomial-Time Approximation Schemes. J.
ACM, 65(2), 10:1–10:44.

Ford Jr., Lester R., and Fulkerson, Delbert R. 1956. Maximal flow through a
network. Canad. J. Math., 8, 399–404.

Fortnow, Lance, and Santhanam, Rahul. 2011. Infeasibility of instance com-
pression and succinct PCPs for NP. J. Computer and System Sciences,
77(1), 91–106.

Frank, András, Király, Tamás, and Kriesell, Matthias. 2003. On decomposing
a hypergraph into k connected sub-hypergraphs. Discrete Appl. Math.,
131(2), 373–383. Submodularity.

Frankl, Peter. 1982. An extremal problem for two families of sets. European
J. Combin., 3(2), 125–127.

Friggstad, Zachary, and Salavatipour, Mohammad R. 2011. Approximability
of Packing Disjoint Cycles. Algorithmica, 60(2), 395–400.

Gajarský, Jakub, Hlinený, Petr, Obdrzálek, Jan, Ordyniak, Sebastian, Reidl,
Felix, Rossmanith, Peter, Villaamil, Fernando Sánchez, and Sikdar, Som-
nath. 2017. Kernelization using structural parameters on sparse graph
classes. J. Computer and System Sciences, 84, 219–242.

Gall, François Le. 2014. Powers of tensors and fast matrix multiplication.
Pages 296–303 of: Proceedings of the International Symposium on Sym-
bolic and Algebraic Computation (ISSAC). ACM.

Gallai, Tibor. 1961. Maximum-minimum Sätze und verallgemeinerte Faktoren
von Graphen. Acta Math. Acad. Sci. Hungar., 12, 131–173.

528 References

Gallai, Tibor. 1967. Transitiv orientierbare Graphen. Acta Math. Acad. Sci.
Hungar, 18, 25–66.

Ganian, Robert, Slivovsky, Friedrich, and Szeider, Stefan. 2016. Meta-
kernelization with structural parameters. J. Computer and System Sci-
ences, 82(2), 333–346.

Garnero, Valentin, Paul, Christophe, Sau, Ignasi, and Thilikos, Dimitrios M.
2015. Explicit Linear Kernels via Dynamic Programming. SIAM Journal
on Discrete Mathematics, 29(4), 1864–1894.

Gramm, Jens, Guo, Jiong, Hüffner, Falk, and Niedermeier, Rolf. 2005. Graph-
Modeled Data Clustering: Exact Algorithms for Clique Generation. The-
ory of Computing Systems, 38(4), 373–392.

Gramm, Jens, Guo, Jiong, Hüffner, Falk, and Niedermeier, Rolf. 2008. Data
reduction and exact algorithms for clique cover. ACM Journal of Exper-
imental Algorithmics, 13, article 2.

Gu, Qian-Ping, and Tamaki, Hisao. 2012. Improved Bounds on the Planar
Branchwidth with Respect to the Largest Grid Minor Size. Algorithmica,
64(3), 416–453.

Guillemot, Sylvain, Havet, Frédéric, Paul, Christophe, and Perez, Anthony.
2013. On the (Non-) Existence of Polynomial Kernels for Pl-Free Edge
Modification Problems. Algorithmica, 65(4), 900–926.

Guo, Jiong. 2007. Problem Kernels for NP-Complete Edge Deletion Problems:
Split and Related Graphs. Pages 915–926 of: Proceedings of the 18th In-
ternational Symposium on Algorithms and Computation (ISAAC). Lec-
ture Notes in Computer Science, vol. 4835. Springer.

Guo, Jiong. 2009. A more effective linear kernelization for cluster editing.
Theoretical Computer Science, 410(8-10), 718–726.

Guo, Jiong, and Niedermeier, Rolf. 2007a. Invitation to data reduction and
problem kernelization. SIGACT News, 38(1), 31–45.

Guo, Jiong, and Niedermeier, Rolf. 2007b. Linear Problem Kernels for NP-
Hard Problems on Planar Graphs. Pages 375–386 of: Proceedings of the
34th International Colloquium of Automata, Languages and Programming
(ICALP). Lecture Notes in Comput. Sci., vol. 4596. Springer.

Guo, Jiong, Niedermeier, Rolf, and Wernicke, Sebastian. 2006. Fixed-
Parameter Tractability Results for Full-Degree Spanning Tree and Its
Dual. Pages 203–214 of: Proceedings of the 2nd International Workshop
on Parameterized and Exact Computation (IWPEC). Lecture Notes in
Comput. Sci., vol. 4169. Springer.

Guo, Jiong, Niedermeier, Rolf, and Wernicke, Sebastian. 2007. Parameterized
complexity of vertex cover variants. Theory of Computing Systems, 41,
501–520.

Gutin, Gregory, and Yeo, Anders. 2012. Constraint Satisfaction Problems
Parameterized above or below Tight Bounds: A Survey. Pages 257–286
of: The Multivariate Algorithmic Revolution and Beyond.

Gutin, Gregory, and Yeo, Anders. 2017. Parameterized Constraint Satisfaction
Problems: a Survey. Pages 179–203 of: Krokhin, Andrei A., and Zivny,
Stanislav (eds), The Constraint Satisfaction Problem: Complexity and

References 529

Approximability. Dagstuhl Follow-Ups, vol. 7. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik.

Gutin, Gregory, Jones, Mark, and Yeo, Anders. 2011a. Kernels for below-
upper-bound parameterizations of the hitting set and directed dominat-
ing set problems. Theoretical Computer Science, 412(41), 5744–5751.

Gutin, Gregory, Kim, Eun Jung, Szeider, Stefan, and Yeo, Anders. 2011b. A
probabilistic approach to problems parameterized above or below tight
bounds. J. Computer and System Sciences, 77(2), 422–429.

Gutin, Gregory, Kim, Eun Jung, Lampis, Michael, and Mitsou, Valia. 2011c.
Vertex Cover Problem Parameterized Above and Below Tight Bounds.
Theory of Computing Systems, 48(2), 402–410.

Gutin, Gregory, van Iersel, Leo, Mnich, Matthias, and Yeo, Anders. 2012.
Every ternary permutation constraint satisfaction problem parameterized
above average has a kernel with a quadratic number of variables. J.
Computer and System Sciences, 78(1), 151–163.

Gutin, Gregory, Rafiey, Arash, Szeider, Stefan, and Yeo, Anders. 2013a. Corri-
gendum. The Linear Arrangement Problem Parameterized Above Guar-
anteed Value. Theory of Computing Systems, 53(4), 690–691.

Gutin, Gregory, Muciaccia, Gabriele, and Yeo, Anders. 2013b. (Non-)existence
of polynomial kernels for the Test Cover problem. Inf. Process. Lett.,
113(4), 123–126.

Gyárfás, András. 1990. A simple lower bound on edge coverings by cliques.
Discrete Mathematics, 85(1), 103–104.

Habib, Michel, and Paul, Christophe. 2010. A survey of the algorithmic aspects
of modular decomposition. Computer Science Review, 4(1), 41–59.

Hagerup, Torben. 2012. Kernels for Edge Dominating Set: Simpler or smaller.
Pages 491–502 of: Proceedings of the 37th International Symposium on
Mathematical Foundations of Computer Science (MFCS). Lecture Notes
in Comput. Sci., vol. 7464. Springer.

Halin, Rudolf. 1976. S-functions for graphs. J. Geometry, 8(1-2), 171–186.

Hall, Philip. 1935. On representatives of subsets. J. London Math. Soc., 10,
26–30.

Har-Peled, Sariel, Kaplan, Haim, Mulzer, Wolfgang, Roditty, Liam, Seiferth,
Paul, Sharir, Micha, and Willert, Max. 2018. Stabbing pairwise inter-
secting disks by five points. CoRR, abs/1801.03158.

Heggernes, Pinar, Kratsch, Dieter, Lokshtanov, Daniel, Raman, Venkatesh,
and Saurabh, Saket. 2013. Fixed-parameter algorithms for Cochromatic
Number and Disjoint Rectangle Stabbing via iterative localization. Inf.
Comput., 231, 109–116.

Held, Michael, and Karp, Richard M. 1962. A dynamic programming approach
to sequencing problems. Journal of SIAM, 10, 196–210.

Hermelin, Danny, and Wu, Xi. 2012. Weak compositions and their applications
to polynomial lower bounds for kernelization. Pages 104–113 of: Proceed-
ings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM.

530 References

Hermelin, Danny, Kratsch, Stefan, Soltys, Karolina, Wahlström, Magnus, and
Wu, Xi. 2015. A Completeness Theory for Polynomial (Turing) Kernel-
ization. Algorithmica, 71(3), 702–730.

Hochbaum, Dorit S. (ed). 1997. Approximation algorithms for NP-hard prob-
lems. Boston, MA, USA: PWS Publishing Co.

Hols, Eva-Maria C., and Kratsch, Stefan. 2018. A Randomized Polynomial
Kernel for Subset Feedback Vertex Set. Theory of Computing Systems,
62(1), 63–92.

Hopcroft, John E., and Karp, Richard M. 1973. An n5/2 algorithm for maxi-
mum matchings in bipartite graphs. SIAM J. Computing, 2, 225–231.

Hopcroft, John E., and Tarjan, Robert E. 1973. Dividing a graph into tricon-
nected components. SIAM J. Computing, 2, 135–158.

Hüffner, Falk, Niedermeier, Rolf, and Wernicke, Sebastian. 2008. Techniques
for Practical Fixed-Parameter Algorithms. Comput. J., 51(1), 7–25.

Iwata, Yoichi. 2017. Linear-Time kernelization for Feedback Vertex Set. Pages
68:1–68:14 of: Proceedings of the 44th International Colloquium of Au-
tomata, Languages and Programming (ICALP). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 80. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik.

Jansen, Bart M. P. 2012. Kernelization for Maximum Leaf Spanning Tree with
Positive Vertex Weights. J. Graph Algorithms Appl., 16(4), 811–846.

Jansen, Bart M. P. 2013. The Power of Data Reduction: Kernels for Funda-
mental Graph Problems. Ph.D. thesis, Utrecht University, The Nether-
lands.

Jansen, Bart M. P. 2017. Turing kernelization for finding long paths and cycles
in restricted graph classes. J. Computer and System Sciences, 85, 18–37.

Jansen, Bart M. P., and Bodlaender, Hans L. 2013. Vertex Cover Kernelization
Revisited - Upper and Lower Bounds for a Refined Parameter. Theory
of Computing Systems, 53(2), 263–299.

Jansen, Bart M. P., and Marx, Dániel. 2015. Characterizing the easy-to-find
subgraphs from the viewpoint of polynomial-time algorithms, kernels,
and Turing kernels. Pages 616–629 of: Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.

Jansen, Bart M. P., Lokshtanov, Daniel, and Saurabh, Saket. 2014. A Near-
Optimal Planarization Algorithm. Pages 1802–1811 of: Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM.

Jansen, Bart M. P., Pilipczuk, Marcin, and Wrochna, Marcin. 2017. Tur-
ing Kernelization for Finding Long Paths in Graph Classes Excluding a
Topological Minor. CoRR, abs/1707.01797.

Jukna, Stasys. 2011. Extremal combinatorics. Second edn. Texts in Theoret-
ical Computer Science. An EATCS Series. Heidelberg: Springer. With
applications in computer science.

Kaibel, Volker, and Koch, Thorsten. 2006. Mathematik für den Volkssport.
DMV Mitteilungen, 14(2), 93.

References 531

Kammer, Frank, and Tholey, Torsten. 2016. Approximate tree decompositions
of planar graphs in linear time. Theoretical Computer Science, 645, 60–
90.

Kanj, Iyad A., Pelsmajer, Michael J., Schaefer, Marcus, and Xia, Ge. 2011.
On the induced matching problem. J. Computer and System Sciences,
77(6), 1058–1070.

Kaplan, Haim, Shamir, Ron, and Tarjan, Robert E. 1999. Tractability of
Parameterized Completion Problems on Chordal, Strongly Chordal, and
Proper Interval Graphs. SIAM J. Computing, 28(5), 1906–1922.

Karzanov, Alexander V. 1974. The problem of finding the maximal flow in a
network by the method of preflows. Dokl. Akad. Nauk SSSR, 215, 49–52.

Kawarabayashi, Ken-ichi, and Kobayashi, Yusuke. 2012. Linear min-max re-
lation between the treewidth of H-minor-free graphs and its largest grid.
Pages 278–289 of: Proceedings of the 29th International Symposium on
Theoretical Aspects of Computer Science (STACS). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 14. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

Khot, Subhash, and Raman, Venkatesh. 2002. Parameterized complexity of
finding subgraphs with hereditary properties. Theoretical Computer Sci-
ence, 289(2), 997–1008.

Khot, Subhash, and Regev, Oded. 2008. Vertex cover might be hard to ap-
proximate to within 2-epsilon. J. Comput. Syst. Sci., 74(3), 335–349.

Khuller, Samir. 2002. Algorithms column: the vertex cover problem. SIGACT
News, 33(2), 31–33.

Kim, Eun Jung, and Kwon, O-joung. 2017. A polynomial kernel for Block
Graph Deletion. Algorithmica, 79(1), 251–270.

Kim, Eun Jung, and Williams, Ryan. 2012. Improved Parameterized Algo-
rithms for above Average Constraint Satisfaction. Pages 118–131 of:
Proceedings of the 6th International Symposium on Parameterized and
Exact Computation (IPEC). Lecture Notes in Comput. Sci., vol. 7112.
Springer.

Kim, Eun Jung, Langer, Alexander, Paul, Christophe, Reidl, Felix, Ross-
manith, Peter, Sau, Ignasi, and Sikdar, Somnath. 2016. Linear Ker-
nels and Single-Exponential Algorithms Via Protrusion Decompositions.
ACM Transactions on Algorithms, 12(2), 21:1–21:41.

Kleitman, Daniel J., and West, Douglas. B. 1991. Spanning trees with many
leaves. SIAM J. Discrete Math., 4(1), 99–106.

Kőnig, Dénes. 1916. Über Graphen und ihre Anwendung auf Determinanten-
theorie und Mengenlehre. Math. Ann., 77(4), 453–465.

Kratsch, Stefan. 2014. Co-Nondeterminism in Compositions: A Kernelization
Lower Bound for a Ramsey-Type Problem. ACM Transactions on Algo-
rithms, 10(4), 19:1–19:16.

Kratsch, Stefan. 2016. A randomized polynomial kernelization for Vertex
Cover with a smaller parameter. Pages 59:1–59:17 of: Proceedings of the
24th Annual European Symposium on Algorithms (ESA). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 57. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

532 References

Kratsch, Stefan, and Wahlström, Magnus. 2009. Two Edge Modification
Problems without Polynomial Kernels. Pages 264–275 of: Parameterized
and Exact Computation, 4th International Workshop (IWPEC). Lecture
Notes in Computer Science, vol. 5917. Springer.

Kratsch, Stefan, and Wahlström, Magnus. 2010. Preprocessing of Min Ones
problems: A dichotomy. Pages 653–665 of: Proceedings of the 37th
International Colloquium of Automata, Languages and Programming
(ICALP). Lecture Notes in Comput. Sci., vol. 6198. Springer.

Kratsch, Stefan, and Wahlström, Magnus. 2012. Representative sets and ir-
relevant vertices: new tools for kernelization. Pages 450–459 of: Proceed-
ings of the 53rd Annual Symposium on Foundations of Computer Science
(FOCS). IEEE.

Kratsch, Stefan, and Wahlström, Magnus. 2013. Two edge modification prob-
lems without polynomial kernels. Discrete Optimization, 10(3), 193–199.

Kratsch, Stefan, and Wahlström, Magnus. 2014. Compression via Matroids: A
Randomized Polynomial Kernel for Odd Cycle Transversal. ACM Trans-
actions on Algorithms, 10(4), 20.

Kratsch, Stefan, Philip, Geevarghese, and Ray, Saurabh. 2016. Point Line
Cover: The Easy Kernel is Essentially Tight. ACM Transactions on Al-
gorithms, 12(3), 40:1–40:16.

Krithika, R., Misra, Pranabendu, Rai, Ashutosh, and Tale, Prafullkumar.
2016. Lossy kernels for graph contraction problems. Pages 23:1–23:14
of: Proceedings of the 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 65. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Kumar, Mithilesh, and Lokshtanov, Daniel. 2016. A 2lk kernel for l-
Component Order Connectivity. Pages 20:1–20:14 of: Proceedings of the
11th International Symposium on Parameterized and Exact Computation
(IPEC). Leibniz International Proceedings in Informatics (LIPIcs), vol.
63. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Lampis, Michael. 2011. A kernel of order 2k − c log k for vertex cover. Infor-
mation Processing Letters, 111(23-24), 1089–1091.

Lawler, Eugene L. 2001. Combinatorial Optimization: Networks and Matroids.
Dover Books on Mathematics Series. Dover Publications.

Le, Tien-Nam, Lokshtanov, Daniel, Saurabh, Saket, Thomassé, Stéphan, and
Zehavi, Meirav. 2018. Subquadratic kernels for Implicit 3-Hitting Set
and 3-Set Packing problems. Pages 331–342 of: Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.

Leaf, Alexander, and Seymour, Paul D. 2012 (manuscript).
Treewidth and planar minors. https://web.math.princeton.edu/
pds/papers/treewidth/paper.pdf.

Li, Wenjun, Cao, Yixin, Chen, Jianer, and Wang, Jianxin. 2017. Deeper local
search for parameterized and approximation algorithms for maximum
internal spanning tree. Information and Computation, 252, 187–200.

Linial, Nathan, and Sturtevant, Dean G. 1987. Unpublished result.

References 533

Lokshtanov, Daniel. 2009. New Methods in Parameterized Algorithms and
Complexity. Ph.D. thesis, University of Bergen.

Lokshtanov, Daniel, and Saurabh, Saket. 2009. Even Faster Algorithm for
Set Splitting! Pages 288–299 of: Proceedings of the 4th International
Workshop on Parameterized and Exact Computation (IWPEC). Lecture
Notes in Comput. Sci., vol. 5917. Springer.

Lokshtanov, Daniel, and Sloper, Christian. 2005. Fixed Parameter Set Split-
ting, Linear Kernel and Improved Running Time. Pages 105–113 of:
Proceedings of the first Algorithms and Complexity in Durham workshop
(ACiD). Texts in Algorithmics, vol. 4. King’s College, London.

Lokshtanov, Daniel, Mnich, Matthias, and Saurabh, Saket. 2011a. A linear
kernel for a planar connected dominating set. Theoretical Computer Sci-
ence, 412(23), 2536–2543.

Lokshtanov, Daniel, Marx, Dániel, and Saurabh, Saket. 2011b. Lower bounds
based on the Exponential Time Hypothesis. Bulletin of the EATCS, 105,
41–72.

Lokshtanov, Daniel, Narayanaswamy, N. S., Raman, Venkatesh, Ramanujan,
M. S., and Saurabh, Saket. 2014. Faster Parameterized Algorithms Using
Linear Programming. ACM Transactions on Algorithms, 11(2), 15.

Lokshtanov, Daniel, Panolan, Fahad, Ramanujan, M. S., and Saurabh, Saket.
2017. Lossy kernelization. Pages 224–237 of: Proceedings of the 49th
Annual ACM Symposium on Theory of Computing (STOC). ACM.

Lokshtanov, Daniel, Misra, Pranabendu, Panolan, Fahad, Saurabh, Saket, and
Zehavi, Meirav. 2018. Quasipolynomial Representation of Transversal
Matroids with Applications in Parameterized Complexity. Pages 32:1–
32:13 of: 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA.

Loréa, Michel. 1975. Hypergraphes et matroides. Cahiers Centre Etud. Rech.
Oper., 17, 289–291.

Lovász, László. 1970. A generalization of Kőnig’s theorem. Acta Math. Acad.
Sci. Hungar., 21, 443–446.

Lovász, László. 1977. Flats in matroids and geometric graphs. Pages 45–86 of:
Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal
Holloway Coll., Egham). Academic Press, London.

Lovász, László, and Plummer, Michael D. 2009. Matching theory. AMS
Chelsea Publishing, Providence, RI.

Mahajan, Meena, and Raman, Venkatesh. 1999. Parameterizing above guar-
anteed values: MaxSat and MaxCut. J. Algorithms, 31(2), 335–354.

Mahajan, Meena, Raman, Venkatesh, and Sikdar, Somnath. 2009. Param-
eterizing above or below guaranteed values. J. Computer and System
Sciences, 75(2), 137–153.

Majumdar, Diptapriyo, Raman, Venkatesh, and Saurabh, Saket. 2015. Ker-
nels for structural parameterizations of Vertex Cover-case of small de-
gree modulators. Pages 331–342 of: Proceedings of the 10th International
Symposium on Parameterized and Exact Computation (IPEC). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 43. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

534 References

Makarychev, Konstantin, Makarychev, Yury, and Zhou, Yuan. 2015. Satisfia-
bility of ordering CSPs above average is fixed-parameter tractable. Pages
975–993 of: Proceedings of the 56th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE.

Marx, Dániel. 2008. Parameterized Complexity and Approximation Algo-
rithms. The Computer Journal, 51(1), 60–78.

Marx, Dániel. 2009. A parameterized view on matroid optimization problems.
Theoretical Computer Science, 410(44), 4471–4479.

Marx, Dániel. 2011. Important Separators and Parameterized Algorithms.
Pages 5–10 of: Graph-Theoretic Concepts in Computer Science - 37th
International Workshop, WG 2011, Teplá Monastery, Czech Republic,
June 21-24, 2011. Revised Papers.

Marx, Dániel, and Razgon, Igor. 2014. Fixed-Parameter Tractability of Mul-
ticut Parameterized by the Size of the Cutset. SIAM J. Comput., 43(2),
355–388.

McConnell, Ross M., and de Montgolfier, Fabien. 2005. Linear-time modular
decomposition of directed graphs. Discrete Applied Mathematics, 145(2),
198–209.

McConnell, Ross M., and Spinrad, Jeremy P. 1999. Modular decomposition
and transitive orientation. Discrete Math., 201(1-3), 189–241.

McCuaig, William, and Shepherd, F. Bruce. 1989. Domination in graphs with
minimum degree two. J. Graph Theory, 13(6), 749–762.

Menger, Karl. 1927. Zur allgemeinen Kurventheorie. Fund. Math., 10, 96–115.
Misra, Neeldhara. 2010. Infeasibility of Polynomial Kernelization. M.Phil.

thesis, Institute of Mathematical Sciences, India.
Misra, Neeldhara, Narayanaswamy, N. S., Raman, Venkatesh, and Shankar,

Bal Sri. 2010. Solving MINONES-2-SAT as fast as VERTEX COVER.
Pages 549–555 of: Proceedings of the 35th International Symposium on
Mathematical Foundations of Computer Science (MFCS). Lecture Notes
in Comput. Sci., vol. 6281. Springer.

Misra, Neeldhara, Raman, Venkatesh, and Saurabh, Saket. 2011. Lower
bounds on kernelization. Discrete Optim., 8(1), 110–128.

Misra, Neeldhara, Philip, Geevarghese, Raman, Venkatesh, and Saurabh,
Saket. 2012a. On Parameterized Independent Feedback Vertex Set. The-
oretical Computer Science, 461, 65–75.

Misra, Pranabendu, Raman, Venkatesh, Ramanujan, M. S., and Saurabh,
Saket. 2012b. Parameterized Algorithms for Even Cycle Transversal.
Pages 172–183 of: Proceedings of the 38th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG). Lecture Notes in
Comput. Sci., vol. 7551. Springer.

Misra, Pranabendu, Raman, Venkatesh, Ramanujan, M. S., and Saurabh,
Saket. 2013. A Polynomial Kernel for Feedback Arc Set on Bipartite
Tournaments. Theory of Computing Systems, 53(4), 609–620.

Möhring, R. H., and Radermacher, F. J. 1984. Substitution decomposition
for discrete structures and connections with combinatorial optimization.
Pages 257–355 of: Algebraic and combinatorial methods in operations re-
search. North-Holland Math. Stud., vol. 95. Amsterdam: North-Holland.

References 535

Monien, Burkhard. 1985. How to find long paths efficiently. Pages 239–254
of: Analysis and design of algorithms for combinatorial problems (Udine,
1982). North-Holland Math. Stud., vol. 109. Amsterdam: North-Holland.

Moser, Hannes. 2009. A Problem Kernelization for Graph Packing. Pages 401–
412 of: Proceedings of the 35th Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM). Lecture Notes in Comput.
Sci., vol. 5404. Springer.

Moser, Hannes, and Sikdar, Somnath. 2007. The Parameterized Complexity of
the Induced Matching Problem in Planar Graphs. Pages 325–336 of: Pro-
ceedings First Annual International WorkshopFrontiers in Algorithmics
(FAW). Lecture Notes in Comput. Sci., vol. 4613. Springer.

Murota, Kazuo. 2000. Matrices and matroids for systems analysis. Algorithms
and Combinatorics, vol. 20. Springer-Verlag, Berlin.

Narayanaswamy, N. S., Raman, Venkatesh, Ramanujan, M. S., and Saurabh,
Saket. 2012. LP can be a cure for Parameterized Problems. Pages 338–349
of: Proceedings of the 29th International Symposium on Theoretical As-
pects of Computer Science (STACS). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 14. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

Nemhauser, George L., and Trotter, Jr., Leslie E. 1974. Properties of vertex
packing and independence system polyhedra. Math. Programming, 6,
48–61.

Niedermeier, Rolf. 2006. Invitation to fixed-parameter algorithms. Oxford
Lecture Series in Mathematics and its Applications, vol. 31. Oxford:
Oxford University Press.

Niedermeier, Rolf. 2010. Reflections on Multivariate Algorithmics and Prob-
lem Parameterization. Pages 17–32 of: Proceedings of the 27th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 5. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Oxley, James G. 2010. Matroid theory. 2nd edn. Oxford Graduate Texts in
Mathematics, vol. 21. Oxford university press.

Perfect, Hazel. 1968. Applications of Menger’s graph theorem. Journal of
Mathematical Analysis and Applications, 22(1), 96 – 111.

Philip, Geevarghese, Raman, Venkatesh, and Sikdar, Somnath. 2012. Poly-
nomial kernels for dominating set in graphs of bounded degeneracy and
beyond. ACM Transactions on Algorithms, 9(1), 11.

Pilipczuk, Marcin, Pilipczuk, Micha l, Sankowski, Piotr, and van Leeuwen,
Erik Jan. 2014. Network Sparsification for Steiner Problems on Planar
and Bounded-Genus Graphs. Pages 276–285 of: Proceedings of the 55th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society.

Prieto, Elena. 2005. Systematic Kernelization in FPT Algorithm Design.
Ph.D. thesis, The University of Newcastle, Australia.

Prieto, Elena, and Sloper, Christian. 2003. Either/Or: Using Vertex Cover

536 References

Structure in Designing FPT-Algorithms - The Case of k-Internal Span-
ning Tree. Pages 474–483 of: Proceedings of the 8th International Work-
shop on Algorithms and Data Structures (WADS 2003). Lecture Notes
in Comput. Sci., vol. 2748.

Prieto, Elena, and Sloper, Christian. 2005. Reducing to independent set
structure: the case of k-internal spanning tree. Nordic J. of Comput-
ing, 12(June), 308–318.

Prieto, Elena, and Sloper, Christian. 2006. Looking at the stars. Theoretical
Computer Science, 351(3), 437–445.

Raman, Venkatesh, and Saurabh, Saket. 2008. Short Cycles Make W-hard
Problems Hard: FPT Algorithms for W-hard Problems in Graphs with
no Short Cycles. Algorithmica, 52(2), 203–225.

Raman, Venkatesh, Saurabh, Saket, and Subramanian, C. R. 2006. Faster
fixed parameter tractable algorithms for finding feedback vertex sets.
ACM Transactions on Algorithms, 2(3), 403–415.

Ramsey, Frank P. 1930. On a Problem of Formal Logic. Proc. London Math.
Soc., S2-30, 264–286.

Reed, Bruce A. 1997. Tree width and tangles: a new connectivity measure
and some applications. Pages 87–162 of: Surveys in combinatorics. Lon-
don Math. Soc. Lecture Note Ser., vol. 241. Cambridge Univ. Press,
Cambridge.

Reed, Bruce A., Smith, Kaleigh, and Vetta, Adrian. 2004. Finding odd cycle
transversals. Operations Research Letters, 32(4), 299–301.

Robertson, Neil, and Seymour, Paul D. 1984. Graph Minors. III. Planar Tree-
Width. J. Combinatorial Theory Ser. B, 36, 49–64.

Robertson, Neil, and Seymour, Paul D. 1986a. Graph minors. II. Algorithmic
aspects of tree-width. J. Algorithms, 7(3), 309–322.

Robertson, Neil, and Seymour, Paul D. 1986b. Graph minors. V. Excluding a
planar graph. J. Combinatorial Theory Ser. B, 41(1), 92–114.

Robertson, Neil, Seymour, Paul D., and Thomas, Robin. 1994. Quickly ex-
cluding a planar graph. J. Combin. Theory Ser. B, 62(2), 323–348.

Salavatipour, Mohammad R., and Verstraëte, Jacques. 2005. Disjoint Cycles:
Integrality Gap, Hardness, and Approximation. Pages 51–65 of: Proceed-
ings of the 11th International Conference on Integer Programming and
Combinatorial Optimization (IPCO), vol. 3509. Springer.

Saurabh, Saket, and Zehavi, Meirav. 2016. (k, n − k)-Max-Cut: An O∗(2p)-
time algorithm and a polynomial kernel. Pages 686–699 of: Proceedings of
the 12th Latin American Theoretical Informatics Symposium (LATIN).
Lecture Notes in Comput. Sci., vol. 9644. Springer.

Savage, Carla. 1982. Depth-first search and the vertex cover problem. Infor-
mation Processing Letters, 14(5), 233 – 235.

Schrijver, Alexander. 2003. Combinatorial optimization. Polyhedra and effi-
ciency. Vol. A. Berlin: Springer-Verlag.

Schwartz, Jacob T. 1980. Fast Probabilistic Algorithms for Verification of
Polynomial Identities. J. ACM, 27(4), 701–717.

Seymour, Paul D., and Thomas, Robin. 1994. Call routing and the ratcatcher.
Combinatorica, 14(2), 217–241.

References 537

Shamir, Ron, Sharan, Roded, and Tsur, Dekel. 2004. Cluster graph modifica-
tion problems. Discrete Applied Mathematics, 144(1-2), 173–182.

Siebertz, Sebastian. 2017. Lossy kernels for connected distance-r domination
on nowhere dense graph classes. CoRR, abs/1707.09819.

Soleimanfallah, Arezou, and Yeo, Anders. 2011. A kernel of order 2k − c for
Vertex Cover. Discrete Mathematics, 311(10-11), 892–895.

Telle, Jan Arne, and Villanger, Yngve. 2012. FPT algorithms for Domination
in biclique-free graphs. Pages 802–812 of: Proceedings of the 20th Annual
European Symposium on Algorithms (ESA). Lecture Notes in Comput.
Sci., vol. 7501. Springer.

Thomassé, Stéphan. 2010. A Quadratic Kernel for Feedback Vertex Set. ACM
Transactions on Algorithms, 6(2).

Tutte, William T. 1966. Connectivity in graphs. Mathematical Expositions,
No. 15. University of Toronto Press, Toronto, Ont.; Oxford University
Press, London.

Tuza, Zsolt. 1994. Applications of the set-pair method in extremal hypergraph
theory. Pages 479–514 of: Extremal problems for finite sets (Visegrád,
1991). Bolyai Soc. Math. Stud., vol. 3. Budapest: János Bolyai Math.
Soc.

Tuza, Zsolt. 1996. Applications of the set-pair method in extremal prob-
lems. II. Pages 459–490 of: Combinatorics, Paul Erdős is eighty, Vol.
2 (Keszthely, 1993). Bolyai Soc. Math. Stud., vol. 2. Budapest: János
Bolyai Math. Soc.

van Rooij, Johan M. M., Bodlaender, Hans L., and Rossmanith, Peter. 2009.
Dynamic Programming on Tree Decompositions Using Generalised Fast
Subset Convolution. Pages 566–577 of: Proceedings of the 17th Annual
European Symposium on Algorithms (ESA). Lecture Notes in Comput.
Sci., vol. 5757. Springer.

Vazirani, Vijay V. 2001. Approximation Algorithms. Springer-Verlag New
York, Inc.

Wahlström, Magnus. 2013. Abusing the Tutte M=matrix: An algebraic in-
stance compression for the K-set-cycle problem. Pages 341–352 of: Pro-
ceedings of the 30th International Symposium on Theoretical Aspects of
Computer Science (STACS). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 20. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik.

Wang, Jianxin, Ning, Dan, Feng, Qilong, and Chen, Jianer. 2010. An improved
kernelization for P2-packing. Information Processing Letters, 110(5),
188–192.

Wang, Jianxin, Yang, Yongjie, Guo, Jiong, and Chen, Jianer. 2013. Planar
graph vertex partition for linear problem kernels. J. Comput. Syst. Sci.,
79(5), 609–621.

Weller, Mathias. 2013. Aspects of Preprocessing Applied to Combinatorial
Graph Problems. Ph.D. thesis, Universitatsverlag der TU Berlin, Ger-
many.

Welsh, Dominic J. A. 2010. Matroid theory. Courier Dover Publications.

538 References

Williams, Virginia Vassilevska. 2012. Multiplying matrices faster than
Coppersmith-Winograd. Pages 887–898 of: Proceedings of the 44th Sym-
posium on Theory of Computing Conference (STOC 2012). ACM.

Wu, Yu, Austrin, Per, Pitassi, Toniann, and Liu, David. 2014. Inapprox-
imability of Treewidth and Related Problems. J. Artif. Intell. Res., 49,
569–600.

Xiao, Mingyu. 2014. A new linear kernel for undirected Planar Feedback
Vertex Set: Smaller and simpler. Pages 288–298 of: Proceedings of the
10th International Conference on Algorithmic Aspects in Information and
Managemen (AAIM). Lecture Notes in Comput. Sci., vol. 8546. Springer.

Xiao, Mingyu. 2017a. Linear kernels for separating a graph into components
of bounded size. J. Comput. Syst. Sci., 88, 260–270.

Xiao, Mingyu. 2017b. On a generalization of Nemhauser and Trotter’s local
optimization theorem. J. Comput. Syst. Sci., 84, 97–106.

Xiao, Mingyu, and Guo, Jiong. 2015. A Quadratic Vertex Kernel for Feedback
Arc Set in Bipartite Tournaments. Algorithmica, 71(1), 87–97.

Xiao, Mingyu, and Kou, Shaowei. 2016. Almost Induced Matching: Linear ker-
nels and parameterized algorithms. Pages 220–232 of: Proceedings of the
42nd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG). Lecture Notes in Comput. Sci., vol. 9941. Springer.

Xiao, Mingyu, Kloks, Ton, and Poon, Sheung-Hung. 2013. New parameterized
algorithms for the edge dominating set problem. Theoretical Computer
Science, 511, 147–158.

Zippel, Richard. 1979. Probabilistic algorithms for sparse polynomials. Pages
216–226 of: Proceedings of the International Symposium on Symbolic and
Algebraic Computation (EUROSAM). Lecture Notes in Comput. Sci.,
vol. 72. Springer.

Author Index

Abu-Khzam, Faisal N. 68, 143,

269, 500

Agarwal, Amit 195, 229

Agrawal, Akanksha 92, 496

Alber, Jochen 269, 333

Alon, Noga 252, 414, 449, 453

Arkin, Esther M. 494

Arnborg, Stefan 302, 313, 375

Arora, Sanjeev 383, 398

Austrin, Per 313

Bafna, Vineet 55, 57, 269

Baker, Brenda S. 333

Balasubramanian, R. 37

Bansal, Nikhil 175

Bar-Yehuda, Reuven 57, 269

Barak, Boaz 383, 398

Bartlett, Andrew 17

Basavaraju, Manu 252

Bellman, Richard 229

Berge, Claude 506

Berman, Piotr 55, 57, 269

Bessy, Stephane 498

Betzler, Nadja 269

Binkele-Raible, Daniel 56, 422,

467

Björklund, Andreas 499

Bliznets, Ivan 498

Blum, Avrim 175

Bodlaender, Hans L. iv, 17, 38,

57, 68, 92, 229, 269, 281, 313,

314, 333, 334, 336, 349, 359,

375, 376, 398, 399, 411, 422,

437, 495

Bollobás, Béla 229, 376

Bonamy, Marthe 269

Bondy, Adrian 506

Bonsma, Paul S. 56

Borchers, Al 491

Brooks, Leonard R. 376

Brüggemann, Tobias 56

Bunch, James R. 229, 252

Burrage, Kevin 57, 92

Buss, Jonathan F. 37

Byrka, Jaroslaw 494

Cai, Leizhen 175

Cai, Liming 17

Cai, Yufei 175

Cao, Yixin 130, 175

Charikar, Moses 195, 229

Chartier, Timothy P. 17

Chawla, Shuchi 175

Chekuri, Chandra 309, 314

Chen, Guantao 460

Chen, Jianer 17, 68, 114, 130,

175, 269, 497, 499

Chen, Xue 252

539

540 Author Index

Chen, Zhi-Zhong 175

Chleb́ık, Miroslav 68, 114

Chleb́ıková, Janka 68, 114

Chor, Benny 68

Chuzhoy, Julia 309, 314

Collins, Rebecca L. 68

Condon, Anne iii

Cook, Stephen A. 16

Cormen, Thomas H. 365

Corneil, Derek G. 174

Courcelle, Bruno 296, 301, 313,

375

Crowston, Robert 252

Cygan, Marek v, 12, 16, 37, 38,

59, 143, 195, 229, 296, 313, 314,

382, 398, 412, 422, 437, 494

Daligault, Jean 56, 467

de Fluiter, Babette 375

de Montgolfier, Fabien 174

Dehne, Frank K. H. A. 57, 130

Dell, Holger 437, 453, 500

Demaine, Erik D. 269, 310, 315,

319, 333, 376

DeMillo, Richard A. 180

Diestel, Reinhard 506

Dinur, Irit 494, 500

Dom, Michael 37, 175, 399, 411,

422, 495

Dorn, Frederic 333

Downey, Rodney G. iv, 13, 16, 17,

37, 333, 398, 399

Drange, P̊al Grøn̊as 92, 281, 313,

376

Dregi, Markus S. 92, 281, 313

Dregi, Markus Sortland 376

Dreyfus, Stuart E. 492

Drucker, Andrew 452, 453

Du, Ding-Zhu 491

Dvořák, Pavel 496

Dvorak, Zdenek 37

Edelsbrunner, Herbert iii

Edmonds, Jack 195

Eiben, Eduard 496

Emerson, E. Allen iii

Erdős, Paul 142, 484

Estivill-Castro, Vladimir 56, 57,

92, 467

Feige, Uriel 281, 313, 333

Feldmann, Andreas Emil 496

Fellows, Michael R. iv, 13, 16, 17,

37, 56, 57, 68, 92, 114, 130, 252,

333, 375, 398, 399, 467, 494, 495

Feng, Qilong 68

Fernau, Henning 56, 57, 269, 333,

422, 467

Flum, Jörg 16, 37, 143, 467

Fomin, Fedor V. v, 12, 16, 17, 37,

38, 56, 57, 59, 92, 130, 175, 195,

230, 281, 296, 311, 313–315,

319, 333, 334, 346, 376, 377,

382, 398, 422, 467, 494, 498

Ford Jr., Lester R. 195

Fortnow, Lance iii, 398, 411

Francis, Mathew C. 252

Frank, András 117, 130

Frankl, Peter 229

Friggstad, Zachary 495

Fujito, Toshihiro 55, 57, 269

Fulkerson, Delbert R. 195

Gajarský, Jakub 377

Gall, François Le 195, 229

Gallai, Tibor 92, 174

Ganian, Robert 377

Garnero, Valentin 377

Gaspers, Serge 37, 130, 175

Geiger, Dan 57, 269

Goldsmith, Judy 37

Golovach, Petr A. 311

Author Index 541

Gramm, Jens 38, 175

Grandoni, Fabrizio 143, 494

Grohe, Martin 16, 37, 143, 467

Gu, Qian-Ping 309

Guillemot, Sylvain 175

Guo, Jiong 17, 37, 38, 114, 175,

269, 333, 486

Gutin, Gregory 38, 56, 57, 252,

399

Gyárfás, András 38

Haber, Stuart iii

Habib, Michel 174

Hagerup, Torben 269, 375

Hajiaghayi, MohammadTaghi

269, 281, 310, 313, 315, 319,

333, 376

Halin, Rudolf 313

Hall, Philip 58, 67

Halldórsson, Magnús M. 494

Hassin, Refael 494

Havet, Frédéric 175

Heggernes, Pinar 68, 498

Held, Michael 229

Hermelin, Danny iv, 143, 398,

399, 437, 465–467, 494, 503

Hlinený, Petr 377

Hols, Eva-Maria C. 230, 502

Hopcroft, John E. 59, 67, 229,

252, 461, 463

Hüffner, Falk 17, 37, 38, 175

Husfeldt, Thore 499

Iwata, Yoichi 17

Jansen, Bart M. P. 38, 56, 68,

398, 399, 422, 437, 467, 498, 503

Jia, Weijia 114, 499

Jiang, Tao 175

Jones, Mark 57, 252

Juedes, David W. 68

Jukna, Stasys 142, 229

Kaibel, Volker 17

Kalai, Gil 229

Kammer, Frank 314

Kanj, Iyad A. 114, 269, 333, 499

Kaplan, Haim 498

Karp, Richard M. iii, 59, 67, 229

Karzanov, Alexander V. 67

Kawarabayashi, Ken-ichi 310, 314

Khot, Subhash 437, 494

Khuller, Samir 114

Khuzam, Mazen Bou 269

Kim, Eun Jung 56, 92, 252, 377

Király, Tamás 117, 130

Kleitman, Daniel J. 41, 42

Kloks, Ton 269, 333, 501

Knop, Dušan 496

Kobayashi, Yusuke 310, 314

Koch, Thorsten 17

Kolay, Sudeshna 92

Kőnig, Dénes 58, 67

Kou, Shaowei 92

Kowalik, Lukasz v, 12, 16, 37, 59,

195, 269, 296, 313, 314, 382,

398, 494

Kratsch, Dieter 498

Kratsch, Stefan 38, 68, 175, 181,

195, 229–231, 398, 412, 422,

437, 446, 452, 453, 465–467,

499, 502, 503

Kreutzer, Stephan 376

Kriesell, Matthias 117, 130

Krithika, R. 496

Kulik, Ariel 495

Kumar, Mithilesh 92, 114, 496

Kwon, O-joung 92

Lagergren, Jens 302

Lampis, Michael 114, 252

Langer, Alexander 377

542 Author Index

Langston, Michael A. 56, 57, 68,

92, 114, 375, 467

Langville, Amy N. 17

Lawler, Eugene L. 195

Le, Tien-Nam 92, 175, 501

Leaf, Alexander 314

Lee, James R. 281, 313

Leiserson, Charles E. 365

Leivant, Daniel iii

Li, Wenjun 130

Lidický, Bernard 37

Lin, Guohui 175

Linial, Nathan 41, 42

Lipton, Richard J. iii, 180

Liu, David 313

Liu, Yang 497

Lokshtanov, Daniel v, 12, 16, 37,

56, 57, 59, 68, 92, 114, 130, 175,

195, 230, 269, 281, 296, 313,

314, 333, 334, 346, 376, 377,

382, 398, 399, 411, 422, 467,

494, 495, 497, 498, 501

Loréa, Michel 117

Lovász, László 67, 130, 229, 230

Lu, Songjian 130, 497

Lynch, Nancy iii

Mac, Shev 57, 92

Mahajan, Meena 233, 252

Majumdar, Diptapriyo 38

Makarychev, Konstantin 195, 229,

252

Makarychev, Yury 195, 229, 252

Marx, Dániel v, 12, 16, 37, 59,

195, 230, 296, 313, 314, 382,

398, 437, 494

Masař́ık, Tomáš 496

McConnell, Ross M. 174

McCuaig, William 55

Meng, Jie 175

Menger, Karl 195, 313

Misra, Neeldhara 17, 56, 57, 92,

114, 333, 376, 377, 411, 498

Misra, Pranabendu 92, 175, 195,

496

Mitsou, Valia 252

Mnich, Matthias 37, 56, 252, 269,

333

Möhring, R. H. 174

Monien, Burkhard 229

Moser, Hannes 68, 114, 269, 333

Mouawad, Amer E. 92, 496

Muciaccia, Gabriele 38, 252, 399

Murota, Kazuo 229

Murty, Ram M. 506

Naor, Joseph 57, 269

Narayanaswamy, N. S. 114, 195,

229

Nederlof, Jesper 229

Nemhauser, George L. 114

Niedermeier, Rolf 16, 17, 37, 38,

114, 175, 269, 333, 486

Ning, Dan 68

Obdrzálek, Jan 377

Ordyniak, Sebastian 377

O’Sullivan, Barry 497

Oxley, James G. 195

Panolan, Fahad 195, 230, 494–497

Papadimitriou, Christos H. iii

Parberry, Ian iii

Paul, Christophe 37, 174, 175, 377

Pelsmajer, Michael J. 269, 333

Penninkx, Eelko 269, 333, 334,

376

Perez, Anthony 37, 175, 498

Perfect, Hazel 195

Perl, Yehoshua 174

Philip, Geevarghese 37, 92, 143,

252, 377, 446, 453

Author Index 543

Pilipczuk, Marcin v, 12, 16, 37,

38, 59, 195, 296, 313, 314, 376,

382, 398, 412, 422, 437, 467,

494, 498, 499, 503

Pilipczuk, Micha l 281, 313, 376,

498, 499

Pitassi, Toniann 313

Plummer, Michael D. 67

Poon, Sheung-Hung 269, 501

Pósa, Louis 484

Prieto, Elena 56, 57, 68, 92, 130

Prieto-Rodriguez, Elena 57

Proskurowski, Andrzej 313, 375

Rabin, Michael iii

Radermacher, F. J. 174

Rado, Richard 131, 142

Rafiey, Arash 38

Rai, Ashutosh 252, 496

Raman, Venkatesh 17, 37, 38, 92,

114, 143, 175, 195, 229, 233,

252, 333, 411, 437, 485, 498

Ramanujan, M. S. 92, 175, 195,

229, 252, 376, 494, 495, 497

Ramsey, Frank P. 437

Rankin, Timothy D. 17

Ray, Saurabh 446, 453

Razgon, Igor 231, 497

Reed, Bruce A. 195, 313

Regev, Oded 494

Reidl, Felix 376, 377

Rivest, Ronald L. 365

Robertson, Neil 309, 313, 314

Rosamond, Frances A. 56, 57, 68,

92, 130, 252, 467, 494, 495

Rosenberg, Arnold iii

Rossmanith, Peter 314, 377

Roth, Ron M. 57, 269

Rothvoß, Thomas 494

Royer, James S. iii

Ruzsa, Imre Z. 252

Safra, Samuel 494, 500

Salavatipour, Mohammad R. 495

Sanità, Laura 494

Sankowski, Piotr 499

Santhanam, Rahul 398, 411

Sau, Ignasi 377

Saurabh, Saket v, 12, 16, 17, 37,

38, 56, 57, 59, 92, 130, 175, 195,

229, 230, 252, 269, 296, 313,

314, 333, 334, 346, 376, 377,

382, 398, 399, 411, 422, 467,

485, 494–498, 501

Savage, Carla 494

Savage, John iii

Schaefer, Marcus 269, 333

Schrijver, Alexander 67

Schwartz, Jacob T. 180

Seese, Detlef 302, 375

Selman, Alan L. iii

Seymour, Paul D. 281, 309, 313,

314

Shachnai, Hadas 494, 495

Shamir, Ron 175, 498

Shankar, Bal Sri 114

Sharan, Roded 175

Shaw, Peter 130

Shepherd, F. Bruce 55

Siebertz, Sebastian 376, 496

Sikdar, Somnath 37, 143, 252,

269, 333, 376, 377

Slivovsky, Friedrich 377

Sloper, Christian 57, 68, 130

Smith, Carl iii

Smith, Kaleigh 195

Soleimanfallah, Arezou 114

Soltys, Karolina 465–467, 503

Spinrad, Jeremy P. 174

Stein, Clifford 365

544 Author Index

Stewart, Lorna K. 174

Strømme, Torstein 38

Sturtevant, Dean G. 41, 42

Subramanian, C. R. 485

Suters, W. Henry 68, 114

Symons, Christopher T. 68

Szeider, Stefan 38, 252, 377

Tale, Prafullkumar 496

Tamaki, Hisao 309

Tan, Richard B. 269, 333

Tardos, Eva iii

Tarjan, Robert E. 461, 463, 498

Taslaman, Nina 499

Telle, Jan Arne 68, 143

Thilikos, Dimitrios M. 311, 315,

319, 333, 334, 346, 376, 377

Tholey, Torsten 314

Thomas, Robin 281, 309, 314

Thomassé, Stéphan 17, 37, 130,

175, 252, 411, 422, 495

Todinca, Ioan 281, 313

Toufar, Tomáš 496

Trotter, Leslie E., Jr. 114

Truß, Anke 37, 175

Tsur, Dekel 175

Tutte, William T. 461, 467

Tuza, Zsolt 229

van Antwerpen-de Fluiter,

Babette 336, 375

van Dijk, Thomas C. 57, 92

van Iersel, Leo 252

van Leeuwen, Erik Jan 499

van Melkebeek, Dieter 437, 453,

500

van Rooij, Johan M. M. 314

van ’t Hof, Pim 92

Vazirani, Vijay V. 492

Verstraëte, Jacques 495

Veselý, Pavel 496

Vetta, Adrian 195

Villaamil, Fernando Sánchez 376,

377

Villanger, Yngve 56, 143, 281,

313, 376, 422, 467

Vitter, Jeffrey Scott iii

Wagner, Robert A. 492

Wahlström, Magnus 38, 175, 499

Wang, Jianxin 68, 130, 269

Weller, Mathias 467

Welsh, Dominic J. A. 195

Wernicke, Sebastian 17, 269, 333,

486

West, Douglas. B. 41, 42

Williams, Ryan 252

Williams, Virginia Vassilevska 229

Woeginger, Gerhard J. 56

Wojtaszczyk, Jakub Onufry 412,

422, 437

Wrochna, Marcin 467, 503

Wu, Xi 437, 465–467, 503

Wu, Yu 313

Xia, Ge 269, 333

Xiao, Mingyu 57, 92, 114, 175,

269, 501

Yang, Yongjie 269

Yeo, Anders 17, 38, 56, 57, 114,

252, 399, 411, 422, 495

Yu, Xingxing 460

Yuster, Raphael 414

Zehavi, Meirav 37, 92, 175, 195,

501

Zhou, Yuan 252

Zippel, Richard 180

Zwick, Uri 414

Index

+, 199

M -sum-free, 244

[n], 198

NP/ poly, 383

α(G), 507

�k

see k × k-grid, 307

•, 198

◦, 199

coNP ⊆ NP/ poly, 384

γ(G), 507

F2, 237, 513

ω(G), 507

⊕, 177

k × k-grid, 307

k-CNF formula, 99

k-colored dominating set, 407

k-mini set cover, 234

q-CNF, 508

q-star, 70

x-flower, 85([n]
i

)
, 198

G-module, 149

(2SAT), 102

(IP2), 102

Integer Linear Programming (IP),

93

Linear Programming (LP), 93

rwb-dominating set, 29

adhesion, 461

algorithm

ApproximatingCOC, 80

ComputeGoodFamilies, 287

ComputeMaximalModule, 147

GreedyMiniSet(S, k), 234

GreedySystem, 242

antichain length, 292

apex graph, 376

apex-minor-free graph, 376

assignment

weight, 99

atomic formula, 299

automorphism, 508

bag, 275

Bell number, 265

bidimensional problem, 318

bidimensionality, 318, 316–332

bitsize, 15

Boolean variable, 98

Boolean variables, 404

boundary, 276

bridge, 42

Brook’s theorem, 372

Brooks Theorem, 376

Cauchy-Schwarz inequality, 173

chess, 6

chromatic number, 62, 372

clause, 98, 404, 508

clique, 507

closest set, 210

CMSO-optimization problem, 337, 337,

374

CNF, 98

CNF formula, 98, 508

closure, 100

cochromatic number, 500

cocoloring, 500

communication transcript, 440

complement, 62

complement of a hypergraph, 429

composition

545

546 Index

AND-, 452

AND-cross-, 452, 453

cross-, 389, 390, 398, 453

OR-, 398

weak, 437

weak cross-, 424, 425

compression, 190, 390, 501

conjunctive normal form, 98, 508

connected component, 507

connected dominating set, 324

connected set, 255, 353

contraction-bidimensional, 318

Cook’s theorem, 217

cotree, 159

Counting Monadic Second Order logic

CMSO2, 303

Courcelle’s theorem, 301–303

critical clique, 151

Crown Decomposition, 58

Crown decomposition, 59

CSP

constraint satisfaction problem, 214

cut

vertex, 217

Cut-covering lemma, 217

cut-width, 453

cutvertex, 507

cycle, 507

degree modulator, 32

dimension, 424

directed non-blocker set, 55

disjoint factor property, 402

disjoint union ∪̇, 159

distance, 507

distillation, 382

AND-, 452

bounded-, 382

OR-, 382, 390

dominating set, 28, 55, 293

double clique, 50

edge

subdivided, 44

edge cover, 508

efficient polynomial size approximate
kernelization scheme, 484

EPSAKS

see, efficient polynomial size
approximate kernelization

scheme, 484

Erdős-Rado lemma, 131

Euler’s formula, 253, 260, 464

excess, 242, 250
Excluded Grid Minor Theorem, 308

expander, 312

expansion
q-expansion, 70

weighted q-expansion, 75, 107
Explicit induced subgraph

representation, 366

Exponential Time Hypothesis, 13

factor, 402

feedback arc set, 27
feedback vertex set, 47

Finite Integer Index, 375

finite integer index, 341, 359
fixed-parameter tractability, 12

fixed-parameter tractable, 12

forest, 507
Four Color Theorem, 23

function
disjointness, 215

matroidal, 216

Galois field, 238

gammoid, 208

gammoids, 195
Gaussian elimination, 183

Generalized Laplace expansion, 200

GF(2), 238
girth, 507

good family, 286, 292

graph, 506
3-connected, 460

K4-minor-free, 311
P4, 158

d-degenerate, 135

k-tree, 312
boundaried, 338

cluster, 150

cograph, 158
connected, 507

expander, 312

Gaifmann, 115
implication digraph of CNF formula,

99

incidence, 116
outerplanar, 311
planar, 23, 253
primal, 115
prime, 145

quotient, 148
variable-clause incidence, 64

half-integral solution, 95

Index 547

Hall’s Theorem, 58

strong Hall’s condition, 117

Hamiltonian cycle, 507

Hamiltonian graph, 387

Hamiltonian path, 387, 507

Hopcroft-Karp algorithm, 59

hyperclique, 429

hyperforest, 115

hypergraph, 115

2-coloring, 119

partition-connected, 117

hypertree, 115

independent set, 23, 507

inductive priorities, 39

instance

malformed, 389, 389

well-formed, 389, 389

instance selector, 401

interval graph, 500

isomorphic graphs, 508

isomorphism, 508

iterative compression, 186

join ⊗, 159

Kőnig’s Minimax Theorem, 58, 97

kernel

for optimization problem, 476

polynomial, 13

size, 13

kernelization, 13

approximate, 479

trivial, 22

least common ancestor, 165

least common ancestor closure, 165,

262, 326

linear separability, 320

linear-separable problem, 320

linked, 181

literal, 98, 508

lossy kernelization, 470–494

matching, 58, 97, 507

matroid, 176

basis, 177

direct sum ⊕, 177

dual, 179

gammoid, 181

graphic, 179

linear, 177

partition, 179

rank, 177

representable, 177

transversal, 180

uniform, 178

matroid axioms, 176

matroid property

hereditary, 177

maximum matching, 98

Menger’s theorem, 182, 210, 213, 221

minimal separator, 461

minor, 312, 461

model, 274

modular partition, 145

factor, 149

maximal, 145

non-trivial, 145

trivial, 145

module, 144

G-, 149

maximal, 145

strong, 145

trivial, 145

undirected, 144

Monadic Second Order logic

MSO1, 298

MSO2, 296, 298

multicolored biclique, 426

neighborhood closure, 218

neighborhood partition, 357, 368

node, 274

non-blocker set, 55

odd cycle transversal, 186

operation

+, 199

•, 198

◦, 199

∪̇, 159, 434

⊗, 159, 434

⊕, 177

oracle, 458

oracle communication protocol, 439

oracle Turing machines, 467

Order Type Representation, 450

OTR, 450

parameterized problem, 11

partially polynomial kernel, 237

partition connectedness, 117

path, 507

alternating, 507

augmentig, 507

pathwidth, 453

permutation graph, 500

548 Index

polynomial compression, 15, 15–16,

390–428

polynomial equivalence relation, 388,

398

polynomial parameter transformation,

413, 413, 428

polynomial size approximate
kernelization scheme, 484, 484

PPT, 413, 465

preference relation, 286, 292, 294, 329

problem

bidimensional, 338, 351, 352, 374

(k, n− k)-MaxCut, 36, 37, 510

(n− k)-Set Cover, 233–235

2-SAT, 102, 105, 510

3-Coloring, 510

3-SAT, 430, 431, 444

K1,d-Packing, 56, 510

T -Cycle, 501

F-Completion, 175

F-Deletion, 175

F-Editing, 175

F-deletion, 57, 500

φ-Maximization, 316, 317

φ-Minimization, 316, 317

d-Hitting Set, 67, 68, 132, 133, 142,

143, 228, 423, 429–431, 433, 437,
444, 445, 502, 510

d-Set Packing, 67, 68, 133, 134, 142,

510

d-Subset CSP, 214, 215, 217, 230,

510

q-Coloring, 312, 332

Almost 2-SAT, 229, 230, 504, 511

Almost Induced Matching, 92, 511

Block Deletion Set, 91, 92

CNF-SAT, 12, 16, 22, 400, 404–406,

411, 430, 438, 511

Capacitated Vertex Cover, 420,

421, 511

Chordal Completion, 500

Chromatic Number/VC, 495

Chromatic Number, 312, 332

Clique (vc), 381, 394–397, 457–459,

494

Clique, 13, 394–398, 466, 467, 511

Cluster Editing, 36, 144, 150, 151,
156, 174, 175, 511

Cluster Vertex Deletion, 73, 92,
503, 511

Cograph Completion, 144, 158,

159, 162, 163, 165, 167, 175, 511

Colored Red-Blue Dominating

Set, 400, 407–409, 411, 416–418,
511

Component Order Connectivity,

69, 79, 80, 91–93, 105, 106, 108,
109, 111–114, 511

Connected Dominating Set, 56,

312, 320, 332, 333, 338, 375, 511

Connected Feedback Vertex Set,
312, 332, 338, 375

Connected Vertex Cover, 254,

255, 260, 269, 312, 332, 338, 375,
419–421, 465, 466, 469, 470, 488,

489, 491, 495, 496, 511

Cut-Covering, 217

Cycle Packing, 312, 317, 332, 333,
415, 416, 466, 469, 470, 473, 485,

486, 496, 512

Digraph Pair Cut, 206–214, 226,

229, 230, 512

Directed Feedback Vertex Set,

499

Directed Max Leaf, 56, 467

Disjoint Factors, 400, 402, 403,
411, 415, 416, 512

Dominating Set (vc), 269, 329, 331,

332

Dominating Set, 13, 21, 22, 28, 29,
31, 37, 135, 136, 140, 142, 143,

269, 292–296, 313–316, 320, 323,

324, 328, 329, 331–333, 338, 375,
376, 406, 512

Dual Coloring, 58, 60, 62, 63, 512

Edge Clique Cover, 21, 22, 35, 37,

38, 381, 453, 512

Edge Disjoint Cycle Packing, 415,
421, 512

Edge Dominating Set, 254, 257,

260, 269, 503, 512

Even Cycle Transversal, 91, 92

FAST, 27, 37, 144, 170–172, 175

Feedback Arc Set in

Tournaments, 21, 22, 27, 512

Feedback Vertex
Cover/Treewidth-η
Modulator, 495

Feedback Vertex Set in
Tournaments, 175, 503

Feedback Vertex Set, 17, 39, 40,

Index 549

47, 49, 54, 55, 57, 69, 82–89, 91,

92, 230, 260, 263, 269, 312, 332,

333, 338, 375, 376, 415, 423, 428,
429, 437, 445, 499, 502, 504, 512

Hamiltonian Cycle, 312, 332

Hamiltonian Path, 125, 196, 197,
229, 312, 332, 387, 390, 512

Hitting Set, 142, 406, 407, 416, 418,

419, 422, 465, 466, 497, 512

Independent Dominating Set, 332,

346, 512

Independent Feedback Vertex

Set, 91, 92

Independent Set, 23, 37, 284–287,
289–292, 295, 296, 313, 318–320,

343, 345, 346, 375, 513

Interval Completion, 500

List Coloring, 312

Longest Cycle (vc), 36, 65, 66

Longest Cycle, 58, 65, 312, 332,

467, 505, 513

Longest Path, 196, 197, 229, 312,

332, 375, 381, 382, 386–388, 399,
414, 415, 467, 496, 505, 513

Low-Rank Good Set Testing, 213

Max Leaf Spanning Tree, 40, 56,
513

Max Leaf Subtree, 39–41, 43,

45–48, 54, 56, 457, 459, 467, 513

Max-3-SAT, 21–23

Max-r-Lin-2, 239, 246–248, 250–252,

513

Max-r-SAT, 247, 252, 513

Max-Er-SAT, 247, 248, 250–252, 513

Max-Internal Spanning Tree/VC,

67

Max-Internal Spanning Tree, 67,
68, 115, 125, 130, 513

Max-Lin-2 AA, 251

Max-Lin-2, 237–240, 242, 251, 252,

513

MaxCut, 119, 232, 251, 311, 332, 513

Maximum Satisfiability, 22, 23, 58,
63–65, 513

Min-Ones-2-SAT, 93, 99, 101, 102,
105, 514

Min-Ones-r-SAT, 465, 466

Min-Weight-2-IP, 93, 102, 105, 514

Multicolored Biclique, 426–430,

514

Multicut, 231

Non-Blocker, 55, 514

Odd Cycle Transversal, 176, 186,

190, 192–196, 217, 227, 228, 230,

311, 332, 445, 504, 514

Odd Subgraph, 36, 514

Optimal Linear Arrangement, 37,

474, 495, 514

Partial Vertex Cover, 469, 470,
487, 495, 514

Partition Cut-Flow, 182, 186

Partition into Monotone
Subsequences, 500

Path Contraction, 495

Path Packing, 414, 415, 422, 514

Planar Independent Set, 21–24

Planar Longest Cycle, 457,
459–462, 467, 514

Planar Vertex Deletion, 499, 500,

514

Point Line Cover, 10, 12, 36, 438,

445–451, 453, 514

Proper Interval Completion, 500

Ramsey, 433–438, 453, 514

Red-Blue Dominating Set, 135,

136, 139, 140, 406, 407, 411,
416–422, 515

Refinement Ramsey, 434–436

Set Cover, 233, 406, 407, 416, 418,

422, 466, 497, 515

Set Splitting, 115, 118–121, 124,

130, 515

Simultaneous Feedback Vertex

Set, 91, 92

Steiner Tree, 302, 381, 392–394,
399, 419, 420, 466, 469, 470,

491–493, 495, 515

Subset Feedback Vertex Set, 504

Tree Contraction, 495

Treewidth-η Modulator, 321, 332,

333, 338, 375, 515

Treewidth, 438, 453, 515

Vertex Coloring, 312

Vertex Cover

(degree-1-modulator), 32, 38

Vertex Cover

(degree-2-modulator), 37, 38,
92

Vertex Cover (fvs), 37, 38

Vertex Cover Above LP, 504, 515

Vertex Cover/Treewidth-η

Modulator, 495

550 Index

Vertex Cover, 9, 14, 21, 22, 24, 25,

27, 31, 32, 37, 38, 42, 58, 60–62,

68, 69, 79, 85, 93, 96, 97, 99, 102,
105, 114, 205–207, 213, 214, 230,

255, 301, 302, 320, 338, 375, 420,

423, 424, 426–429, 437, 445–447,
472, 473, 480, 481, 501, 502, 504,

515

Vertex Multiway Cut, 230, 500,

501

Weighted Feedback Vertex Set,

91

CMSO-optimization, 337, 352, 374

contraction-bidimensional, 332

contraction-closed, 317

linear-separable, 320

parameterized optimization, 470

separable, 320, 332, 338, 351, 352,

359, 374

protrusion, 325, 324–329, 337, 347–374

protrusion cover, 361, 361–374

protrusion decomposition, 260, 325,

324–329, 334, 347–374

nice, 328

protrusion replacement, 348

PSAKS, 484

see, polynomial size approximate
kernelization scheme, 484

quantifier

alternation, 303

existential, 298, 299

universal, 298, 299

Ramsey’s theorem, 433

rankwidth, 453

reasonable problem, 292

reduction rule, 21

safeness, 22

soundness, 22

representative family, 199

SAT, 404

saturated vertex, 507

separability, 320

separable problem, 320, 332

separator, 461

minimal, 228

set

closest, 210

signature, 298, 343

Steiner tree, 392, 420

structure, 298

sudoku, 7
sunflower, 131, 131–133, 135

core, 131

lemma, 131, 215
petal, 131

Sunflower Lemma, 216

theorem

Cook-Levin, 16

torso, 461
touch, 361

tournament, 27, 171, 503
acyclic, 27

transitive, 27

transitive ordering, 27
transversal matroid, 195

tree, 507

tree decomposition, 274, 274, 460, 461
nice, 282

optimal, 274

semi-nice, 284, 328
simple, 279

treewidth, 274, 273–311

treewidth-η-modulator, 321
truth assignment, 99, 508

Turing kernel, see Turing kernelization,

458
Turing kernelization, 56, 458–467, 505

Tutte decomposition, 461
Two-Families Theorem, 229, 376

Vandermonde matrix, 178

variable, 297
Boolean, 508

free, 297, 298, 302
monadic, 298

vertex

branch, 43
internal, 125

subdivider, 44

vertex cover, 508
vertex subset problem, 291

walk, 507
well-linked set, 306

width

model, 274

	Preface
	Acknowledgments
	What is a kernel?
	Part ONE Upper Bounds
	Warm up
	Inductive priorities
	Crown Decomposition
	Expansion Lemma
	Linear Programming
	Hypertrees
	Sunflower Lemma
	Modules
	Matroids
	Representative families
	Greedy Packing
	Euler's formula

	Part TWO Meta Theorems
	Introduction to treewidth
	Bidimensionality and protrusions
	Surgery on graphs

	Part THREE Lower Bounds
	Framework
	Instance selectors
	Polynomial parameter transformation
	Polynomial lower bounds
	Extending distillation

	Part FOUR Beyond Kernelization
	Turing kernelization
	Lossy kernelization
	to 1.15Appendix AOpen problems
	to 1.15Appendix BGraphs and SAT Notation
	to 1.15Appendix CProblem Definitions
	References
	Author Index
	Index

