
ELSEYIER 

DISCRETE 
APPLIED 

Discrete Applied Mathematics 85 (1998) 59-70 
MATHEMATICS 

Helicopter search problems, bandwidth and pathwidth 

F.V. Fomin* 

Deportment of’ Operations Research, Faculty of Mathematics and Mechanics, St. Petersbury Stutr 

Unice,sity. Bibliotechnaya .xq.Z, St. Petersbury, 198904. Russia 

Received 4 December 1995; received in revised form 11 September 1997; accepted 22 September 1997 

Abstract 

We suggest a uniform game-theoretic approach to “width’ graph parameters. We consider 
a search problem on a graph in which one cop in a helicopter flying from vertex to vertex 
tries to catch the robber. The existence of the winning program for the cop in this problem 

depends only on the robber’s speed. We investigate the problem of finding the minimal robber’s 
speed which prevents the cop from winning. We examine two cases of the problem. In the first 
one the cop can visit each vertex of a graph only once. In the second case the cop cannot 
afford “recontamination” of vertices. We show that in the first case the problem of finding the 
minimal robber’s speed is equivalent to the bandwidth minimization problem. In the second case 
we show that the problem is equivalent to the natural generalization of the bandwidth problem 
and is closely approximated by the pathwidth. Also we show that the problem of computing 
the minimal robber’s speed is NP-hard in both cases. 0 1998 Elsevier Science B.V. All rights 
reserved. 

Kq~rords: Searching a graph; Bandwidth; Pathwidth; Computational complexity 

1. Introduction 

Many pursuit-evasion processes on graphs have been analyzed in the last 20 years. 

Often a pursuit-evasion process is described as a two-person game. In some games 

pursuers have complete information on actions of evader, see [l-3] for further ref- 

erences, in some games no information at all. In the latter case we deal with a 

search problem which was considered in various formalizations by many authors in 

[6, 9, 11, 13, 24, 251, see also surveys [4, lo]. In this paper we consider the following 

problem of “guaranteed” search. 

We use the word graph to denote a finite undirected topological graph, that is 

embedded in a Euclidean space (dimension of this space is not important for us). We 

shall assume in this paper that edges of a graph are one unit long. Also we consider 

only connected graphs with at least two vertices. 
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Let a pursuit-evasion game be played on a graph r with the vertex set VT and the 

edge set ET. Two players called Cop and Robber, are on r. Cop tries to find Robber, 

and Robber tries to avoid capture. Cop’s actions are defined by a finite sequence of 

steps called search program II. In the first step, Cop occupies some vertex of r. In each 

of the following steps, Cop moves (flies by helicopter) to some vertex (not necessarily 

adjacent to the occupied vertex) of r. So the search program Ii’ is a mapping 

n:{1,2 ,..., T)+T, 

where n(i), i E { 1,. . . , T}, is the vertex occupied by Cop in the ith step. 

A continuous mapping 

is interpreted as a trajectory of Robber. We shall suppose that the Robber’s speed is 

restricted by the constant /J, i.e. for any ti, t2 E [0, T], tl # t2, 

P(Y(tl>> .Y(t2 >I 
t1 - t2 

GP, 

where p(y(tl), y(t2)) is the length (in the Euclidean metric) of the shortest curve in r 

that connects y(tl), y(t2). Thus Robber cannot leave r, and can overcome a distance 

of no more than p with every step of Cop. 

Cop Jinds Robber in the ith step if and only if &L’(i), y(i))< 1. If edges of the 

graph are segments, then Cop positioned in any vertex “oversees” all incident edges. In 

this case we deal with a problem of the “saw-caught” type. The problems of this kind 

were considered in [8, 26, 281. The search program II(i), i E { 1,. . . , T}, is a winning 

one if for any trajectory of Robber y(t), t E [0, T], there exists i E { 1,. . . , T}, such 

that by the ith step Robber is found. 

Note that this search problem can be interpreted as a problem of clearing the graph 

from “diffused” Robber. We say that in program II point x E r is contaminated at 

a moment t* > 1, if there exists a trajectory y(t), t E [0, t*], such that y(t*) =x, and 

for every iE{l,..., Lt*J}, p(y(i),n(i))31. Let us denote by CONT(ZI,r,t*) the set 

of points of graph r contaminated at the moment t*. We shall suppose that for all 

t E [0, 1 ), r = CONT(ZI, r, t). Taking this assumption into account, we can state that 

program n(i), i E { 1,. . . , T}, is a winning one if and only if for some i* E { 1,. . . , T}, 

CONT(II, r, i*) = 0. 
The existence of the winning program for Cop in this problem depends only on the 

constant p. Let us consider for a graph r the parameter p(T), which is defined as 

inf {,u: with p Cop has no winning program on r}. 

The problem of computing ,u(r) we call the helicopter search problem. In this paper 

we would like to point out a connection between the helicopter search problem and a 

seemingly unrelated problems. To do this, we consider two cases of the search problem. 

In the first case (Section 2) we allow Cop to visit each vertex of a graph only once. 
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In the second one (Section 3) Cop can visit vertices more than once but contamination 

of previously visited vertices is not allowed. 

In further arguments we shall use the following simple but important for us fact. 

Lemma 1. Let II(i), i E { 1,. . . , T}, be a seurch program on a graph r, and let A be 

u vertex of r. If there exists u moment t* C: [0, T] such that A E CONT(ll, r, t*) und 

fbr all i E { [t*l, . . , T}, IZ(i)#A, then II is not a winning ooze. 

2. Bandwidth 

In this section we discuss the connection between the helicopter search problem and 

the bandwidth minimization problem. The problem of determining the bandwidth of a 

graph arises in different fields of mathematics. See [7] for a discussion of bandwidth 

and its applications. 

A linear layout of a graph r is a one-to-one mapping 

k{i,...,IvrI)+vr. 

The bandwidth of r with respect to layout L, denoted by b(T, L), is 

max{ IL-‘(u) - L-‘(v)l: (u,v) Em}. 

Bundwidth of r, denoted by b(T), is 

min{b(r, L): L is a layout of r}. 

Suppose that for some reason Cop cannot visit vertices of a graph more than once. In 

this case we denote by ,~t(r) the minimal ,D >O which prevents Cop from winning on 

a graph r. 

Theorem 2. For any graph r, l/p,(r)=b(r). 

Proof. Let r be a graph. We shall show that 

(A) For any p 3 l/b(T) Cop has no winning program on r. 

(8) For any ,n < l/b(T) Cop has a winning program on r. 

(A) Suppose the existence of a winning program II(i), iE { 1,. . . , T}, with p 3 l/b(T). 

Taking into account lemma 1, we can state that Cop must visit every vertex of the 

graph. Since Cop can visit every vertex of a graph no more than once, then T = 1 Vrl, 

and mapping 

n:{i,...,lvri}-vr 

is a linear layout of r. 
1 /p <b(T) < b(T, I7) is assumed; hence there exist adjacent vertices U, u, II-‘(U) < 

n-‘(v), such that Ii-‘(a) - n-‘(u)3 l/p. We will show how Robber can avoid Cop. 
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From inequality n-‘(u)<n-‘(0) we deduce that at moment n-‘(u) vertex v is 

contaminated. From step n-*(u) to step n-‘(v) Cop does not “oversee” edge (u,u), 

and since h < b(T, ZI), then Robber moving with speed of p will cross edge (u, u) in 

time n-‘(v) - n-‘(u). Thus u E CONT(n,r,n-l(v)), and by lemma 1 program n 

is not a winning one. Contradiction. 

(B) Let us consider a linear layout L such that b(T,L) = b(T) and define the search 

program n(i) =L(i), i E { 1,. , IVrl}. We shall demonstrate that for any p< l/b(T) 

n is a winning program. 

We shall denote by T(i) the subgraph of r induced by vertices u, n-‘(u) 6 i. Let 

us show that for any i E (0,. . . , / Vri}, 

T(i) n CONT(II, r, i) = 8. (1) 

Since for i = / Vrl, T(i) = r, this will complete the proof of our theorem. For i = 0 

condition (1) holds (the set of vertices u, n-‘(u) < 0, is empty). Suppose that after the 

i-th step (1) becomes false. It means that Robber succeeds in passing to some vertex 

u, n-‘(u) =j<i, from some vertex v that is adjacent to u. 

Until the ith step (1) holds, hence n-‘(v) = k 3i. In the jth step Cop is in u and 

“oversees” all edges incident to u, so Robber can start moving from u to u only after 

moment j. At the moment k Cop is in v and Robber must be in u no later than k. 

Robber’s speed is no greater than p, therefore l/,u < k - j< b(T). We have reached the 

contradiction, which proves our statement. q 

Complexity remark. As shown by Garey et. al. [12] the bandwidth problem is NP-hard 

even for trees with no degree exceeding three. Theorem 2 implies that the problem of 

computing ~1 of a graph also is NP-hard. 

3. The monotone search problem 

In this section we shall discuss the following version of the helicopter search prob- 

lem. Suppose that Cop can visit vertices of a graph more than once but he cannot 

afford recontamination of previously visited vertices. We say that the search program 

17, iE{l,..., T}, for a graph r is monotone if for any i” E (0,. . . , T} and u E r, con- 

dition u E CONT(Il, r, i*) implies u E CONT(IIl, r, i) for any i < i*. Let us denote by 

pm(T) the minimal p>O such that Cop has no winning monotone program on graph r. 

In this section we shall study two generalizations of bandwidth. 

3.1. The interval bandwidth of a graph 

The first generalization of the bandwidth is the interval bandwidth of a graph. Let 

us define the numbering of r as surjective mapping 

L:{l,...,N}+ vr, 
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where N 3 / Wj. Let {L-‘(u)} be the inverse image of u. We define a mapping 

gr : VT x VT+N 

as the maximal length of an open interval I (note that 1 may be empty set) such that, 

for any two vertices u and v of r 

(Ii) I c[min(L-‘(u) ULP’(v)},max(l-‘(24) UL-‘(G)}], 

(12) z n {L-](U) uL-~(~I)} = 0. 
Note that if a numbering L is a linear layout then gL(u, v) = IL-‘(u) - L-l(t))]. 

The interval bandwidth of r with respect to a numbering L, denoted by ib(T,L). is 

max{gL(u, v): 24 E v}, 

where ” means “is adjacent or equal to”. Let us define the interval bandwidth of a 

graph r as 

min{ ib(T, L): L is a numbering of TJ 

and denote it by ib(T). 

Theorem 3. For any graph r, l/pm(T) = ib( r). 

Proof. Let r be a graph. First we shall prove that l/&T) > ib(T). Let n(i), i E { 1,. , 

T}, be a monotone winning program for some cc > 0. Taking into account lemma 1, 

we deduce that Cop must visit all vertices of r, so ,5(i) = II(i), i E { 1,. . , T}, is a 

numbering of r. Note that if in the jth step Cop visit a vertex v which is already 

cleared with all its neighbors, then program n*(i), iE (1,. ., T - l}, n*(i) = n(i) 

for i < j and II*(i) = Z7(i + 1) for i E {j,. . . , T - l}, is also a monotone winning one. 

Thus, w.1.o.g. we can suppose that if a vertex u and all vertices adjacent to u are not 

contaminated in the ith step, then for all j > i, n(j) # v. Hence, if H(i) = n(i) = u, 

i <j, then there exists a vertex v which is adjacent to u, and min{nP’(v)} >,j. 

Suppose that p 3 l/ib(r,L). It means that there are 21, VE VT, uNv, with gL(u, ZJ) 3 

l/p. Let I = (i, j), i <j, be the longest interval which satisfies (11) and (12). Note that 

the length of (i, j) is equal to g~(u, v) 3 l/p. We assume that II(i) = u. We shall show 

that for any k >j, Z7(k) # u. In fact, if there exists k >,j with U(k) = u, then there exists 

a vertex w that is adjacent to u which was not visited by Cop until the kth step. During 

the time (i,.j) edge (u,w) is not “overseen” by Cop; hence, assumption p 3 1 !ib( r, L ) 

implies that vertex u is contaminated in the jth step. But this contradicts the definition 

of monotone program. Similar reasoning shows that for any k d i, H(k) # v. During the 

time (i, j) vertices u, v are not visited by Cop and it follows from above that: after the 

ith step vertex u is not visited by Cop and before the jth step vertex v is not visited 

by Cop. Thus we can deduce that v E CONT(II, r, i). Since l/p d ib(T, L), Robber can 

reach vertex ~1 in time <j - i. But this also contradicts the monotone property of 

program IT. Hence for any l/p <ib(T), Cop has no winning monotone program on r 

and therefore 1 /pm(r) 3 ib( r ). 
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For the other direction, note that any numbering L with ib(T, L) = ib(T), induces a 

search program n(i) = L(i), i E { 1, . . . , T}. To prove that l/pm(T) d ib(T) it is sufficient 

to show that for any p < l/ib(T), program Il is a winning monotone one. 

To complete the proof, we will now show that for any i E { 0,. . . , T}, subgraph T(i) 

of r induced by vertices Ui = {u E VT: for some j d i, n(j) = u} is cleared, i.e. 

I’(i) n CONT(ZI, r, i) = 0. (2) 

Since Us is empty, then condition (2) holds for i= 0. Suppose that after the ith step 

condition (2) becomes false. This can happen only if Robber can pass to a vertex 

u, II(j) = u, j < i, from a vertex v adjacent to u. Suppose that in the kth step Cop 

visits the vertex v for the first time. Until the ith step condition (2) holds and there- 

fore k > i> j. Robber’s speed is no more than p, hence there exists an open interval 

I c[j, k] with length 3 l/p, such that the edge (u, u) is not “overseen” by Cop. Cop 

“oversees” an edge only when he is in a vertex that is incident to the edge, so for 

any i ~1 c[j,k] ~[min{L-l(u)UL-l(u)},max{L-l(u)UL-l(v)}], L(i) # u, v, and there- 

fore l/p < gL(u, v) d ib(T, L) = ib(I’). But the last inequality contradicts the condition 

l/p > ib(T), and hence condition (2) holds for any i E (0,. . . , T}. 0 

3.2. Split bandwidth 

The second generalization of the bandwidth is more natural. 

Let us consider the operation of node splitting. Let v be a vertex in a graph r 

and V(v) be the set of all vertices adjacent to v. Consider a partition of the set V(v) 

into any two sets M and N (note that M or N may be empty). Let us transform r 

as follows: delete vertex v with all incident edges, add new vertices u and w with 

edge (u, w), and make u adjacent to all vertices of M and w to all vertices of N. The 

result of this transformation is denoted by r,. We say that r, is obtained from r by 

node splitting of v. An example of the operation of node splitting is shown in Fig. 1. 

A graph r* is said to be a split of r if r* can be obtained from r by a sequence 

of node splittings. The split bandwidth of graph r, denoted by sb(T), is 

min{b(r*): r* is a split of r}. 

In this subsection we shall prove that for any graph its split bandwidth is equal to 

its interval bandwidth. From Theorems 3 and 6 it follows that for any graph r, 

i/pm(r) = ib(r) =sb(r). 
Let us introduce some definitions which will be useful in proof of Theorem 6. 

Definition 4. Let a graph P be obtained from a graph r by node splitting of some 

vertex of r. We say that a vertex v’ E VP is the son of vertex v E VT if v’ = v or 

v’Evr’-VrandvEVr-VP. 

Definition 5. Let TX be a split of a graph r. Consider a sequence of graphs To,. . . , r,, 

where To=r, r,,=r*, and for any iE{l,. . . , n}, Ti is obtained from Ti_ 1 by node 
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Fig. I. r, is obtained from r by node splitting of c’ 

splitting of some vertex of Ti_1. We say that a vertex u* E VT* is a descendant of 

vertex c’ E VT, if there exists a sequence of vertices L’< E VT,, i E (0,. . , n}, L‘O = r, 
c, = L:*, such that vertex ui, i E { 1,. . . n} is the son of vertex L’,_ 1. 

Theorem 6. For any graph r, sb(r) = ib( r). 

Proof. Let r be a graph and let r* be a split of r. 

For proving inequality ib(r) dsb(r) we shall show that every linear layout LI-, of 

r* induces a numbering Lr of r such that ib(r,L,-)bb(T*,Lr-). 
With every vertex u E Vr we associate the set of all its descendants in r* and 

denote it by V,. Let us consider an arbitrary linear layout Lr* of T*, and define the 

numbering of r as follows: 

(Lr(i) = tl) =S (324 E V,: Lp (i) = 21). (3) 

Suppose that ib(r, Lr)> b(r*,Lp). Then for some vertices u, u in r, u 2 r, the 

inequality gLr (u, v) = ib(r,Lr) > b(r*, Lp ) holds. Let / = (i,j), i <,j, be the longest 

open interval which satisfies (11) and (12). 

Two cases are possible: 

(i) Lr(i) =&(j) 

(ii) &(i) # Lr(j). 
(i) For the sake of clarity we shall suppose that Lr(i) = L,-(j) = u. Let us con- 

sider the graph r(V,) which is the subgraph of r*, induced by set V,. It’s easy to 

see that f( V,,) is a connected graph; hence there exists path P = (Lp (i), . , L, - (,j)), 
PC f( Vu). No integer from the set LF!(u*), u* E V,,, is contained in (i,,i); hence for 

any vertex U* E P, I,$ (IA”) E (-co, i] U [j, cm). Then, it is not hard to prove the exis- 

tence of two adjacent vertices v*,w* E P, with It;!(r*) - L,,‘(w*)la.j 

- i. As we initially supposed, the length of (i,j) is more than b(Lp,r*), therefore 

jtl_,‘(V*)-t$(w*)I >b(Lr*,r”), contradicting the definition of the bandwidth. 

(ii) For clarity we shall suppose that Lr(i) = u, Lr(j) = c. Since g~,(u, t.) = ib(Lf-, I’), 
we can conclude that gLr(U,u)>gLr(v,u), go, (u,v)>,g~, (u,u). Hence max{L; ‘(u)} = i. 
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min{L,‘(v)} =j. Since u and v are adjacent vertices of r, and Lr(i) #Lr(j), then 

there exist two adjacent vertices of r*: U* E Vu, v* E V,. From definition (3) of the 

numberingLr, it follows that L$(u*)< max{LF’(u)}=i,L$(v*)> min{L;‘(v)}=j. 

Hence ILFJ(u*)-LFj(u*)/ >j - i>b(T*,Lr* ). This contradiction completes the proof 

of ib(T)<sb(T). 

We will now prove that ib(T) 3&(T). Let 

L:{l,...,N}+ VT 

be an arbitrary numbering of r, and let v be a vertex in r with IL-‘(v)l>2. We shall 

show the existence of a graph r,, which is obtained from r by node splitting of v, 

and a numbering 

such that ib(T,L) >ib(T,,L,). Since for any graph r*, /VT*/ =N, which is a split of 

graph r, the numbering 

is a bijection, then ib(T*,L*) = b(T*,L*)>sb(T). Therefore the existence of the graph 

I’, and the numbering L, implies the inequality ib(T) >sb(T). 

Define the number 

it = min{L-‘(v)} 

and the set 

II ={p~ VP p is adjacent to v, and min{L-‘(p)}<it}. 

Let MC VT be the set of vertices adjacent to v. Let us consider the partition of M 

into two subsets 1, and M - It. Transform r as follows: delete the vertex v with all 

incident edges; add new vertices u and w with the edge (u,w); make u adjacent to 

each vertex of It and w to each vertex of M - It. Denote by r, the result of this 

transformation. Define the numbering L, : { 1,. . . , N} + Vr, as follows: 

L,(i) = L(i), i 4 {L-‘(v)}, L,(h) = 4 L,(i) = w, i E {L-‘(v) - i,}, 

To show that ib(T,L) >ib(T,,L,), it is sufficient to verify that 

(a) gL,(u, u) d ib(C L). 

(b) g~,,(w, 4 GbKL). 

(c) g&+Mib(CL). 
(d) For any vertex x E Zt , gL,,(x, u) < ib(T, L). 

(e) For any vertex x E A4 - II, gL,(x, w) d ib(T, L). 

(a)-(c) from the definition of L, it follows that max{gL,,(U, u), gL, (w, w), gL,(u, IV)} d 

gL(v,v)<ib(r,L). This proves (a), (b) and (c). 

(d) If (d) is not true, then there exists a vertex x ~1, with gL,(x, u)>gL(x,x) 

and gL,,(x, u) >gL(x, v). From min{L-‘(x)} < il and gL,(x, u) >gL(x,x) it follows that 



max{l-‘(x)} <il. Since min{C’(u)} = il, then max{l-‘(x)} <it implies ye,, 

(x, u) < gL(x, u). This contradicts g;IL, (x, u) > ~L(x, r). 

(e) The definition of II implies that for any x E M-Z! the inequality min{l-l(x)} > ii 

holds; hence q~, (x, w) < yl,(x, V) d ib(r, L). Cl 

Complexity remark. Makedon et al. considered in [20] the topological bandwidth of 

a graph. A graph f’ is said to be a homeomorphic image of a graph r if r’ can be 

obtained from r by subdividing edges in I‘ with an arbitrary number of degree two 

vertices. The topological bandwidth of r, denoted by tb(T). is 

min{b(r’) : r’ is a homeomorphic image of r}. 

In the same work it was shown that the topological bandwidth problem was NP-hard 

even when restricted to graphs with maximum vertex degree three. 

Lemma 7. For uny graph r wirh muximum verte.u degree three, tb(T) =sb(T). 

Proof. The proof is easy and left to the reader. 0 

The result of Makedon et al., as well as Theorems 3, 6 and Lemma 7, implies that 

problems of finding pm, split and interval bandwidths, are NP-hard even when restricted 

to graphs with maximum vertex degree three. Polynomial algorithms for computing the 

topological bandwidth of a binary tree have been described in [20, 211. This appears 

to be in sharp contrast with the problem of computing ~1. 

3.3. Pathwidth 

The pathwidth problem was studied in various fields of discrete mathematics. The 

problem of determining the pathwidth of a graph is equivalent or closely related to 

many others, including the interval thickness [ 141, the “gate matrix layout problem” 

[23], node search number [15, 161, edge search number [24], vertex and edge sepa- 

rators [19], narrowness [17]; for further references see surveys [4, 5, 221. Theorem 8, 

together with Theorems 3 and 6, adds new items to this list: pCcm and the split band- 

width. 

The notion of pathwidth was originally introduced by Robertson and Seymour in 

[27]. A path decomposition of a graph r is a sequence of subsets {x}t GIGr with the 

following properties: 

(Pl) ulGiGrx= VT. 
(P2) For every (U,u)EET there is an 1 didr with u,v~X;. 

(P3) For every 1 <i<j<k<r, Xi fI/Yk CXj. 

The \l,idth of a path decomposition {Xi}, <, Gr is maxl G,<,. IX, / - 1. The pathwidth 

of r, denoted by pw(T), is the minimum width of a path decomposition of r. It is 

known (see, e.g. [5]) that if the pathwidth of f is k then r has a path decomposition 

{X8}lGIGV such that for all 1 di<r, lX;( =k + 1. 
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Theorem 8. For any graph r, pw(T) d d(r) G PW(T) + 1. 

Proof. Let r be a graph. First we shall show that sb(T) = ib(T)<pw(T) + 1. Let 

{&}I <i<r be a path decomposition of r with 

max lXi1 - 1 = pw(T) = k. 
l<i<r 

(4) 

W.1.o.g. we can assume that for every 1 <i<r, IXi] = k + 1. 

For 1 <i<r let US consider bijections Li: {(i - l)(k + 1) + l,i(k + l)}-+Xi such 

that 

if VEXI_, nXi then L~‘(u)=L~~,(u) + k + 1. (5) 

The existence of such bijections is guaranteed by (4) and (P3). 

We define the numbering L : { 1,. . . , r(k + 1)) -+ VT, as follows: 

L(j)=Li(j) if and only ifjE{(i- l)(k+ l)+ l,...,i(k+ l)}, ldidr. 

Suppose that ib(T,L) > k + 1. Then there exist vertices u, v, u E v, and numbers j,,, 

j,, L(j,)=u, L(j,)=u, such that 

j, -j,>k+ 1, (6) 

and for any j, j, <j<j,, 

L(j) $ {% 01. (7) 

Conditions (P3), (5)-(7) imply that there is 1 <i* <r such that for any i* <i,<r, 

and for any 1 <idi* 

U$!Xi. (9) 

But (8) and (9) contradict (P2). 

The proof of pw(T) <d(T) is easy. Let I-* be a split of r such that sb(T) = b(T* ). 

Obviously pw(T)< pw(r*) (r is a minor of r*). It is known (see, e.g. [5]) that for 

any graph r, pw(T)bb(T), and we arrive at pw(T)dpw(T*)6b(T*)=sb(T). 0 

Concluding remarks. We have posed the helicopter search problem and considered two 

cases of this game. An interesting direction of research is to investigate the case when 

recontamination is allowed. Unlike “traditional” graph-searching [ 181 recontamination 

helps Cop to search a graph. 

Also it is interesting to know when pw(T) =.&(I). These problems are suggested 

for future research. 
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