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Note on a helicopter search problem on graphs
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Abstract

We consider a search game on a graph in which one cop in a helicopter 
ying from vertex
to vertex tries to catch the invisible robber. The existence of the winning program for the cop
in this problem depends only on the robber’s speed. We investigate the problem of �nding the
minimal robber’s speed which prevents the cop from winning. For this parameter we give tight
bounds in terms of the linkage and the pathwidth of a graph. ? 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Here is a search game, played on a �nite, undirected topological graph G, that is
embedded in a Euclidean space (dimension of this space is not important for us). V (G)
is the vertex and E(G) is the edge set of G. In this paper we shall assume that edges
of a graph are one unit long. Also we consider only connected graphs with at least
two vertices and without multiply edges or loops.
Two players called Cop and Robber are on G. Cop tries to �nd Robber, and Robber

tries to evade. Cop’s actions are de�ned by a �nite sequence of steps called search
program �. In the �rst step, Cop occupies some vertex of G. In each of the following
steps, Cop moves (
ies by helicopter) to some vertex (not necessarily adjacent to the
occupied vertex) of G. So the search program � is a mapping

� : {1; 2; : : : ; T} → V (G);

where �(i), i ∈ {1; : : : ; T}, is the vertex occupied by Cop in the ith step.
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A continuous mapping

y : [0; T ]→ G

is interpreted as a trajectory of Robber. We shall suppose that the Robber’s speed is
restricted by the constant �¿ 0, i.e. for any t1; t2 ∈ [0; T ], t1 6= t2,∣∣∣∣�(y(t1); y(t2))t1 − t2

∣∣∣∣6�;
where �(y(t1); y(t2)) is the length (in the Euclidean metric) of the shortest curve in G
that connects y(t1), y(t2). Thus Robber cannot leave G, and can overcome a distance
of no more than � with every step of Cop. When �−1 is an integer then one can
interpret �−1 as the number of Cop’s steps during which Robber covers an edge.
Cop �nds Robber in the ith step if and only if there exists j ∈ {1; : : : ; i} such

that �(�(j); y(j))¡ 1. Loosely speaking, Cop positioned in any vertex ‘oversees’ all
incident edges but he cannot see Robber positioned in adjacent vertices.
The search program �(i), i ∈ {1; : : : ; T}, is winning if for any trajectory of Robber

y(t), t ∈ [0; T ], there exists i ∈ {1; : : : ; T}, such that in the ith step Robber is found.
The existence of the winning program for Cop in this problem depends only on the

constant �. For a graph G we consider the parameter

�(G) = inf{�: with � Cop has no winning program on G}:
Obviously �(G) is at most one. The problem of computing �(G) is called the helicopter
search problem. Note that �(G) is a combinatorial invariant.
The author studied in [3] two cases of the helicopter search problem. In the �rst

one Cop can visit each vertex of a graph only once. In the second case Cop cannot
a�ord ‘recontamination’ of vertices. In the �rst case the problem of �nding the min-
imal Robber’s speed is equivalent to the bandwidth minimization problem and in the
second case the problem is equivalent to the natural generalization of the bandwidth
problem and is closely approximated by the pathwidth. So it is natural to investigate
the case when recontamination is allowed. We think that this case is much harder than
‘recontamination-free’ ones but for some graphs the solution of the helicopter search
problem is easy.
To warm up, let us determine �(G) of a path v1; v2; : : : ; vn on n vertices. Clearly,

�(G) = 1 because for any �¡ 1 Cop has the following winning program on G: for
i ∈ {1; : : : ; n} �(i)=vi. As another example, if G is a cycle v1; v2; : : : ; vn; v1 then �(G)
is also equal to 1 because for any �¡ 1 Cop also has a winning program: in order to
win on G he ‘runs’ the cycle dn− 2=1− �e times.

2. Lower and upper bounds

In this section we �nd lower and upper bounds for �(G). Note that these bounds
are tight.
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2.1. Upper bound

The linkage (or the width or the colouring number; see [7,11] for further references
and discussions) of a graph G, denoted by linkage (G), is the maximum min-degree
of any subgraph of G. (We use the term min-degree of a subgraph H of G to denote
the least degree of any of its vertices; the degree of a vertex is taken with respect to
the subgraph.)

Theorem 1. For any graph G; �(G)6dlinkage(G)=2e−1.

Proof. Let �(i), i ∈ {1; : : : ; T}, be a search program and H be a subgraph of G with
the largest min-degree d = linkage(G). Let us show how Robber with the speed of
dd=2e−1 can avoid Cop. We construct the Robber’s trajectory inductively. To this end,
suppose that for some i ∈ {1; : : : ; T − dd=2e + 1}, y(i) = u ∈ V (H), and for each
j ∈ {i; : : : ;min(i+ dd=2e− 1; T )}, �(j) 6= u. Clearly for i=1 such u exists. We prove
that there exists a moment i′¿i such that
(i) y(i′) = v ∈ V (H);
(ii) for each j ∈ {i′; : : : ;min(i′ + dd=2e − 1; T )}, �(j) 6= v;
(iii) for each j ∈ {i; : : : ; i′}, �(�(j); y(j))¿1.
If u is not visited by Cop after the ith step then the proof is obvious. Let k be

the minimal integer ¿i + dd=2e such that �(k) = u. If k ¿ i + dd=2e, then we put
i′ = k − dd=2e and Robber simply stays in u from i until i′.
Suppose that k = i + dd=2e. Since u is incident with ¿d edges in H , there is an

edge (u; v) ∈ E(H) such that for each j ∈ {i + 1; : : : ;min(i + d; T )}, �(j) 6= v. Then
Robber starts moving with the speed of dd=2e−1 from u to v after the moment i. At
the moment i′ = k he arrives at v and for each j ∈ {i; : : : ; i′}, �(�(j); y(j))¿1. Since
2dd=2e − 16d then for each j ∈ {i′; : : : ;min(i′ + dd=2e − 1; T )}, �(j) 6= v.

Let �(G) be the chromatic number of G. It is easy to check that �(G)−16linkage(G)
(see, e.g. [11]). Then Lemma 1 implies the following.

Corollary 2. For any graph G; �(G)6d(�(G)− 1)=2e−1.

2.2. Lower bound

A graph G is an interval graph, if and only if one can associate with each vertex
v ∈ V (G) an interval Iv = [l(v); r(v)] on the real line, such that for all v; w ∈ V (G),
v 6= w: (v; w) ∈ E(G), if and only if Iv ∩ Iw 6= ∅. The set of intervals I= {Iv}v∈V (G) is
called an (interval) representation for G.
A graph G′ is a supergraph of the graph G if V (G′) = V (G) and E(G)⊆E(G′).
The original de�nition of the pathwidth can be found in [10]. For our purposes, the

following equivalent de�nition is more convenient (see [8]). The pathwidth of a graph
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Fig. 1. Graph G, an interval representation I of G and the associated program �.

G, denoted by pw(G), is the smallest size of a max-clique over all interval supergraphs
of G decreased by one.
It is well known that every interval graph has an interval representation in which

the left endpoints are distinct integers 1; 2; : : : ; |V (G)|. Such a representation will be
termed canonical.

Theorem 3. For any graph G; �(G)¿2=(pw(G) + 1).

Proof. It is clear that for any supergraph H of G, �−1(G)6�−1(H) therefore w.l.o.g.
we may assume that G is an interval graph. Let G be an interval graph on n vertices
and I be a canonical representation of G. Let vi be the vertex associated with an
interval [i; r(i)] ∈ I, i ∈ {1; : : : ; n}. Let �(i) be the set of all vertices vj, j6i, such
that r(j)¿i. Since G is an interval graph it is easy to see that for any i ∈ {1; : : : ; n},
|�(i)|6pw(G) + 1.
Let us describe a search program �(i), i ∈ {1; : : : ; T}, where
T =

∑
i∈{1;:::;n}

(|�(i)|+ 1)− 1:

� consists of n grandsteps. At the ith grandstep Cop �rst visits vi and then vertices
(if such vertices exist) from �(i) in the increasing order (see Fig. 1). Thus during the
ith grandstep, i¿2, Cop makes |�(i)|+ 1 steps.
We claim that if Robber’s speed is less than 2=(pw(G) + 1) then � is the winning

program. Suppose that there exists a trajectory of Robber y(t), t ∈ [0; T ], such that for
any i ∈ {1; : : : ; T}, �(�(i); y(i))¿1. Since Cop visits all vertices of G, there exists a
moment t such that at this moment Robber for the �rst time is in a vertex previously
visited by Cop. Let vi be such a vertex. Let k6t be the maximal integer subject to
�(k) = vi. Note that t − k ¿ (pw(G) + 1)=2. If Cop visits vi after k then from the
de�nition of �, we have that there exists l ∈ {k + 1; : : : ; k + pw(G) + 1} such that
�(l)=vi. Since l− t ¡ (pw(G)+1)=2 then Cop �nds Robber at the moment l and we
conclude that after the kth move Cop cannot visit vi. Let vj be the last vertex occupied
by Robber before t. Note that vj is adjacent to vi.
Due to de�nitions of t and �, we have that j¿ i and vi ∈ �(j). Hence for some

m ∈ {k + 1; : : : ; k + pw(G)}, �(m) = vj. Robber can start moving from vj to vi only
after moment k, so Cop �nds Robber at the moment m.
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This contradiction shows that � is the winning program.

2.3. Examples

Let I be an interval graph. Since the linkage of I is at least the size of max-clique
minus one then linkage(I)¿pw(I). From the other hand, it is known (see, e.g. [2])
that for any graph G, linkage(G)6pw(G). Therefore, linkage(I)6pw(I). As a con-
sequence of Theorems 1 and 3 we have the following result.

Corollary 4. Let k be the size of max-clique in I . If k is even; then �(I) =
dlinkage(I)=2e−1 = 2=(pw(I) + 1) = 2=k.

Let Kn be a complete graph on n vertices.

Theorem 5. �(Kn) = bn=2c−1.

Proof. Kn is an interval graph and Corollary 4 implies the proof for even n.
Suppose that n = 2� + 1. Let v1; v2; : : : ; vn be vertices of Kn. We de�ne a program

�(t), t ∈ [0; n(� + 1)], as follows: for each t ∈ {1; : : : ; n(� + 1)}, �(t) = vs, where
t ≡ s (mod n). Thus � is a sequence of steps:

v1; v2; : : : ; vn; v1; v2; : : : ; vn; : : : ; v1; v2; : : : ; vn︸ ︷︷ ︸
�+1 times

:

For any vertices vi; vj let us de�ne an ‘oriented distance’

�̃(vi; vj) =
{
j − i if i6j;
n− i + j if i¿ j:

In other words, �̃(vi; vj) is the number of edges of the directed path between vi and vj
in the directed cycle (v1; v2; : : : ; vn; v1). Note that �̃(vi; vj) + �̃(vj; vi) = n.
We prove the following assertion: if the speed of Robber is less than � −1 then �

is the winning program.
For k∈{1; : : : ; T−2�} we denote by rk the smallest t ∈ [k; T ] such that y(t)∈V (G).

The following two claims prove the assertion.

Claim 6. If �̃(�(k); y(rk))6� then Cop �nds Robber at the moment k + �.

Proof of claim. Obvious, since the speed of Robber is less than � −1.

Claim 7. If �̃(�(k); y(rk)) = M¿� then Cop �nds Robber at the moment k + � or
there is i∈{k; : : : ; k + �} such that �̃(�(i + �); y(ri+�))6M − 1.

Proof of claim. Let y(rk) = u and y(rk+�) = v. If for each i ∈ {k; : : : ; k + �} v 6= �(i)
then �̃(�(k+�); y(rk+�))6�¡M . Suppose that for some i ∈ {k; : : : ; k+�}; �(i)= v.
Robber can start moving from u to v only after the moment i. Since Robber’s speed is
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less than � −1, then he arrives at v only after the moment i+�. It means that y(ri+�)=v.
At the moment j ∈ {k; : : : ; k + 2�} such that �(j) = u Cop positioned in u ‘oversees’
the edge (u; v); hence j − i = �̃(v; u) is more than � (or Cop �nds Robber in the jth
step). Thus �̃(u; v) = n− �̃(v; u)¡n− �= �+ 16M − 1.

We proved that �(Kn)¿dn=2e−1. Since linkage(Kn) = n− 1 then due to Theorem 1
�(Kn)6d(n− 1)=2e−1 = dn=2e−1.

3. Recontamination helps

One of the ‘main’ tools in ‘traditional’ graph-searching problems is the theorem of
LaPaugh [9] which asserts that ‘recontamination’ does not help to search a graph (see
[1,3,5] for further references on graph searching). In other words, excluding search
strategies which give the fugitive the possibility of visiting an already searched vertex,
does not increase the number of searchers. In the helicopter search problem the usage
of the ‘recontamination’ helps Cop a lot. The author studied in [3] the monotone
case of the helicopter search problem in which Cop cannot a�ord ‘recontamination’ of
previously visited vertices. Let �m(G) be the minimal Robber’s speed such that Cop
has no winning monotone program on graph G. It is proved [3] that for any graph G,

1
pw(G)

¿�m(G)¿
1

pw(G) + 1
: (1)

Thus Theorem 3 implies the following result. If the pathwidth of a graph G is more
than one, then ‘recontamination’ helps to search G. In this section (Corollary 10) we
prove a somewhat stronger result.
A graph G′ is called a homeomorphic image of a graph G if G′ can be obtained

from G by subdividing edges in G with an arbitrary number of degree two vertices.
Traditional characterization of an outerplanar graph is that it can be embedded in the

plane such that all vertices are on the outer face boundary. The next Lemma follows
directly from the de�nition of outerplanar graphs.

Lemma 8. Let G be an outerplanar graph.Then there exists an ordering (v1; v2; : : : ; vn);
n= |V (G)|; of vertices of G such that for any 16i¡ k ¡j¡l6n; vi is adjacent to
vj only if vk is not adjacent to vl.

Theorem 9. For any outerplanar graph G there is a homeomorphic image G′ of G
such that �(G′)¿ 2

3 .

Proof. Let v1; v2; : : : ; vn be a ordering as in Lemma 8. For p = (ui; vj) ∈ E(G) we
denote by b(p) (e(p)) the smallest (the largest) number from {i; j}.
Let f be one-to-one mapping

f :E(G)→ {1; : : : ; |E(G)|}
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such that for any p; q ∈ E(G); f(p)¡f(q) implies b(p)6b(q)¡e(q)6e(p) or
e(p)6b(q). Note that the existence of f is due to Lemma 8.
For p ∈ E(G) we de�ne the set of edges
Ep = {q ∈ E(G): f(q)¡f(p) and b(p)6b(q)¡e(q)6e(p)}:

Let G′ be the graph obtained from G by replacing every edge p∈E(G) by l(p)-edge
path S(p) on vertices (v(p)1; : : : ; v(p)l(p)+1), where

l(p) =



1 if Ep = ∅;
4
∑
q∈Ep

l(q) otherwise

and v(p)1 = vb(p), and v(p)l(p)+1 = ve(p).
To complete the proof we show how Cop can catch Robber on G′ for �¡ 2

3 . For
describing a winning program for Cop we need more de�nitions. We say that Cop
makes an increasing visiting-round of a path S(p) if he visits vertices of Sp in the
following order:

v(p)1; v(p)2; v(p)3; v(p)1; v(p)3; v(p)4; : : : ; v(p)1; v(p)i−1; v(p)i ; : : : ;

v(p)1; v(p)l(p); v(p)l(p)+1:

We also say that Cop makes a decreasing visiting-round of S(p) if he visits vertices
as follows:

v(p)l(p)+1; v(p)1; v(p)2; v(p)l(p)+1; v(p)2; v(p)3; : : : ; v(p)l(p)+1; v(p)i−1; v(p)i ; : : : ;

v(p)l(p)+1; v(p)l(p); v(p)l(p)+1:

We say that Cop works on a vertex vi if for every path S(p) which ends in vi
(v(p)l(p)+1 = vi) he makes the decreasing visiting-round of S(p) and for every path
S(p) which starts in vi (v(p)1 = vi), he makes the increasing visiting-round of S(p).
The order of visiting-rounds is as follows: �rst Cop makes decreasing visiting-rounds
in decreasing order (if f(p)¡f(q) then S(q) is visited before S(p)) and then makes
increasing visiting-rounds in increasing order (if f(p)¡f(q) then S(p) is visited
before S(q)). Now we are ready to de�ne a program �(i) with i ∈ {1; : : : ; T};

[1; T ] =
⋃

j∈{1;:::;n}
=[tj; tj+1]

such that from tj until tj+1 Cop works on vertex vj.
We show that � is a winning program for �¡ 2

3 . Suppose that � is not winning.
Since �¡ 2

3 , then during Cop’s work on a vertex vk Robber cannot visit vk . When
working on vi, Cop makes increasing visiting-rounds of every path S(p) which starts
in vk ; thus for every p ∈ E(G); b(p) = k, there is t ∈ [k; k + 1] such that y(t) 6∈S(p).
We can conclude from this that to avoid Cop, Robber at least once must overcome a

path S(p) such that vi ∈ V (G); i=b(p), was worked by Cop and vj ∈ V (G); j=e(p)
was not worked by Cop yet. Suppose that Robber is on S(p) from t−; y(t−)= vj until
t+; y(t+) = vi.
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Because after the tith step Cop makes the increasing visiting-round of S(p), then
t−¿ti. Before the tj+1th step Cop makes the decreasing visiting-round of S(p); hence
t+6tj+1. To conclude a contradiction we shall show that in time tj+1 − ti¿t+ − t−
Robber cannot overcome a distance l(p). We observe that l(p) 6= 1 because if this is
not the case, (vi; vj)∈E(G′) and ti+1 = tj.
Cop makes a visiting-round of a path S(q) in at most 3l(q) steps. Every path

is visited by Cop twice (the �rst time in increasing order and the second time in
decreasing order). Thus

tj+1 − ti66
∑
q∈Ep

l(q) =
3
2
l(p):

But the Robber’s speed is less than 2
3 and he cannot overcome the distance l(p) in a

time t+ − t−6 3
2 l(p).

Corollary 10. For any k ¿ 0 there is a graph G such that �(G)=�m(G)¿k.

Proof. Let k be an integer and let G be a tree with pw(G)¿ 3
2k. For each k such a tree

exists (see, e.g. [6]). For any homeomorphic image G′ of a graph G; pw(G)6pw(G′)
(see, e.g. [8]). Since every tree is outerplanar, then by Theorem 8 there is a homeo-
morphic image G′ of G such that �(G′)¿ 2

3 .

�(G)
�m(G)

¿
2
3

1
�m(G)

by (1)
¿

2
3
pw(G)¿k:

4. Concluding remarks

From Theorem 5 we can conclude that for the graph of the tetrahedron �(G)= 1
2 . It

is interesting to �nd the parameter � for another Platonic graphs. The theorems proved
above do not provide the exact value of �. Thus, for example, for the graph of the
cube, � is between 2

5 and
1
2 ; for the graph of the icosahedron between

2
7 and

1
3 (see

[4] for the solution of similar problems on the Platonic graphs).
Also, it is natural to ask, what about an analogue of Theorem 9 for planar graphs?
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