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Abstract. In the early studies on graph searching a graph was considered as a system of tunnels
in which a fast and clever fugitive is hidden. The “classical” search problem is to find a search plan
using the minimal number of searchers. In this paper, we consider a new criterion of optimization,
namely, the search cost. First, we prove monotone properties of searching with the smallest cost.
Then, making use of monotone properties, we prove that for any graph G the search cost of G is
equal to the smallest number of edges of all interval supergraphs of G. Finally, we show how to
compute the search cost of a cograph and the corresponding search strategy in linear time.
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1. Introduction. Search problems on graphs were introduced by Parsons [29]
and Petrov [30, 31] (see also [27]). These problems attract the attention of researchers
from different fields of mathematics and computer science for a variety of reasons. In
the first place, this is the resemblance of graph searching to certain pebble games [21]
which model sequential computation. The second motivation of the interest to graph
searching arises from VLSI theory. The use of game-theoretic approaches to some
important parameters of graph layouts such as cutwidth [26], topological bandwidth
[25], and vertex separation number [13] is very useful for constructions of efficient
algorithms. Yet another reason is connections between graph searching, pathwidth,
and treewidth. These parameters play a very important role in the theory of graph
minors developed by Robertson and Seymour (see [1, 12, 33]). Also, graph searching
has applications in motion coordinations of multiple robots [34] and in problems of
privacy in distributed environments with mobile eavesdroppers (“bugs”) [15]. One
can find more information on graph searching and related problems in the surveys
[1, 4, 14, 28, 32].

In the “classical” node-search version of searching (see, e.g., [21]), at every move
of searching a searcher is placed at a vertex or is removed from a vertex. Initially all
edges are contaminated (uncleared). A contaminated edge is cleared once both its
endpoints are occupied by searchers. A clear edge e is recontaminated if there is a
path without searchers leading from e to a contaminated edge. The “classical” search
problem is to find the search program such that the maximal number of searchers
used at any move is minimized. In this paper we introduce an alternative criterion
of optimization. We are looking for node-search programs with the minimal sum of
numbers of searchers (the sum is taken over all moves of the search program). We
call this criterion the search cost of a graph. Loosely speaking, the cost of a search
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program is the total number of “man-steps” used in this program, and the search
cost is the cost of an optimal program. The reader is referred to section 2 for formal
definitions of searching and its cost.

One of the most important issues concerning searching is that of recontamination.
In some search problems (see [2, 23]) recontamination does not help to search a graph,
i.e., if searchers can clear the graph, then they can do it without recontamination of
previously cleared edges. We establish the monotonicity of search programs of the
smallest cost. To prove the monotonicity we use special constructions called clews.
Clews are closely related to crusades used by Bienstock and Seymour in [2] and the
notion of measure of clew is related to the notion of linear width introduced by Thomas
in [35].

This paper is organized as follows. In section 2 we give necessary definitions.
In section 3 we introduce clews and prove the monotonicity of graph searching. In
section 4 it is proved that for any graph G the search cost of G is equal to the smallest
number of edges of an interval supergraph of G. In section 5 it is shown that for any
graph G the search cost of G is equal to the vertex separation sum and profile of G.
In section 6 we show how to compute the search cost of the product of graphs. In
section 7 we prove that the search cost of a cograph and the corresponding search
program can be obtained in linear time.

2. Statement of the problem. We use the standard graph-theoretic terminol-
ogy compatible with [7], to which we refer the reader for basic definitions. Unless
otherwise specified, G is an undirected, simple (without loops and multiple edges),
and finite graph with the vertex set V (G) and the edge set E(G); n denotes the order
of G, i.e., |V (G)| = n.

A search program Π on a graph G is the sequence of pairs

(A1
0, Z

1
0 ), (A

2
0, Z

2
0 ), (A

1
1, Z

1
1 ), (A

2
1, Z

2
1 ), . . . , (A

1
m, Z1

m), (A2
m, Z2

m)

such that the following hold.
I. For i ∈ {0, . . . ,m}, j ∈ {1, 2}, Aj

i ⊆ E(G), and Zj
i ⊆ V (G).

II. For i ∈ {0, . . . ,m}, j ∈ {1, 2}, any vertex incident to an edge in Aj
i and to an

edge in E(G)−Aj
i is in Zj

i .

III. For j ∈ {1, 2}, Aj
0 = ∅, and Aj

m = E(G).
IV (placing new searchers and clearing edges). For i ∈ {1, . . . ,m}, there is v ∈

V (G) \Z2
i−1 such that Z1

i = Z2
i−1 ∪{v} and A1

i = A2
i−1 ∪Ev, where Ev is the

set of all incident to v edges having one end in Z2
i−1.

V (removing searchers and possible recontamination). For i ∈ {1, . . . ,m}, Z2
i ⊆

Z1
i and A2

i is the set of all edges e ∈ A1
i such that every path containing e

and an edge of E(G)−A1
i has an internal vertex in Z2

i .
We call these the search axioms. It is useful to treat Z1

i as the set of vertices occupied
by searchers immediately after placing a new searcher at the ith step, Z2

i as the set
of vertices occupied by searchers immediately before making the (i + 1)th step, and
A1

i , A
2
i as the sets of cleared edges.

The well-known node search problem [21] is to find Π with the smallest maxi∈{0,...,m}
|Z1

i |. (This maximum can be treated as the maximum number of searchers used in
one step.) Let us suggest an alternative measure of search. We define the cost of Π
to be

∑m
i=0 |Z2

i |. One can interpret the cost of a search program as the total number
of “man-steps” used for the search or as the total sum that searchers earn for doing
their job. The search cost of a graph G, denoted by γ(G), is the minimum cost of a
search program where the minimum is taken over all search programs on G.
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A search program (A1
0, Z

1
0 ), (A

2
0, Z

2
0 ), . . . , (A

1
m, Z1

m), (A2
m, Z2

m) is monotone if, for
each i ∈ {0, . . . ,m}, A1

i = A2
i . (Recontamination does not occur when searchers are

removed at the ith step.) The monotone search cost of G, γm(G), is the cost of the
minimal (over all monotone search programs) search program on G.

Notice that search programs can be defined not only for simple graphs but for
graphs with loops and multiple edges as well. Adding loops and multiple edges does
not change the search cost. (We suppose that a loop edge is cleared once a searcher
is placed on its endpoint.)

3. Monotone programs and clews. Let G be a graph. For X ⊆ E(G) we
define V (X) to be the set of vertices which are endpoints of X, and we let δ(X) =
V (X) ∩ V (E(G)−X).

We consider only clews in graphs of a special structure. Let G0 be obtained
by adding a loop at each vertex of a graph G. A clew in G0 is the sequence
(X0, X1, . . . , Xm) of subsets of E(G0) such that the following hold.

1. X0 = ∅ and Xm = E(G0).
2. For i ∈ {1, . . . ,m}, |V (Xi)− V (Xi−1)| ≤ 1.
3. For i ∈ {1, . . . ,m}, if v ∈ V (Xi), then the loop at v also belongs to Xi.

The measure of the clew is
∑m

i=0 |δ(Xi)|. A clew (X0, X1, . . . , Xm) is progressive if
X0 ⊆ X1 ⊆ · · · ⊆ Xm and for any i ∈ {1, . . . ,m}, |V (Xi) − V (Xi−1)| = 1. Notice
that if a clew (X0, X1, . . . , Xm) is progressive, then m = n.

Theorem 3.1. For any graph G and k ≥ 0 the following assertions are equivalent.
(i) γ(G) ≤ k.
(ii) Let G0 be obtained by adding a loop at each vertex of G. There is a clew in

G0 of measure ≤ k.
(iii) Let G0 be obtained by adding a loop at each vertex of G. There is a progressive

clew in G0 of measure ≤ k.
(iv) γm(G) ≤ k.
Proof. (i) ⇒ (ii). As mentioned above, γ(G) = γ(G0). Let

(A1
0, Z

1
0 ), (A

2
0, Z

2
0 ), (A

1
1, Z

1
1 ), (A

2
1, Z

2
1 ), . . . , (A

1
m, Z1

m), (A2
m, Z2

m)

be a search program on G0 with the cost ≤ k. We prove that A2
0, A

2
1, . . . , A

2
m is the

clew of measure ≤ k in G0. The third search axiom implies A2
0 = ∅, A2

m = E(G).
The second search axiom says that for every i ∈ {0, . . . ,m}, δ(A2

i ) ⊆ Z2
i , and hence∑m

i=1 |δ(A2
i )| ≤ k. Thus A2

0, A
2
1, . . . , A

2
m is the clew if |V (A2

i )−V (A2
i−1)| ≤ 1 for every

i ∈ {1, . . . ,m}. Suppose that for some i ∈ {1, . . . ,m} this inequality does not hold.
Then there are vertices u �= v of V (A2

i ) − V (A2
i−1). Notice that the loops eu, ev at

u and v belong to A2
i − A2

i−1. From the fifth search axiom A1
i ⊇ A2

i it follows that
eu, ev ∈ A1

i −A2
i−1. The latter is in contradiction with the fourth axiom.

(ii)⇒ (iii). The proof of this implication is closely related to the crusades mono-
tonicity proof by Bienstock and Seymour [2]. Let us choose a clew (X0, X1, . . . , Xm)
in G0 such that

m∑
i=0

|δ(Xi)| is minimum(3.1)

and, subject to (3.1),

m∑
i=0

(|Xi|+ 1) is minimum.(3.2)
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First we prove that Xi−1 ⊆ Xi for i ∈ {1, . . . ,m}.
Because V (Xi−1 ∪Xi)− V (Xi−1) = V (Xi)− V (Xi−1) and V (Xi+1)− V (Xi−1 ∪

Xi) ⊆ V (Xi+1)− V (Xi), it follows that (X0, X1, . . . , Xi−1, Xi−1 ∪Xi, Xi+1, . . . , Xm)
is the clew. Using (3.1), we obtain

|δ(Xi−1 ∪Xi)| ≥ |δ(Xi)|.(3.3)

It is easy to check that |δ| satisfies the submodular inequality

|δ(Xi−1 ∪Xi)|+ |δ(Xi−1 ∩Xi)| ≤ |δ(Xi−1)|+ |δ(Xi)|.(3.4)

Combining (3.3) and (3.4), we obtain

|δ(Xi−1 ∩Xi)| ≤ |δ(Xi−1)|.(3.5)

If v ∈ V (Xi−1) ∩ V (Xi), then the loop at v belongs to Xi−1 ∩ Xi by the third
search axiom; therefore, v ∈ V (Xi−1 ∩ Xi) and, consequently, V (Xi) − V (Xi−1 ∩
Xi) ⊆ V (Xi)−V (Xi−1). Thus, V (Xi−1 ∩Xi)−V (Xi−2) ⊆ V (Xi−1)−V (Xi−2), and
(X0, X1, . . . , Xi−2, Xi−1 ∩Xi, Xi, Xi+1, . . . , Xm) is a clew. Taking into account (3.5),
(3.1), and (3.2), we get |Xi−1 ∩Xi| ≥ |Xi−1|. Thus we have Xi−1 ⊆ Xi.

If |V (Xi) − V (Xi−1)| = 0, then (X0, X1, . . . , Xi−1, Xi+1, . . . , Xm) is the clew
contradicting (3.2). Hence, (X0, X1, . . . , Xm) is progressive.

(iii)⇒ (iv). Let (X0, X1, . . . , Xn) be a progressive clew of measure ≤ k in G0. We
define the search program on G0 setting Z1

0 = Z2
0 = ∅ and Z1

i = δ(Xi) ∪ {V (Xi) −
V (Xi−1)}, Z2

i = δ(Xi) for i ∈ {1, . . . , n}. Suppose that at the ith step searchers
are placed at vertices of Z1

i and that all edges of Xi are cleaned. Obviously, no
recontamination occurs by removing all searchers from vertices of Z1

i − Z2
i .

Define v = V (Xi+1)− V (Xi). Every edge of Xi+1 −Xi either is the loop at v, or
is incident to v and to a vertex of δ(Xi) = Z2

i . Then at the (i+1)th step the searcher
placed at v cleans all edges of Xi+1−Xi. Finally, X0 = ∅, Xn = E(G) with the result
that γm(G) = γm(G0) ≤ k.

(iv)⇒ (i). This part of the proof is obvious.

4. Interval graphs. A graph G is an interval graph if and only if one can
associate with each vertex v ∈ V (G) an open interval Iv = (lv, rv) on the real line,
such that for all v, w ∈ V (G), v �= w: (v, w) ∈ E(G) if and only if Iv ∩ Iw �= ∅. The
set of intervals I = {Iv}v∈V is called an (interval) representation of G.

It is easy to check that every interval graph has an interval representation in
which the left endpoints are distinct integers 1, 2, . . . , n. Such a representation is said
to be canonical.

A graph G is a supergraph of the graph G′ if V (G′) = V (G) and E(G′) ⊆ E(G).
Let G be an interval graph, and let I = {Iv}v∈V (G) be a canonical representation of
G. The length of G with respect to I, denoted by l(G, I), is

∑
v∈V

�rv − lv�.

We define the length l(G) of an interval graph G as the minimum length over all
canonical representations of G. For any graph G we define the interval length of G,
denoted by il(G), as the smallest length over all interval supergraphs of G.

In the proof of Theorem 4.2, we shall use the following property of canonical
representation.
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Lemma 4.1. Let I be an interval graph of n vertices and I = {Iv = (lv, rv)}v∈V (G),
lv < rv, be its canonical representation such that

∑
v∈V

�rv − lv� is minimum.(4.1)

For i ∈ {1, . . . , n} let P (i) be the set of intervals Iv, v ∈ V (I), containing i. Then

n∑
i=1

|P (i)| =
∑
v∈V

�rv − lv� = |E(I)|.

Proof. (4.1) implies that every interval Iv = (lv, rv), v ∈ V (I), contains �rv − lv�
integers. Every i ∈ {1, . . . , n} belongs to |P (i)| intervals of I; therefore,

n∑
i=1

|P (i)| =
∑
v∈V

�rv − lv�.(4.2)

Let deg(v) be the degree of a vertex v in I. Then for every v ∈ V (I)

deg(v) = |P (lv)|+ �rv − lv�(4.3)

(the number of intervals Iu = (lu, ru) such that lu < lv < ru plus the number of
intervals Iw = (lw, rw) such that lv < lw < rv). By (4.3),

2|E(I)| =
∑

v∈V (I)

deg(v) =

n∑
i=1

|P (i)|+
∑

v∈V (I)

�rv − lv�,

which, combined with (4.2), proves Lemma 4.1.
Theorem 4.2. For any graph G and k > 0 the following assertions are equivalent.
(i) γ(G) ≤ k.
(ii) il(G) ≤ k.
(iii) There is an interval supergraph I of G such that |E(I)| ≤ k.
Proof. (i)⇒ (ii). If γ(G) ≤ k, then by Theorem 3.1 there is a monotone search

program

(A1
0, Z

1
0 ), (A

2
0, Z

2
0 ), (A

1
1, Z

1
1 ), (A

2
1, Z

2
1 ), . . . , (A

1
n, Z

1
n), (A

2
n, Z

2
n)

on G with cost ≤ k. We choose ε < 1 and assign to each vertex v of G the interval
(lv, rv + ε), where a searcher is placed on v at the lvth step and this searcher is
removed from v at the rvth step, i.e., lv = min{i ∈ {1, . . . , n}|v ∈ Z1

i } and rv =
max{i ∈ {1, . . . , n}|v ∈ Z1

i }. After the nth step of the search program all edges of
G are cleared, and hence for every edge e of G there is a step such that both ends
of e are occupied by searchers. Therefore, the interval graph I with the canonical
representation I = {Iv = (lv, rv + ε)}v∈V (G) is the supergraph of G. Because for
sufficiently small ε

∑
v∈V

�rv + ε− lv� =
∑
v∈V

�rv − lv� =
n∑

i=0

|Z2
i |

(in the left-hand side equality each vertex v is counted �rv − lv� times), we see that
il(G) ≤ l(I) ≤ k.
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(ii)⇒ (iii). This part of the proof follows immediately from Lemma 4.1.
(iii)⇒ (i). Let I = {Iv = (lv, rv)}v∈V (G), lv < rv, be a canonical representation

of the minimal length of an interval supergraph I of G. It is clear that rv < n + 1,
v ∈ V (G).

Let us describe the following search program on G.
• Z1

0 = ∅.
• For i ∈ {1, . . . , n}, we put Z1

i = Z2
i−1 ∪ {v}, where v is the vertex assigned to

the interval with the left endpoint i.
• For i ∈ {0, . . . , n− 1}, Z2

i = P (i+ 1).
• Z2

n = ∅.
Such actions of searchers do not imply recontamination because each path in I (and
hence in G) from a vertex w, lw > i+ 1 to a vertex u, lu < i+ 1 contains a vertex of
P (i+ 1). For each edge e of I (and hence for each edge of G) there is i ∈ {1, . . . , n}
such that both ends of e belong to Z1

i . Then at the nth step all edges are cleared.
The cost of the program is

n∑
i=0

|Z2
i | =

n∑
i=1

|P (i)|.

By Lemma 4.1 γ(G) ≤ |E(I)|.
Notice that by Theorem 4.2 for any graph G on n vertices and e edges

e ≤ γ(G) ≤ 1

2
n(n− 1).

Also, γ(G) = e if and only if G is an interval graph, and γ(G) = 1
2n(n − 1) if and

only if G is a complete graph.

5. Linear layouts. A linear layout of a graph G is a one-to-one mapping
f :V (G) → {1, . . . , n}. There are various interesting parameters associated with linear
layouts like Bandwidth, Sum Bandwidth, Cutwidth, etc. (see [10] and [26] for
further references).

Define the profile [10] of a symmetric n × n matrix A = (aij) as the minimum
value of the sum

n∑
i=1

(i−min{j: aij �= 0})

taken over all symmetric permutations of A, it being assumed that aii = 1, i ∈
{1, . . . , n}. Profile reduction is relevant to the speedup of matrix computations; see
[10] for further references on profile. The profile may be redefined as a graph invariant
p(G) by finding a linear layout f of G which minimizes the sum

∑
u∈V (G)

(f(u)−min{f(v): v ∈ V (G), v ∼= u}),

where ∼= stands for “is adjacent or equal to.”
For U ⊆ V (G) we define

∂U = {u:u ∈ U and there exists v ∈ V (G) \ U such that (u, v) ∈ E(G)}.
Ellis, Sudborough, and Turner [13] (see also [24]) introduced the following graph
parameter. Let f be a linear layout of a graph G. Denote by Si(G, f), i ∈ {1, . . . , n},
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the set of vertices {v: v ∈ V (G), f(v) ≤ i}. The vertex separation with respect to
layout f is

vs(G, f) = max
i∈{1,...,n−1}

|∂Si(G, f)|,

and the vertex separation vs(G) of a graph G is the minimum vertex separation over
all linear layouts of G. Let us define an alternative “average norm” (“cost version”)
of vertex separation. The vertex separation sum with respect to layout f is

vssum(G, f) =

n−1∑
i=1

|∂Si(G, f)|,

and the vertex separation sum vssum(G) of a graph G [18] is the minimum vertex
separation sum over all linear layouts of G.

The following result is due to Billionnet [3].

Theorem 5.1 (Billionnet). For any graph G the profile of G is equal to the
smallest number of edges, where minimum is taken over all interval supergraphs of
G.

The next theorem is related to the theorem of Kirousis and Papadimitriou [20]
about node search number and interval width.

Theorem 5.2. For any graph G and k > 0, the following assertions are equiva-
lent.

(i) γ(G) ≤ k.
(ii) vssum(G) ≤ k.
(iii) p(G) ≤ k.

Proof. Because the application of Theorems 4.2 and 5.1 yields (i)⇔ (iii), it remains
to prove (i)⇔ (ii).

(i)⇒ (ii). Let

(A1
0, Z

1
0 ), (A

2
0, Z

2
0 ), (A

1
1, Z

1
1 ), (A

2
1, Z

2
1 ), . . . , (A

1
n, Z

1
n), (A

2
n, Z

2
n)

be a monotone search program on G with cost ≤ k. Define a layout f :V (G) →
{1, . . . , n} so that f(u) < f(v) if and only if u accepts a searcher before v does. By
the second search axiom |Z2

i | ≤ |∂Si(G, f)| for each i ∈ {1, . . . , n}, and we conclude
that vssum(G, f) ≤ k.

(ii)⇒ (i). Let f :V (G) → {1, . . . , n} be a linear layout such that vssum(G, f) ≤ k.
We define the following subsets of V (G).

• Z1
0 = Z2

0 = ∅.
• For i ∈ {1, . . . , n}, we put Z1

i = Z2
i−1 ∪ {v}, where v = f−1(i).

• For i ∈ {1, . . . , n}, Z2
i = ∂Si(G, f).

For i ∈ {0, . . . , n} and j = 1, 2, let Aj
i be the set of edges induced by ∪i

k=0Z
1
k .

We observe that for each edge (u, v) ∈ E(G) there is i ∈ {1, . . . , n− 1} such that
u, v ∈ Z1

i . (If f(u) < f(v), then i = f−1(v).) On this basis it is straightforward to
prove (as in Theorem 4.2) that the sequence

(A1
0, Z

1
0 ), (A

2
0, Z

2
0 ), (A

1
1, Z

1
1 ), (A

2
1, Z

2
1 ), . . . , (A

1
n, Z

1
n), (A

2
n, Z

2
n)

is the (monotone) search program of cost ≤ k on G.
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5.1. Complexity remark. The problem of Interval Graph Completion is
as follows.
Instance: A graph G and an integer k.
Question: Is there an interval supergraph I of G such that |E(I)− E(G)| ≤ k?

This problem is NP-complete even when G is stipulated to be an edge graph (see [16,
Problem GT35]). Interval Graph Completion arises in computational biology
(see, e.g., [5]) and is known to be fixed parameter tractable (FPT) [9, 19].

From Theorem 4.2 it follows immediately that the problem of Search Cost,
deciding given a graph G and an integer k whether γ(G) ≤ k or not, is NP-complete
even for edge graphs and that finding the search cost is FPT for a fixed k.

An O(n1.722) time algorithm was given in [22] for the profile problem for the case
that G is a tree with n vertices.

6. Product of graphs. Let G and H be disjoint graphs, i.e., V (G)∩V (H) = ∅.
The disjoint union of disjoint graphs G and H is the graph G∪̇H with the vertex set
V (G) ∪ V (H) and the edge set E(G) ∪ E(H).

We use G × H to denote the following type of “product” of disjoint graphs G
and H: G × H is the graph with the vertex set V (G) ∪ V (G) and the edge set
E(G) ∪ E(H) ∪ {(u,w): v ∈ V (G), w ∈ V (H)}).

The following theorem is similar to results on edge-search and node-search num-
bers [17, 28] and on the pathwidth and the treewidth of a graph [6].

Theorem 6.1. Let G1, G2 be disjoint graphs, |V (G1)| = n1, |V (G2)| = n2. Then
(i) γ(G1∪̇G2) = γ(G1) + γ(G2).
(ii) γ(G1 ×G2) = min{ 1

2n1(n1 − 1) + γ(G2),
1
2n2(n2 − 1) + γ(G1)}+ n1n2.

Proof.
(i) This part of the proof is trivial.
(ii) Let f be an optimal layout of G1 ×G2, i.e.,

vssum(G1 ×G2) =

n1+n2−1∑
i=1

|∂Si(G1 ×G2, f)|.

Let k be the smallest number ensuring that V (G1) ⊆ Sk(G1 × G2, f) or V (G2) ⊆
Sk(G1×G2, f). For clarity’s sake, without loss of generality we suppose that V (G1) ⊆
Sk(G1 × G2, f). Obviously, k ≥ n1. Let g:V (G2) → n2 be the “restriction” of f to
V (G2), i.e., for any u, v ∈ V (G2), g(u) < g(v) if and only if f(u) < f(v).

Putting S0(G2, g) = ∅, we see that |∂Si(G1 × G2, f)| = i for i ∈ {1, . . . , k − 1}
and |∂Si(G1×G2, f)| = n1+ |∂Si−n1(G2, g)| for i ∈ {k, . . . , n1 + n2 − 1}. In addition,
for any i ∈ {1, . . . , n2}, |∂Si(G2, g)| ≤ i. Consequently,

vssum(G1 ×G2) =

n1+n2−1∑
i=1

|∂Si(G1 ×G2, f)|

=

k−1∑
i=1

i+

n1+n2−1∑
i=k

(n1 + |∂Si−n1(G2, g)|)

=

n1∑
i=1

i+

k−n1−1∑
i=1

i+

n1+n2−1∑
i=k

|∂Si−n1(G2, g)|+ n1(n2 − 1)

=
1

2
n1(n1 − 1) +

k−n1−1∑
i=1

i+

n2−1∑
i=k−n1

|∂Si(G2, g)|+ n1n2
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≥1

2
n1(n1 − 1) +

n2−1∑
i=1

|∂Si(G2, g)|+ n1n2

≥1

2
n1(n1 − 1) + vssum(G2) + n1n2.

Finally,

vssum(G1×G2) ≥ min

{
1

2
n1(n1 − 1) + vssum(G2),

1

2
n2(n2 − 1) + vssum(G1)

}
+n1n2.

For the other direction, let f be an arbitrary layout of G1 and let g be a layout
of G2 such that vssum(G2) =

∑n2−1
i=1 |∂Si(G2, g)|. Define the layout h of G1 ×G2 by

the rule

h(v) =

{
f(v), if v ∈ V (G1),
n1 + g(v), if v ∈ V (G2).

It follows easily that |∂Si(G1×G2, h)| = i whenever i ∈ {1, . . . , n1} and that |∂Si(G1×
G2, h)| = n1 + |∂Si−n1(G2, g)| if i ∈ {n1 + 1, . . . , n1 + n2 − 1}. We conclude that

vssum(G1 ×G2) ≤
n1+n2−1∑

i=1

|∂Si(G1 ×G2, h)|

=

n1∑
i=1

i+

n1+n2−1∑
i=n1+1

(n1 + |∂Si−n1(G2, g)|)

=
1

2
n1(n1 + 1) + n1(n2 − 1) +

n2−1∑
i=1

|∂Si(G2, g)|

=
1

2
n1(n1 − 1) + vssum(G2) + n1n2.

Similarly,

vssum(G1 ×G2) ≤ 1

2
n2(n2 − 1) + vssum(G1) + n1n2.

7. Cographs. Theorem 6.1 can be used for obtaining linear time algorithms for
the search cost and the corresponding search strategy on cographs. Recall that a
graph G is a cograph if and only if one of the following conditions is fulfilled:

1. |V (G)| = 1.
2. There are cographs G1, . . . , Gk and G = G1∪̇G2∪̇ · · · ∪̇Gk.
3. There are cographs G1, . . . , Gk and G = G1 ×G2 × · · · ×Gk.

(See [8] for references on cographs and different graph classes.)
Linear time algorithms computing the search cost and optimal search program on

cographs follow rather straightforwardly from the theory developed in the preceding
sections. A similar algorithm for the treewidth and the pathwidth of cographs was
described in [6]. The main idea of the algorithms is in constructing a sequence of
operations ∪̇ and × producing the cograph G. With each cograph G one can associate
a binary labeled tree which is called the cotree TG. TG has the following properties.

1. Each internal vertex v of TG has label(v)∈ {0, 1}.
2. There is a bijection τ between the set of leaves of TG and V (G).
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3. To each vertex v ∈ (TG) we assign the subgraph Gv of G as follows.
(a) If v is a leaf, then Gv = τ(v).
(b) If v is an internal vertex and label(v)= 0, then Gv = Gu∪̇Gw, where

u,w are the sons of v.
(c) If v is an internal vertex and label(v)= 1, then Gv = Gu × Gw, where

u,w are the sons of v.
Notice that if r is the root of TG, then Gr = G. Corneil, Perl, and Stewart [11]
gave an O(|V (G)|+ |E(G)|) algorithm for determining whether a given graph G is a
cograph and, if so, for constructing the corresponding cotree.

We omit the detailed proofs of the following theorems.
Theorem 7.1. The search cost of a cograph given with a corresponding cotree

can be computed in O(n) time.
Theorem 7.2. Let G be a cograph of n vertices and e edges. The optimal search

program on G can be constructed in O(n+ e) time.

8. Concluding remarks. In this paper, we have introduced a game-theoretic
approach to the problem of interval completion with the smallest number of edges.
There are similar approaches to the pathwidth and treewidth parameters. The in-
teresting problem is whether there is a graph-searching “interpretation” of the fill-in
problem (see also [36] for monotonicity proofs of another variant of graph searching).

REFERENCES

[1] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), DI-
MACS Ser. Discrete Mathematics and Theoretical Computer Science 5, Amer. Math. Soc.,
Providence, RI, 1991, pp. 33–49.

[2] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12 (1991),
pp. 239–245.

[3] A. Billionnet, On interval graphs and matrice profiles, RAIRO Rech. Opér., 20 (1986),
pp. 245–256.

[4] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.
Sci., 209 (1998), pp. 1–45.

[5] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Wareham,
Parameterized complexity analysis in computational biology, Computer Applications in the
Biosciences, 11 (1995), pp. 49–57.
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