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Abstract

For pursuit-evasion games played on 1-skeletons of regular poly-
hedrons some problems of finding the minimum number of pursuers
needed for the capture (in various senses) of the mobile invisible evader
are considered. The results obtained for these graphs are consequences
of fundamental theorems in the theory of graph searching developed
by authors in [1, 2, 3].

1 Introduction and statement of the problem

We study the following problem of guaranteed search. Let a pursuit-evasion
game be played on a topological graph (embedded in an Euclidean space)
where a team of pursuers tries to catch an evader who is ”invisible” for
them, all players making use of ”simple motions” with fixed maximal speeds
and the topological graph being a phase restraint for their trajectories. The
problem is to find the minimum number of pursuers (searchers) needed to
catch the evader (the fugitive) under conditions mentioned above.
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Initially, problems of guaranteed search on graphs were stated by Parsons
in [4] and by Petrov in [5]. Since then such problems attracted the attention
of many researchers because of their connections with different seemingly
unrelated topics. Mention just some of them:

• linear graph layouts [6]

• problems of the fight against damage spread in complex systems, for
instance, spread of the mobile computer virus in networks [7]

• “pebbling” games [8]

• the theory of graphs minors [9]

• problems of privacy in distributed systems [10].

See surveys [7] and [11] for references.
Further we use the word graph to denote a finite connected topological

graph, embedded in R3. For simplicity, we shall assume that edges of a graph
are polygonal lines.

n pursuers P1, . . . , Pn and the evader E are on a graph Γ with the vertex
set V Γ and the edge set EΓ. We assume that in this space both pursuers
and the evader possess simple motions:

(Pi) : ẋi = ui, ‖ui‖ ≤ 1, i ∈ 1, n,

(E) : ẏ = u0, ‖u0‖ ≤ µ.

(‖ · · · ‖ is the Euclidean norm.) Let us suppose that admissible controls ui

and u0 are piecewise constant functions defined on arbitrary segments [0, T ].
Also we presume that Γ is a phase restraint for all players. So admissible
trajectories are piecewise affine vector functions with values in Γ.

Let ρ be the inner metric of Γ, i.e. ρ(x, y) is the Euclidean length of
the shortest path in Γ with ends in x and y. Denote by ε a nonnegative
number characterizing the ”radius of capture”. The evader E is caught by
a pursuer Pi at a moment t ∈ [0, T ], if ρ(xi(t), y(t)) ≤ ε. A family of
trajectories xi: [0, T ] → Γ, i ∈ 1, n is called a pursuers’ program on [0, T ]. A
program of n pursuers (x1, . . . , xn) on [0, T ] is said to be winning , iff for any
trajectory of the evader y: [0, T ] → Γ, there exist t ∈ [0, T ] and i ∈ 1, n, such
that ρ(xi(t), y(t)) ≤ ε. The problem is to determine the minimal number of
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pursuers that have a winning program. It is clear this number depends only
on the graph Γ, µ and ε. Denote this number by Sε

µ(Γ).
Note that this search problem can be interpreted as a problem of clearing

the graph from a “diffused” evader. We say that in program Π(x1(t), . . . , xn(t)),
t ∈ [0, T ], point x ∈ Γ is contaminated at a moment t∗ ∈ [0, T ], if there exists
a trajectory of the evader y(t), t ∈ [0, t∗], such that y(t∗) = x, and for any
i ∈ 1, n and t ∈ [0, t∗], ρ(y(t), xi(t)) > ε. Let us denote by CONT (Π, Γ, t∗)
the set of points of graph Γ contaminated at a moment t∗. Γ\CONT (Π, Γ, t∗)
is called by the cleared set at the moment t∗. Thus we can state that program
Π(x1(t), . . . , xn(t)), t ∈ [0, T ] is winning if and only if for some t∗ ∈ [0, T ] the
whole graph Γ is cleared at the moment t∗.

The case of µ = +∞ (the evader can move arbitrarily fast) and ε = 0
was initially considered by Parsons in [4]. Note that in this case the smallest
number of searchers having a winning program on a graph Γ is independent
of lengths of edges of Γ. The case of µ = +∞ and ε ≥ 0 was studied by
Golovach in [2] and the case of µ ≥ 0 and ε = 0 by Petrov in [5]. The
problems of Golovach and Petrov can be regarded as natural generalizations
of the “classical” Parsons’ problem. Solutions of these problems can be found
only in exceptional cases.

One of the basic tools of studying the “classical” Parsons’ problem is the
theorem of LaPaugh [12] which asserts that in the case of µ = +∞ and ε = 0
the “recontamination” does not help to search a graph, i.e., if a team of
pursuers can catch the evader then they can do it in a “monotone” fashion.
In more general problems this principle does not work and we cannot apply
standard technique. Hereby, in order to solve such problems we have to find
other “tools”.

Previously [1, 2, 3, 13] we proved a number of fundamental results on
graph searching. The main purpose of this paper is to demonstrate how
these results can be used in studying model problems.

In this paper we denote by T , C and O the graphs consisting of all edges
and vertices of Tetrahedron, Cube and Octahedron respectively. We shall
assume that edges of graphs T , C and O are one unit long.

The rest of the paper is organized as follows: In Section 2 we find numbers
Sε
∞(T ), Sε

∞(C) and Sε
∞(O) for all ε ≥ 0. In Section 3 we compute numbers

S0
µ(T ), S0

µ(C) and S0
µ(O) for µ ≥ 1. Also we show that S0

µ(T ) ≤ 2 for µ ≤ 1/3,
S0

µ(C) ≤ 3 for µ < 0.5 and S0
µ(C) ≤ 2 for µ ≤ 0.2.

We conclude with section 4 which contains some open problems.
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2 The case of µ = ∞, ε ≥ 0

Let us state without proofs some known facts which we will need in the
sequel.

The following statement was proven in [13].

Theorem 2.1 For any graph Γ with the minimal vertex degree δ ≥ 3, S0
∞(Γ) ≥

δ + 1.

Intuition suggests that if ε is small then Sε
∞(Γ) is close to S0

∞(Γ). The
following theorem (see [2] for the proof) confirms this suggestion and provides
us with a useful tool.

Theorem 2.2 Let l be the length of the shortest edge in a graph Γ. Then

1. Sε
∞(Γ) = S0

∞(Γ) for any 0 ≤ ε < 0.25l;

2. Sε
∞(Γ) ≥ S0

∞(Γ) − 1 for any 0.25l ≤ ε < 0.5l.

Now we are ready to prove the following statement.

Theorem 2.3

Sε
∞(T ) =



















4, if 0 ≤ ε < 0.25,
3, if 0.25 ≤ ε < 0.5,
2, if 0.5 ≤ ε < 1.5,
1, if 1.5 ≤ ε.

Proof. Note that in all cases the construction of the corresponding winning
program is easy: four pursuers can catch the evader for ε ≥ 0, three for
ε ≥ 0.25, two for ε ≥ 0.5 and one pursuer can win for ε ≥ 1.5.

For 0 ≤ ε < 0.5 the answer is given by theorems 2.1 and 2.2. The case
ε ≥ 0.5 is trivial. 2

In order to solve search problems for C and O we need stronger results.
A linear ordering of a graph Γ is a one-to-one mapping f : V Γ → {1, . . . , |V Γ|}.
Let f be a linear ordering of a graph G. We put

cwi(Γ, f) = |{(u, v) ∈ EΓ: f(u) ≤ i, f(v) > i}|.

The cutwidth of Γ with respect to an ordering f is

cw(Γ, f) = max
i∈1,|V Γ|

cwi(Γ, f)
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and the cutwidth of Γ (we denote it by cw(Γ)) is the minimum cutwidth over
all linear orderings of Γ.

Makedon and Sudborough in [6] proved

Theorem 2.4 For any graph Γ with the maximal degree ≤ 3, S0
∞(Γ) =

cw(Γ).

Let Γ be a graph. Denote by Γ′(v) the subgraph of Γ induced by the
set of all vertices adjacent to v. Let nk(Γ, v) be the number of connected
components of Γ′(v) containing precisely k vertices.

Let us define

c(Γ, v)
△
=

∞
∑

k=1

nk(Γ, v)
⌈k

2

⌉

,

and
c(Γ)

△
= min

v∈V Γ
c(Γ, v).

The following theorem was proven in [3].

Theorem 2.5 Let l be the length of the shortest edge in a graph Γ and let
0 ≤ ε < l. Then:

1. Sε
∞(Γ) ≥ c(Γ)

2. if for any vertex v ∈ V Γ all coefficients nk(Γ, v) with odd k are zeroes,
then Sε

∞(Γ) ≥ c(Γ) + 1.

Now we consider 1-skeletons of Cube and Octahedron.

Theorem 2.6

Sε
∞(C) =































5, if 0 ≤ ε < 0.25,
4, if 0.25 ≤ ε < 0.5,
3, if 0.5 ≤ ε < 1,
2, if 1 ≤ ε < 3,
1, if 3 ≤ ε.

Proof. Note that in all cases the construction of the corresponding winning
program is easy.

Since any vertex of C has degree three we can conclude (theorem 2.4) that
cw(C) = S0

∞(C). An ordering f of C, cw(C, f) = 5 is shown on Figure 1
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(we put here f(ui) = i). Note that for any ordering f , cw(C, f) ≥ 5. This
inequality is true because any subgraph of C induced by five vertices contains
at most five edges.

Thus lower bounds follow: for 0 ≤ ε < 0.5 from theorem 2.2, for 0.5 ≤
ε < 1 from theorem 2.5. The case 1 ≤ ε < 3 is trivial. 2

Theorem 2.7

Sε
∞(O) =































5, if 0 ≤ ε < 0.25,
4, if 0.25 ≤ ε < 0.5,
3, if 0.5 ≤ ε < 1,
2, if 1 ≤ ε < 2,
1, if 2 ≤ ε.

Proof. Theorem 2.1 implies that S0
∞(O) ≥ 5. The rest of the proof is as in

theorem 2.6.2

3 The case of µ ≥ 0, ε = 0

Let Γ be a graph with edges one unit long. We say that a program
Π(x1(t), . . . , xn(t)), t ∈ [0, T ], T ∈ N, on Γ is discrete, if for any k ∈ 1, T dur-
ing the time [k−1, k] every pursuer either stays in a vertex, or moves with the
unit speed from vertex to vertex, i.e., for any i ∈ 1, n either xi(t) = v ∈ V Γ,
t ∈ [k − 1, k], or xi(k − 1), xi(k) ∈ V Γ, xi(k − 1) 6= xi(k) and xi(t) 6∈ V Γ,
t ∈ (k − 1, k).

The following theorem was proven in [1].

Theorem 3.1 Let Γ be a graph with edges one unit long. The following
statements are equivalent:

1. n pursuers have a winning program on Γ for µ = 1, ε = 0.

2. n pursuers have a discrete winning program on Γ for µ = 1, ε = 0.

The following notions will be used in proofs of the next theorems.
Let Γ be a graph from the set {C, T,O} and let Π be a discrete program

on Γ, µ = 1. It is easy to prove that if at a moment k ∈ N a point of an
edge e ∈ EΓ is contaminated then all points of e are contaminated at the
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moment k. So at any moment k ∈ N every edge of Γ is either cleared or
contaminated. Denote the minimal number of pursuers which stay at i in a
vertex v through pi(v). We say that v is a special vertex at the moment i
if pi(v) is more than or equal to the number of contaminated edges incident
to v. Denote the set of all vertices special at a moment i by Ai and the
cardinality of Ai by ai. We say that vertex v is k-special at the moment i if
v ∈ Ai and pi(v) = k. We say that vertex u ∈ Ak is an old one if u ∈ Ak−1

and that it is a new one otherwise. Vertex v is bare at i if all edges incident to
v are contaminated. Denote by Bi the set of all bare vertices at the moment
i and by bi its cardinality.

Let v be a vertex of T , C or O. It is easy to verify that for any discrete
program Π on T , C or O for µ = 1 the following lemmas hold.

Lemma 3.1 If v 6∈ Ai and pi+1(v) = 0 then v ∈ Bi+1.

Lemma 3.2 If v is a new special vertex at the moment i+1 then pi+1(v) ≥ 2.

Theorem 3.2

(T1) S0
µ(T ) = 4 ⇔ µ ≥ 1.

(T2) S0
µ(T ) ≤ 2 for µ ≤ 1/3.

Proof.
(T1). ⇐: Let Π be an arbitrary program of three pursuers for µ = 1 on T .
Referring to theorem 3.1 we suppose that Π is a discrete one. For convenience,
we think that at the initial moment all pursuers are in one vertex which is
the only special vertex at this moment. We shall show that for any i, ai ≤ 1,
which implies that Π is not a winning program.

Suppose that at some moment the number of special vertices is more than
one and let j ≥ 1 be the first such a moment. Thus aj ≥ 2. Lemma 3.2
implies that at moment j only one new special vertex appears, hence aj−1 = 1
and aj = 2. It means that one vertex u ∈ Aj is old and another vertex v ∈ Aj

is new.
By lemma 3.2, pj(v) ≥ 2, hence pj(u) ≤ 1. If pj(u) = 1 then by lemma 3.1

bj = 2 and u is not special. If pj(u) = 0 then by the same lemma bj ≥ 1 and
again u is not special.

Thus S0
µ(T ) > 3 for µ ≥ 1 an by theorem 2.3 S0

µ(T ) = 4 for µ ≥ 1.
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⇒: Let us describe a winning program of three pursuers for µ < 1. Let
A,B,C,D be vertices of T . Denote by L the cycle (A,B,D,C,A). The
pursuer P1 is moving in one direction with the maximal speed on cycle L.
Pursuer P2 (P3) moves on edge [A,D] ([B,C]). Pursuers’ actions are syn-
chronized as follows: P1 meets P2 in A and D; P1 meets P3 in B and C.

If the evader does not leave L then in time 4(1 − µ)−1 he will be caught.
On the other hand, taking into account actions of P2 and P3, it is easy to see
that for the evader there is “no use” to leave L.
(T2) Denote by A,B,C,D the vertices of T . P1 and P2 are moving with the
unit speed as follows:

P1 : A→C →D→A→A→C →D→B →D→C →A→D

P2 : B →
1

C →
2

D→
3

B →
4

A→
5

B →
6

B →
7

B →
8

C →
9

C →
10

A→
11

B.

Here ξ →
i

η means that a pursuer during the time [i− 1, i] moves from ξ to η

(or stays if ξ = η).
The proof that this program is winning for µ = 1/3 is easy and left to

the reader. 2

Theorem 3.3 S0
µ(O) = 5 ⇔ µ ≥ 1.

Proof.
⇐: Let Π be an arbitrary discrete program of four pursuers on O. We

shall prove that for µ = 1 this program is not winning.
Since every vertex of octahedron is adjacent to all the rest vertices but

one it is easy to prove the following lemma.

Lemma 3.3 If bi ≥ l then pi(v) ≥ l − 1 for any vertex v ∈ Ai.

Let us show that for program Π all numbers ai ≤ 2 which implies that
this program is not winning.

Obviously a0 ≤ 1. We prove that ai−1 ≤ 2 implies ai ≤ 2. Note that by
lemma 3.2 the number of new special vertices at any moment i is at most
two. Hence, if ai−1 = 0 then ai ≤ 2.

Suppose that ai−1 = 1 and ai = 3, i.e., one special vertex u1 is old and
two special vertices u2, u3 are new. According to lemma 3.2 vertices u2, u3 at
the moment i are 2-special; hence u1 is 0-special. The latter implies bi ≤ 1.
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On the other hand, by lemma 3.1 bi = 3. We proved that if ai−1 = 1 then
ai ≤ 2.

Let us consider the last possible case ai−1 = 2. First, we prove the
following

Lemma 3.4 If for some k, ak−1 < 2 and ak = 2 then ak+1 < 2.

Proof of lemma 3.4. If ak−1 = 0 then at the moment k two vertices are
new 2-special; whereas lemma 3.1 implies that other vertices are bare. It
is not difficult to see that such a situation is impossible and for the proof
of the lemma it is sufficient to consider the case ak−1 = 1. There are two
possibilities in this case:

either 1) from two vertices special at the moment k one is old and one is new,

or 2) from two vertices special at the moment k both are new.

Let us show that the first possibility cannot be realized. Suppose the op-
posite: at the moment k one special vertex u1 is old and one—u2 is new.
Since pk(u2) ≥ 2 (lemma 3.2) then bk ≥ 2 (lemma 3.1). By lemma 3.3
pk(u1) ≥ 1 and again by lemma 3.1 bk ≥ 3. Then from lemma 3.3 it follows
that pk(u1) ≥ 2; hence pk(u1) = pk(u2) = 2. Lemma 3.1 implies that in
such a situation other vertices are bare, i.e., bk = 4 which is impossible by
lemma 3.3.

So we proved that if ak−1 = 1 and ak = 2 then there is a vertex u1 ∈
Ak−1 \ Ak and two new special vertices u2, u3. By lemma 3.2 these vertices
are 2-special and bk = 3 (note that u1 cannot be bare). Such a situation
can happen only if u2 and u3 are adjacent and each of them is adjacent to
two bare vertices. Since u2 and u3 are 2-special and bk = 3 we deduce that
edge (u2, u3) is cleared. Furthermore, it is easy to check that edges (u2, u1)
and (u3, u1) are cleared too. Thus the cycle induced by vertices u1, u2, u3 is
cleared at the moment k and pk(u1) = 0, pk(u2) = pk(u3) = 2. Note that
such a situation is possible. Now it is clear that any action of pursuers from
such a position leads to the case ak+1 < 2. Lemma 3.4 is proven. 2

Lemma 3.4 implies that if ai−1 = 2 then ai−2 < 2 and ai < 2. Thus
we conclude that for the program Π all ai ≤ 2; hence this program is not
winning.

Thus S0
µ(O) > 4 for µ ≥ 1 and by theorem 2.7 S0

µ(O) = 5 for µ ≥ 1.
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u1 u2
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u8

u6

u7
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v2

v1

u2 u3

Figure 1: Cube and Octahedron

⇒: Let us describe a winning program of four pursuers for µ < 1. Pursuer
Pi, i ∈ 1, 4, moves along the cycle Li of the length three as follows (see
Figure 1):

P1 : u2 → v2 → u1 → u2 → . . .

P2 : u2 → v1 → u3 → u2 → . . .

P3 : u4 → v2 → u3 → u4 → . . .

P4 : u4 → v1 → u1 → u4 → . . . .

If the evader does not leave a cycle Li then in time 3⌈(1 − µ)−1⌉ he will
be caught (µ < 1) by pursuer Pi. On the other hand, changing cycles gives
nothing to the evader. In fact, if the evader passes from Li to Lj at a moment
t (such transition can be realized only in a vertex of Octahedron) then at t
he is proved to be “equally positioned” relatively pursuers Pi and Pj. 2

Theorem 3.4

(C1) S0
µ(C) = 5 ⇔ µ ≥ 1.

(C2) S0
µ(C) ≤ 3 for µ < 0.5.

(C3) S0
µ(C) ≤ 2 for µ ≤ 0.2.

Proof.
(C1) ⇐: Let us show that S0

1(C) = 5. Let Π be an arbitrary discrete program
of four pursuers. We shall show that the program Π is not winning for µ = 1.

It is easy to prove the following lemma.
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Lemma 3.5 a) If there is one 0-special vertex at a moment i then bi ≤ 4.

b) If there are two 0-special vertex at a moment i then bi ≤ 2.

Let us show that for Π all numbers ai ≤ 3 which implies that this program
is not winning.

Let us suppose that at the initial moment all pursuers are in one vertex
which is the only special vertex at this moment. Now we prove that ai−1 ≤ 3
implies ai ≤ 3. Note that by lemma 3.2 there are at most two new special
vertices at i. Thus if ai−1 ≤ 1 then ai ≤ 3.

Suppose now that ai−1 = 2 but ai > 3. Then ai = 4, furthermore at
the moment i there are two old special vertices u1, u2 and two new ones u3,
u4. Since u3, u4 are 2-special at i then vertices u1, u2 are 0-special at this
moment. Lemma 3.1 implies bi ≤ 4; on the other hand, bi ≤ 2 by lemma 3.5.
Hence if ai−1 = 2 then ai ≤ 3.

In order to consider the case of ai−1 = 3 we prove the following lemma.

Lemma 3.6 If for some k ≥ 1, ak−1 < 3 and ak = 3 then ak+1 < 3.

The proof of lemma 3.6. If ak−1 = 1 then at the moment k the set of special
vertices consists of one old vertex u1 and two new vertices u2, u3. It follows
from lemma 3.2 that u2 and u3 are 2-special at k; hence u1 is 0-special at
this moment. By virtue of lemma 3.1 bi ≥ 5 while lemma 3.5 implies bi ≤ 4.
Thus ak−1 = 2.

In this case one of the following possibilities occurs:
either 1) from three vertices special at the moment k two are old and one is
new,
or 2) from three vertices special at the moment k one is old and two are new.

Let us show that the first possibility cannot be realized. Suppose that at
the moment k vertices u1, u2 are old special ones and vertex u3 is new. By
lemma 3.2 pk(u1) + pk(u2) ≤ 2. In this situation only three cases can take
place.

a) pk(u1) = pk(u2) = 0. By lemma 3.5 bk ≤ 2 while lemma 3.1 implies
bk ≥ 3.

b) pk(u1) = 0, pk(u2) = 2. By lemma 3.1 bk ≥ 5 while from lemma 3.5 it
follows that bk ≤ 4.

c) pk(u1) = 0, pk(u2) = 1. By virtue of lemmas 3.1 and 3.5 we have
bk = 4. Three vertices adjacent to u1 and vertex u1 itself cannot be bare.
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Consequently, u2 is adjacent to u1. Then u2 is incident to two contaminated
(at the moment k) edges and thus is not special.

d) pk(u1) = pk(u2) = 1, pk(u3) = 2. In this case bk = 5. At the moment
k vertex u1 is adjacent to at least two cleared edges whose ends are not in
Bk. Hence u1 is adjacent to u2 and u3. By the same reason u2 is adjacent to
u1 and u3. The latter implies that vertices u1, u2, u3 induce a cycle of the
length three in C which is impossible.

We proved that if ak−1 = 2 and ak = 3 then the second possibility takes
place, i.e., there exist vertex u0 ∈ Ak−1 \ Ak, vertex u1 ∈ Ak−1 ∩ Ak and
two new vertices u2, u3 ∈ Ak. From lemma 3.1 it follows that all vertices
excluding u0,u1,u2,u3 are bare at the moment k and thus bk = 4. Also vertices
u0,u2,u3 are adjacent to vertex u1. It is easy to see that such a situation is
possible.

Now it is clear that any actions of pursuers in such a position lead to the
case ak+1 < 3. Lemma 3.6 is proven. 2

Lemma 3.6 implies that if ai−1 = 3 then ai−2 < 3 and ai < 3. We conclude
that for program Π all numbers ai ≤ 3 and thus Π is not winning.

Thus S0
µ(C) > 4 for µ ≥ 1 and by theorem 2.6 S0

µ(C) = 5 for µ ≥ 1.
⇒: Let us demonstrate how four pursuers can catch the evader for µ < 1.

Pursuer Pi, i ∈ 1, 4, moves along the cycle Li of the length four as follows
(see Figure 1):

P1 : u1 → u5 → u6 → u2 → u1 → . . .

P2 : u1 → u5 → u8 → u4 → u1 → . . .

P3 : u3 → u7 → u6 → u2 → u3 → . . .

P4 : u3 → u7 → u8 → u4 → u3 → . . .

As in theorem 3.3 it is easy to prove that in time 4⌈(1−µ)−1⌉ the evader
will be caught.
(C2) Let ui, i ∈ 1, 8, be vertices of C as in Figure 1. Define the following
pursuers’ trajectories:

P1 : u1 → u2 → u2 → u3 → u3 → u4 → u4 → u1 → u1,

P2 : u5 → u6 → u6 → u7 → u7 → u8 → u8 → u5 → u5,

P3 : u1 → u2 → u6 → u7 → u3 → u4 → u8 → u5 → u1.
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Pursuers repeat such actions (1−2µ)−1 times. It is easy to prove that for
µ < 0.5 the program described above is winning. In fact, pursuers P1 and P2

force the evader to leave edges of cycles u1, u2, u3, u4, u1 and u5, u6, u7, u7, u5

and then the evader will be caught by P3.
(C3) Let ui, i ∈ 1, 8, be vertices of C as in Figure 1. Define the following
pursuers’ trajectories:

P1 : u6 →u7 →u8 →u5 →u6 →u6 →u6 →u2 →u3 →u7 →u3 →u2 →u6

P2 : u3 →
1

u7 →
2

u8 →
3

u4 →
4

u3 →
5

u7 →
6

u6 →
7

u5 →
8

u8 →
9

u4 →
10

u3 →
11

u4 →
12

u8

P1 : u6 →u5 →u1 →u2 →u6 →u2 →u3 →u7 →u8 →u4 →u1 →u2 →u6

P2 : u8 →
13

u5 →
14

u1 →
15

u4 →
16

u8 →
17

u4 →
18

u3 →
19

u2 →
20

u1 →
21

u4 →
22

u3 →
23

u2 →
24

u6.

The proof that this program is winning for µ = 0.2 is easy and left to the
reader.

2

4 Open problems

In section 2 we found all numbers Sε
∞ for 1-skeletons of Tetrahedron, Octa-

hedron and Cube. We do not know the complete solution of this problem
for Icosahedron and Dodecahedron but suppose that the following assertions
are true.

Conjecture 1 Let I(D) be 1-skeleton of Icosahedron (Dodecahedron). Then

Sε
∞(I) =







































7, if 0 ≤ ε < 0.25,
6, if 0.25 ≤ ε < 0.5,
4, if 0.5 ≤ ε < 1,
3, if 1 ≤ ε < 1.25,
2, if 1.25 ≤ ε < 3,
1, if 3 ≤ ε.

Sε
∞(D) =







































7, if 0 ≤ ε < 0.25,
6, if 0.25 ≤ ε < 0.5,
4, if 0.5 ≤ ε < 1.5,
3, if 1.5 ≤ ε < 2.25,
2, if 2.25 ≤ ε < 5,
1, if 5 ≤ ε.

In section 3 we proved that S0
µ(T ) = 4 and S0

µ(C) = 5 if and only if µ ≥ 1.
We constructed a winning program of two pursuers on T for µ ≤ 1/3. Also
we proved (by producing winning programs) that S0

µ(C) = 2 for µ ≤ 0.2 and
S0

µ(C) ≤ 3 for µ < 0.5. We suppose that these bounds are sharp:
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Conjecture 2

S0
µ(T ) =



















4, if µ ≥ 1,
3, if 1/3 < µ < 1,
2, if 0 < µ ≤ 1/3,
1, if µ = 0.

S0
µ(C) =































5, if µ ≥ 1,
4, if 0.5 ≤ µ < 1,
3, if 0.2 < µ < 0.5,
2, if 0 < µ ≤ 0.2,
1, if µ = 0.
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