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Abstract

The time-dependent orienteering problem is dual to the time-dependent traveling salesman problem. It consists of visiting a
maximum number of sites within a given deadline. The traveling time between two sites is in general dependent on the starting
time.

For anyε > 0, we provide a(2+ ε)-approximation algorithm for the time-dependent orienteering problem which runs in
polynomial time if the ratio between the maximum and minimum traveling time between any two sites is constant. No prior
upper approximation bounds were known for this time-dependent problem. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the orienteering problem (see, e.g., [1,9]) a
traveler wishes to visit a maximum number of sites
(nodes) subject to given restrictions on the length of
the tour. This problem can be regarded as the prob-
lem of traveling salesperson with restricted amount of
resources (time, gasoline, etc.) wishing to maximize
the number of visited sites. For this reason, the ori-
enteering problem has been also called “the general-
ized traveling salesperson problem” or even as “the
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bank robber problem” [3,9]. Even if the ratio between
the maximum and minimum amount of resources re-
quired for traveling between two sites is constantly
bounded, the orienteering problem is MAX-SNP-hard
simply because the correspondingly restricted trav-
eling salesman problem is MAX-SNP-hard [5,14]
(cf. [4,8,13]).

In this paper we consider a generalization of the
orienteering problem which we termtime-dependent
orienteering (TDO, for short). In our generalization,
the cost of traveling (time cost in our terminology)
from any site to any other site in general depends on
the start moment.

The orienteering problems considered in [1] are
classified as thepath-orienteering, cycle-orienteering,
and eventree-orienteering problems depending on
whether or not the network to be induced by the
set of pairs of consecutive sites visited is supposed
to have a form of a path, a cycle, or even a tree,
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respectively. Additionally, one can wish to have one
or more roots, which are ‘essential’ sites required
to be visited. Following this classification we will
refer to the cases of TDO problems without roots as
path (cycle, tree)-TDO and to the cases with roots as
rooted-path (cycle, tree)-TDO.

For illustration, consider the two following exam-
ples of possible applications of TDO.

Kinetic TSP [5,10]. There is given a set of targets
and one robot (intercepter) with restricted amount of
resources (e.g., fuel). The dynamic of targets is known,
i.e., for each target one can specify its location at
any discrete time moment. The problem is to find a
program for the robot which allows it to hit as many
targets as possible within a given time. This problem is
an example of path-TDO. If there is a target specified
to be intercepted then we have an example of rooted-
path-TDO.

Time-Dependent Maximum Scheduling Problem
(TDMS) [15]. There is given a set of tasks for a sin-
gle machine. The execution of any task can start at any
discrete moment and its execution time depends on
the starting moment. The problem is to find a sched-
ule for the machine maximizing the number of tasks
completed within a given time period. This problem
is equivalent to Job Interval Selection Problem stud-
ied by Spieksma [15]. It can be interpreted as a spe-
cial case of TDO where the time of traveling from a
site a to a siteb does not depend on the siteb and
is interpreted as the execution time of the task cor-
responding toa. The Web Searching Problem stud-
ied by Czumaj et al. [7] yields the following motiva-
tion for TDMS. Assume that there is a central com-
puter which is being used to collect all the informa-
tion stored in a number of web documents, located in
various sites. The information is gathered by schedul-
ing a number of consecutive client/server connections
with the required web sites, to collect the informa-
tion page by page. The loading time of any partic-
ular page from any site can vary at different times,
e.g.„ the access to the page is much slower in peak
hours than in off-peak hours. We wish to download
the maximum number of pages within a given period
of time.

1.1. Main results

An algorithm is said to be ac-approximation al-
gorithm for a maximization problemP if for any in-
stance ofP it yields a solution whose value is at least
1/c times the optimum.

Let n be the number of input sites and letk be
the ratio between the maximum and minimum time
required for traveling between two sites.

We present(2+ ε)-approximation algorithms for
path-TDOs and cycle-TDOs running in time

O

((
2k2

⌈
2+ ε

ε

⌉)
!kn2k2( 2+ε

ε
)+1

)
.

In the corresponding rooted cases the time complex-
ity increases by the multiplicative factor O(kn/ε).
These bounds immediately carry over to the corre-
sponding time-independent special cases, i.e., the un-
rooted and rooted, path-orienteering problems and
cycle-orienteering problems. Our algorithm is the
first constant-factor approximation algorithm for TDO
with k =O(1) running in polynomial time. Although
for largek, our algorithm can be hardly claimed to be
practical because of its fairly high running time, it sug-
gests that practical and efficient algorithms might be
possible.

1.2. Related results

The authors are not familiar with any explicit
prior approximation algorithms for time-dependent
orienteering (TDO). Of course, if the ratio between
the maximum and minimum distance isk then any
approximation algorithm is ak-approximation one.

For the Time-Dependent Maximum Scheduling
Problem (TDMS) which can be interpreted as a special
case of TDO, a simple greedy 2-approximation algo-
rithm running in time O(mt), wherem is the number
of available tasks andt is the deadline, follows from
Spieksma’s algorithm [15] for Job Interval Selection
Problem. Also, it follows from the same work [15] that
TDMS is MAX-SNP-hard.

As for the “classical”, i.e., time-independent, ori-
enteering problem, Awerbuch et al. proved that ac-
approximation algorithm to the so-calledk-traveling
salesperson problem, asking for a shortest cycle vis-
iting k sites (k-TSP), yields a 2c-approximation al-
gorithm for the orienteering problem [2]. This result
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combined with known approximation results fork-
TSP yields a 6-approximation algorithm for the ori-
enteering problem in metric spaces and a(2 + ε)-
approximation algorithm in the Euclidean plane. The
latter result has been subsumed by Arkin et al. who
presented 2-approximation algorithms for several vari-
ants of the orienteering problem in the plane [1]. More
recently, Broden has designed a 4/3-approximation al-
gorithm for the very special case of the orienteering
problem where the pairwise distances are constrained
to {1,2} [5]. Note here that the recent lower bounds
on the constant approximation factor for the anal-
ogously restricted traveling salesperson problem [4]
easily carry over to the aforementioned special case
of the orienteering problem.

For an interesting review of results related to the
orienteering problem, including several variants of the
traveling salesperson problem, the reader is referred
to [1].

The recent works by Hammar and Nilsson [10]
and Broden [5] contain a number of inapproximability
and approximability results on various restrictions of
the problem dual to TDO, i.e., the time-dependent
traveling salesperson problem.

2. Formal definition of TDO

For a given setS of n sites, a time-travel function
l :S × S × N ∪ {0} → R

+ and a deadlinet , the
salesperson’s tour visiting a subset T of m sites is a
sequence of triples

(s1, t
+
1 , t−1 ), (s2, t

+
2 , t−2 ), . . . , (sm, t+m , t−m)

such that
(1) for i ∈ {1,2, . . . ,m}, t+i , t−i ∈N∪ {0};
(2) T = {s1, s2, . . . , sm};
(3) 0= t+1 � t−1 � t+2 � · · ·� t+m � t−m = t ;
(4) for eachi ∈ {1,2, . . . ,m − 1}, t+i+1 − t−i = l(si ,

si+1, t
−
i ).

It is useful to interpret the momentt−i as the moment
when salesperson leaves the sitesi and t+i as the
moment when salesperson enterssi . So t+i+1 − t−i is
the time spent in travel fromsi to si+1 and t−i − t+i
is the time the salesperson stays insi (importantly, the
traveler is allowed to stay at any site any time). The
path (or cycle) time-dependent orienteering problem

is to find an open (closed, respectively) tour visiting
maximum number of sites within the timet .

Note that the classical orienteering problem [1] is
a special case of TDO where for any sitesa, b,

the travel time froma to b is time-independent, i.e.,
l(sa, sb, t

′)= l(sa, sb, t
′′) for anyt ′, t ′′ ∈ [0, t].

3. Main procedure and algorithms

We may assume without loss of generality that
the minimum travel time between two sites,
mins,s ′∈S,t ′∈[0,t ] l(s, s′, t ′), is 1.

For a nonnegative integerq and a positive integer
i � �t/q�, we shall denote byIi(q) the subinterval
[q(i−1),min{qi−1, t}] of [0, t]. For a given setS of
sites, aq-partial salesperson’s tour is a sequenceQ
of triples (sl, t

+
l , t−l ), sl ∈ S, t+l , t−l ∈ [0, t], such that

for every time intervalIi(q), 1� i � �t/q�, the subse-
quence(sp, t+p , t−p )t+p ,t−p ∈Ii (q) of Q is a (salesperson’s)
path-tour, i.e., an open tour visiting all sites in the in-
terval. In other words,q-partial tour induces a path-
tour for each time intervalIi(q), i ∈ {1,2, . . . , �t/q�},
but in general it is not a tour.

The following simple procedure is the heart of our
algorithms for TDO.

Procedure Greedy(S, q, t)

INPUT: SetS of n sites, integerq , deadlinet ;
OUTPUT:q-partial tour.
(1) T ← S;
(2) for i = 1,2, . . . , �t/q� do

let Ti be a maximum cardinality subset ofT that
can be visited in the time intervalIi(q) by a
path-tour;

compute a path-tour visitingTi in the time
intervalIi(q);

T ← T \ Ti

Obviously, the setTi can be found in O(q!nqq)

time by considering all possible choices of a subset
of T containing at mostq elements and then applying
the straightforward O(q!q)-time brute force method
for the time-dependent traveling salesperson problem
on the subset. Hence the overall time complexity of
Greedy(S, q, t) is O(q!tnq).

Let k be the maximum time needed to travel
between two sites, i.e.,k =maxs,s ′∈S,t ′∈[0,t ] l(s, s′, t ′).
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Note that by our initial assumptionk is also the ratio
between the maximum and minimum time required for
traveling between two sites.

Algorithm GreedyPath(S, q, t)

INPUT: SetS of n sites, integerq , deadlinet ;
OUTPUT: path-tour.
(1) Run procedureGreedy(S, q, t);
(2) for i = 1, . . . , �t/q� − 1 do

Remove from the set of visited sites all sites
visited in the time interval[qi−k/2, qi+k/2];

Glue the obtained subtours by forcing the sales-
person to go from the last visited site in the
time interval[q(i − 1)+ k/2, qi − k/2] to the
first visited site in the time interval[qi + k/2,

q(i + 1)− k/2]

Algorithm GreedyCycle(S, q, t) is obtained from
GreedyPath(S, q, t) by closing the path-route near its
endpoints, i.e., by forcing the salesperson to go from
the last visited site in the time intervals�t/q�−1 to the
first visited site from the time interval[k, q − k/2].

4. Approximation analysis

Lemma 1. Let p be the maximum number of different
sites that can be visited by a q-partial tour. Then
the number of sites participating in the q-partial tour
produced by Greedy(S, q, t) is at least �p/2�.

Proof. Let W ⊆ S be a set ofp sites that can be
visited by aq-partial tourQopt and letV be the set of
sites returned byGreedy(S, q, t). Denote byVi the set
of sites visited byGreedy(S, q, t) in the time interval
[0, iq) and byWi the subset ofW visited by Qopt
in the time interval[0, iq). For 1� i � �t/q�, let
Xi :=W \ (Vi ∪Wi), i.e.,Xi consists of the sites inW
that have been visited by neitherGreedy(S, q, t) nor
Qopt in the time interval[0, qi).

We claim that for each 1� i � �t/q�,
|Xi |� p− 2|Vi|. (1)

SinceX�t/q� = ∅, this claim implies the lemma. We
prove it by induction oni.

The procedureGreedy(S, q, t) finds the maximum
number of sites than can be visited within time interval
I1(q). Hence|V1|� |W1| and|V1∪W1|� 2|V1| hold.

By definition,|X1| = p−|V1∪W1|� p−2|V1| holds.
Thus, fori = 1 the inequality (1) is true. Suppose that
(1) is true for allr ∈ {1, . . . , i − 1}.

We claim that

Xi−1 \Xi = (Vi ∪Wi) \ (Vi−1 ∪Wi−1). (2)

In fact, for everyu ∈W , we have

u ∈Xi−1 \Xi ⇔ u ∈Xi−1 ∧ u /∈Xi

⇔ u ∈W \ (Vi−1 ∪Wi−1)∧
u /∈W \ (Vi ∪Wi)

⇔ u ∈ (Vi ∪Wi) \ (Vi−1 ∪Wi−1).

By (2),

(Xi−1 \Xi)∩ Vi ⊆ Vi \ Vi−1. (3)

The set of sitesVi \Vi−1 is chosen byGreedy(S, q, t)

at theith step. Therefore,|Vi \ Vi−1| is the maximum
number of sites fromS\Vi−1 that can be visited within
the time intervalIi(q). Eq. (2) implies(
(Xi−1 \Xi)∩Wi

)∩ Vi−1= ∅
and we conclude that∣∣(Xi−1 \Xi)∩Wi

∣∣ � |Vi \ Vi−1|. (4)

It follows from (2), (3) and (4) that

|Xi−1 \Xi |
�

∣∣(Xi−1 \Xi)∩ Vi

∣∣+ ∣∣(Xi−1 \Xi)∩Wi

∣∣
� 2|Vi \ Vi−1|. (5)

SinceXi ⊆Xi−1 andVi ⊇ Vi−1, we have that

|Xi | = |Xi−1| − |Xi−1 \Xi | (6)

and

|Vi| = |Vi−1| + |Vi \ Vi−1|. (7)

Combining (5), (6), (7) with the induction assump-
tion |Xi−1|� p− 2|Vi−1|, we obtain

|Xi | = |Xi−1| − |Xi−1 \Xi |
� p− 2|Vi−1| − 2|Vi \ Vi−1|
= p− 2|Vi |,

and (1) follows. ✷
Theorem 2. For any ε > 0, if the path- and cycle-
TDO for n sites admit (2+ ε)-approximation algo-

rithms running in time O((2k2�2+ε
ε
�)!kn2k2( 2+ε

ε
)+1).
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Proof. Let S be a set ofn sites. Suppose that an
optimal solution to the path- (cycle-) TDO visitsm
sites. We may assume without loss of generality. that
m � t/k (otherwise there is a trivial algorithm finding
the exact solution).

Take q = 2k2((2+ ε)/ε). By Lemma 1, the pro-
cedureGreedy(S, q, t) outputs aq-partial tour visit-
ing at leastm/2 sites. Consequently, each of the algo-
rithmsGreedyPath(S, q, t), GreedyCycle(S, q, t) out-
puts a tour visiting at least

m

2
− kt

q
= 1

2

(
m− 2kt

q

)
� m

2

(
1− 2k2

q

)
= m

2+ ε

sites. Hence,GreedyPath(S, q, t) andGreedyCycle(S,

q, t) are(2+ ε)-approximation algorithms.
By the remark on the time complexity of pro-

cedureGreedy(S, q, t), both algorithms run in time

O((2k2�2+ε
ε
�)!tn2k2( 2+ε

ε
)) and the assumptionn �

m � t/k implies the complexity bound in the theorem
thesis. ✷

We can trivially model the time-independent path-
and cycle-orienteering problems as special cases of
TDO by setting the traveling time between two sites
to the distance between them.

Corollary 3. For any ε > 0, path- and cycle-orien-
teering time-independent problems for n sites admit
(2 + ε)-approximation algorithms running in time

O((2k2�2+ε
ε
�)!kn2k2( 2+ε

ε )+1), where the distance be-
tween the furthest site pair is at most k times greater
than that between the closest pair.

5. Extensions

We can easily extend our technique to include the
rooted case of the path- and cycle-TDO (cases where
‘essential’ sites are required to be visited).

Analogously to Theorem 2, we can obtain the
following result.

Theorem 4. For any ε > 0, if the distance between
the furthest site pair is O(1) times greater than
that between the closest pair, the rooted path- and
cycle-TDO for n sites admit (2 + ε)-approximation
algorithms running in polynomial time.

Our technique also can be extended to include
orienteering variants of many other optimizations
problems (e.g., tree-orienteering) as well variants with
parallel travelers. It can be also used in the design of
efficient approximation algorithms for time-dependent
bicriteria network optimization problems (see [12] and
the last chapter in [6]). Finally, it can be applied to
derive approximative solutions to the Budget Prize
Collecting Steiner Tree problem (see [11]) and its time
dependent variant.
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