Journal of
Algorithms

ACADEMIC _
PRESS Journal of Algorithms 43 (2002) 190-200

www.academicpress.com

Approximation of pathwidth of outerplanar
graphs’

Hans L. Bodlaendérand Fedor V. Fomif*

2 | nstitute of Information and Computing Sciences, Utrecht University, PO Box 80.089,
3508 TB Utrecht, The Netherlands
b Graduiertenkolleg des PaSCo, Heinz Nixdorf Institut and University of Paderborn,
Firstenallee 11, D-33102 Paderborn, Germany

Received 31 July 2000; received in revised form 4 February 2002; accepted 4 February 2002

Abstract

There exists a polynomial time algorithm to compute the pathwidth of outerplanar
graphs, but the large exponent makes this algorithm impractical. In this paper, we give
an algorithm that, given a biconnected outerplanar gi@plfinds a path decomposition
of G of pathwidth at most twice the pathwidth @ plus one. To obtain the result,
several relations between the pathwidth of a biconnected outerplanar graph and its dual
are established] 2002 Elsevier Science (USA). All rights reserved.

Keywords: Pathwidth; treewidth; approximation algorithm; outerplanar graph

1. Introduction

Much research has been done to compute the pathwidth of graphs. The notion
of pathwidth first appeared in the theory on graph minors by Robertson and
Seymour [1], and is equivalent to several other graph theoretic notions, e.qg.,
vertex separation number, interval thickness, node search number. See [2,3] for
overviews.

Y This research was partially supported by EC contract IST-1999-14186: Project ALCOM-FT
(Algorithms and Complexity—Future Technologies).
* Corresponding author.
E-mail addresses: hansb@cs.uu.nl (H.L. Bodlaender), fomin@uni-paderborn.de (F.V. Fomin).

0196-6774/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
PIl: S0196-6774(02)00001-9

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200 191

In this paper, we consider the problem of approximating the pathwidth of
outerplanar graphs. In [4], it was shown that the pathwidth of graphs with
bounded treewidth can be computed in polynomial time. As outerplanar graphs
have treewidth two, we know that pathwidth is polynomial time computable for
outerplanar graphs. However, the exponent in the running time of this algorithm
is rather large—already one step in the algorithm requires working with sets of
size O(n'1). In this paper, we give a linear algorithm, which approximates the
pathwidth of a 2-connected outerplanar graph with multiplicative factor two. Our
algorithm is based on structural results on the relation between the pathwidth of
a 2-connected outerplanar graph and its dual, which are interesting in their own
right. This ‘dual’ relation combined with the results of Ellis et al. [5] that the
pathwidth of trees can be computed in linear time are the main ingredients of our
algorithm. Also, we show how to construct the corresponding path decomposition
in O(nlogn) time.

In [6], Govindran et al. give at® (nlogn) time algorithm for approximating
the pathwidth of an outerplanar graph with a multiplicative factor of three. We
improve upon this paper for biconnected outerplanar graphs.

2. Definitions and notations

We use the following notation&; = (V, E) is an undirected and finite graph
with vertex setV and the edge sdt which is assumed to be without self-loops or
parallel edges. planegraphis a particular drawing of a planar graph in the plane
without crossings. Amuterplane graph is a planar embedding of an outerplanar
graph with every vertex on the exterior face. Edges of an outerplane graph that
are not on the boundary of the exterior face are cdlignal. If G = (V, E) is
a plane graph the6™* = (V*, E*) denotes its geometric dual. Theak dual of
a plane graplG is the graph obtained from the du@l by deleting the vertex
corresponding to the exterior face Gt

Observation. The weak dual of an outerplane graph is a forest.
Observation. The weak dual of a 2-connected outerplane graph is a tree.

The notion of pathwidth was introduced by Robertson and Seymour [1]. (See
[2,7] for surveys.) Apath decomposition of a graphG = (V, E) is a sequence
(X1, X2, ..., X,) of subsets oV (these subsets are callbags), such that

o Uiy Xi=V;

e forall {v,w} e E, thereisan, 1<i <r,withv,w € X;;
o forall1<ip<iz<ia<r, X;oNX;, € X;y.

192 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200

The width of path decompositioniX1, Xo, ..., X,) is maxgi<- |Xi| — 1. The
pathwidth of a graph is the minimum width over its path decompositions.

The notion of treewidth is strongly related to the notion of pathwidth. In this
paper, we use a variant of this notion, which we sathi-treewidth.

A semi-tree decomposition of a graphG = (V, E) is a pair

({(Xiliel}, T=(,F)),
with {X; | i € I} a collection of subsets df andT = (I, F) a tree, such that

e Uit Xi=V;

o forall{v, w} € E,thereisan € I with v, w € X;, orthere are nodes, i1 € 1
with v € X;,, w € X;;, andig andi; are adjacentiff’;

e forallip,i1,ip € I,if iy isonthe pathilf fromigtoiy, thenX;,NX;, C X;,.

Thewidth of a semi-tree decompositi@fX; |i € I}, T = (I, F)) is a number
maXe<; | X;| — 1, and thesemi-treewidth of a graph is the minimum width over its
semi-tree decompositions.

The definition of tree decomposition is obtained by replacing the second
condition in the definition above by

o forall {v,w} € E, thereisan € I withv, w € X;.

The treewidth of a graph is the minimum width over its tree decompositions. No-
tice thatpath decomposition of a graphG can be defined as a tree decomposition
with a treeT being path.

3. Pathwidth of outerplane graphs
The main purpose of this section is to prove the following theorem.

Theorem 1. Let G be a 2-connected outer plane graph without |oops and multiple
edges, and let G* bethe dual of G. Then

pW(G™) < pW(G) < 2pWG™) + 2.

Notice that in Theorem 1 it is allowed for the dual gra@gh to have multiple
edges.

The remaining part of this section is devoted to the proof of Theorem 1. We
need the following fact about pathwidth of trees.

Theorem 2 (Ellis et al. [5]). 1 Every tree T of pathwidth k + 1, k > 1, has a
vertex u such that the forest 7 \ {u} has at least three connected components of
pathwidth > k.

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200 193

2. Foranytree T, pw(T) < k+ 1,k > 1,if and only if there is a path P such
that every connected component of the forest T \ V (P) has pathwidth < k.

Lemma3. Let G* = (V*, E) bethedual andlet T = (Vr, E1) be the weak dual
of a 2-connected outerplane graph G = (V, E). Then pw(7T') + 1 = pw(G*).

Proof. Let v € V* be the vertex corresponding to the exterior faceGofi.e.,
T =G*\{v}.

Let us prove that p¢G*) > pw(T) + 1. Suppose that pt¥') = k. Then by
Theorem 2 there is a vertexe Vy such that at least three branches:diave
pathwidth> k — 1. LetT1, T», andT3 be these branches.

Let (X1, X2,...,X,) be a path decomposition @ *. In this path decom-
position there are sets;; containing at least vertices of7}, j € {1,2,3}, as
the pathwidth of eaclT; is at leastt — 1. Without loss of generality, we sup-
pose thati; < i» < i3. Choosea € X;; \ X;, andb € X;; \ X;,. ThenX,, is
an (a, b)-separator. But there are at least two vertex disjGinb)-paths inG*
containing no vertex of’> (one passing through and one through). Hence
pPW(G*) > (k+2)—1=k+1.

The proof of pwG*) < pw(T) + 1 is obvious because = G* —v. O

Lemma 4. Let G be a 2-connected outer plane graph without loops and multiple
edges. Then pw(G*) < pw(G).

Proof. Let T = (Vr, E7) be the weak dual ofz. By Lemma 3, pwWIl') =
pw(G*) — 1. We now will show that pWrl') < pw(G) — 1, using induction to
the pathwidth off'. In the case pWr’) = 1 the result clearly holds.

Suppose now that for every 2-connected outerplane graph having a weak dual
of pathwidth< k, the lemma is correct.

Let G be a 2-connected outerplane graph ahdbe its weak dual with
pw(T) = k + 1. Then by Theorem 2 there is a vertexe Vr such that the
graphT \ {v} has at least three componefits T>, and T3 of pathwidth> k.

Let H1, H», and H3 be the subgraphs af having 71, 7>, and T3 as weak
duals. These graphs are 2-connected and outerplane and by induction hypothesis
pPW(H;) > k+1, i €{1,2,3}.

BecauseG is a 2-connected outerplane graph without loops and multiple
edges, the face a@f corresponding to vertex is bounded by a cycl€ of length
> 3. See Fig. 1 for a schematic diagram. Notice that for every(1, 2, 3} the
subgraphH; has some vertices @ and there is a patp; in C from H; to Hy
avoidingH;, i # j # k. Let (X1, Xo, ..., Xx) be a path decomposition 6f*. In
this path decomposition there are séis containing at least + 2 vertices of
Hj, j €{1,2,3}. We may assume, without loss of generality, thak i> < i3.

Then X;, separatesX;, and X;;. ThereforeX;, contains a vertex op> and
Xi,| 2k+24+1=k+3. O

194 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200

Fig. 1. lllustration of the proof of Lemma 4.

A triangulation of a plane grapld; is a maximal plane supergraph,i.e., a plane
supergraph o& with every face (including the exterior face) a triangle.

An inner triangulation of a plane graplG is a plane supergraph d@f, such
that all interior faces are a triangle, i.e., we allow the exterior face not to be a
triangle, and no edges are added to the outer face. dfotice that every inner
triangulation is a maximal outerplane graph.

Lemma 5. Let G be a 2-connected outer plane graph without loops and multiple
edges. Then there exists an inner triangulation H of G such that pw(G*) >
pw(H*) — 1.

Proof. Consider the followingface split operation on plane graphs: take an
interior face that is not a triangle, and add an edge between two non-adjacent
vertices of the face. Clearly, when we repeat the face split operation until it is
no longer possible, we end up with an inner triangulation of the original graph. It
remains to be shown that we can do this such that the pathwidth of the dual graphs
do not change.

The face split operation o6 corresponds to the following operation on the
dual G*, or, similarly, to the weak dual’. Take a vertexo of degree at least
4 in G*. Let N[v] be the set of the vertices that are adjacent.té\ssume a
clockwise ordering of the neighbors of v1, vy, ..., vs. (The ordering is forced
by the embedding, up to a cyclic shift.) Now, partition the8¢t] into two sets\
andN, whereM consists of the vertices in some consecutive part of the ordering,
e, M ={vi,viq1,...,v;}, 1<i < j <s. M andN have size at least two. Now,
transformG* as follows: deletey with all its incident edges, add new vertices
u andw with an edge{u, w}, and make: adjacent to all vertices a#/ and w
adjacent to all vertices a¥. Notice that the degree afin new graph igN| + 1
and the degree ob is |[M| + 1. We say that the result of this transformation is
obtained fromG* by avertex splitting of v. A graphH * is said to be aertex split
of G* if H* is obtained fromG* by a sequence of vertex splittings.

Notice that ifG = (V, E) is an outerplane graph afth = (V}, E7}.) is a vertex
split of G* = (V*, E*) thenF = (Vp, EF) isouterplaneant/r =V, Er D E.

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200 195

Let T be a weak dual tree @F. We wish to prove first that there is a spli§
of T such that pwrI') > pw(Ts) — 1 and maximum vertex degree 3.

By Theorem 2, every tree of pathwidthk + 1 has a pathP such that every
branch at this path (connected componerif §f V (P)) has pathwidth at mogt.
Using this fact one can find the spli easily. In fact, choose the path as in
Theorem 2 and split (if necessarily) the verticesPofSince the new path has the
same branches, such splittings do not increase the pathwidth. Then we can split
the branches aof recursively, unless such a branch consists of a single vertex. If
a branch consists of a single vertex then the splitting is obtained by splitting the
vertex adjacent to the vertex of the branch. Thus the corresponding branch in the
split will be a path: this increases the pathwidth of the branch by one.

If we do the corresponding face splits @& then we obtain the desired inner
triangulationH of G. In fact, by Lemma 3, pUG*) = pw(7) + 1 and pwH™*) =
pw(Ts) + 1. Therefore pWG™*) = pw(T) + 1 > pw(Ts) = pw(H*) — 1. O

Note that a graph remains outerplanar when we apply an inner triangulation.

Lemma 6. Let Go be a graph, and let G1 be obtained from G by removing all
vertices of degree two whose neighbors are adjacent. Then pw(G1) < pw(Go) <
pw(G1) + 1.

Proof. As G is a subgraph of;/o, clearly, pw(G1) < pw(Go).

Suppose we have a path decompositioi, X», ..., X,) of G1. For each
vertexv in Go with degree two whose neighbois x are adjacent, find a sét;
with w, x € X; and add afterX; in sequence of the path decomposition a set
X; U {v}. This gives a path decomposition 6fy whose width is at most one
larger than the given path decomposition®f. O

Lemma 7. Let H be a 2-connected inner triangulated outerplane graph. Let
T = (Vr, E7) betheweak dual of H. Let H~ bethegraph, obtained by removing
all vertices of degree two from H. Then there is a semi-tree decomposition
({X; |i e Vr}, T)of H- with width 1.

Proof. Choose an arbitrary leaf nodg from 7', and viewT” as a rooted tree with
root vg. We takeX,, = @. For all nodesw # vg, consider the edge from to
its parent inT. This edge is dual (crosses in the diagram) to an edge{say
from H. Then takeX,, = {y, z}.

We claim that({X; |i € Vr}, T) defined in this way is a semi-tree de-
composition ofH ~. We will verify the second and the third condition of semi-tree
decomposition. Becaudé~ is connected the first condition then follows directly
from the second.

Consideran edge, z} from H~. If {y, z} is an internal edge, then it crosses an
edge sayjv, w} from 7. Suppose is the parent ofv in 7. Then, by construction,

196 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200

Y z
Fig. 2. lllustration of the proof of Lemma 7.

{y,z} = Xw. Now, suppos€y, z} is not an internal edge. Suppo$e, z} is
adjacent to an internal face, represented by a vartBom 7. As the graph is
triangulated, this face must also be a triangle. The face must be adjacent to two
other internal faces i/ ; otherwisey or z would have degree two iH, and hence
{y, z} would not be an edge i/ ~. Say these faces are represented by nades
andx. As the root ofT is a node of degree one IR, eitherw or x is a child of
vin T. Supposew is a child ofv in T. Theny € X, andz € X, orz € X, and
y € Xy. (See Fig. 2.)

Finally, for a nodez in H—, note that the edges frof that cross an edge with
z as endpoint form a path ifi. By the choice of a leaf node as root Bf this is
a directed path and hence the collection of 3gt¢hatz induces a pathif. O

Lemma 8. Let (X, T') be a semi-tree decomposition of a graph G = (V, E) with
width k. Then

pPW(G) < (k+D(pw(T) +1) — 1.

Proof. Let (Y1,Y>,...,Y,) be a path decomposition @f of pathwidth pwT).
Consider the sequenc¢&1, Z», ..., Z,) with Z; = Ujeyi X;.

We now will verify that this sequence is a path decompositiorGofFirst,
suppose < iz < i3, andv € Z;; N Z;;. Hence,w € X, for somej € ¥;,, and
v € X, for somejz € ¥;,. By the properties of path decomposition, we have that
Y;, must contain a node from the path frginto jz in T'; call this nodej,. By the
definition of semi-tree decompositione X ;,, and hence € Z;,.

Next, consider an edgév, w} € E. If there is an edgdi1, iz} in T with
v € X;; andw € X;,, then there must be ah 1< j <r, with i1, i> € Y;. Hence,
v,w € Z;. The case that there is are 7 with v, w € X; is easy.

One directly sees that the width of this path decomposition is at most

k+DH(PW(THY)+1) —-1. O

Lemma 9. Let H be a 2-connected inner triangulated outerplane graph with
dual H*. Then pw(H) < 2 pw(H™*).

Proof. Let H~ be the graph obtained by removing the nodes of degree two
from H. Note that, ad{ is triangulated, the neighbors of every vertex of degree
two in H are adjacent. By Lemma 6, @) < pw(H) + 1. Let T be the weak

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200 197

dual of H. By Lemma 7, there is a semi-tree decompositian7) of H~ of
width 1; hence, by Lemma 8, g\ —) < 2- pw(T') + 1. Now

PWH) <pW(H) +1<2-pW(T) +2=2-pw(H*). O
We are in the position now to conclude the proof of Theorem 1.

Proof of Theorem 1. By Lemma 4, pwG*) < pw(G). By Lemma 5, there is a
planar inner triangulatiol of G such that pwH*) < pw(G*) + 1. Notice that
pw(G) < pw(H). Applying Lemma 9 forH* we have that pdH) < 2pwWH™).
So we have

PW(G™) < pW(G) < pW(H) < 2pWH™) <2pW(G*) +2. O

4. An approximation algorithm for biconnected outerplanar graphs

In this section, we give an algorithm that given a 2-connected outerplanar graph
G = (V, E) with n vertices finds a path decomposition@fthat has a width that
is at most two times the pathwidth of plus 2. The algorithm use® (n logn)
time, and follows the structure of the proof, given in the previous section. Note
that if we just want to have a bound on the pathwidtlothen the algorithm can
run in linear time.

Sep 1: Removeloops and parallel edges. If we allow our input graph to have
self-loops (edges of the forfw, v}), or parallel edges, then we just remove such
edges: this does not change the pathwidth of the graph.

Sep 2: Compute an outerplane embedding of G. It is well known that given
a graphG*, one can test in linear time i* is outerplanar, and if so, find an
embedding ofG* with all vertices on the exterior face. See, e.g., [8,9].

Sep 3: Computethedual graph G* of G. Itis well known, that, given a plane
embedding of a planar graph, one can find its dual in linear time.

Sep 4: Compute the pathwidth of the dual graph G*. The pathwidth of the
dual graphG* can be computed in linear time, in the following way. First, we
take the treel’ that is obtained fronG* by removing the vertex representing
the exterior face; i.e.T is the weak dual ofG. Using the algorithm of Ellis
et al. [5], we can compute in linear time the pathwidth of and compute
a path decompositionXy, ..., X,) of T of optimal width in O (nlogn) time.

The pathwidth ofG* is one larger, by Lemma 3, and the path decomposition
(X1U{v}, X2U{v}, ..., X, U{v}) is a path decomposition af* of optimal width.

By Euler’s formula the number of vertices @ is O (n) and the pathwidth of*

can be computed i@ (n) time.

If we are satisfied with dound on the pathwidth ofG that is at most two
times plus 2 larger than the exact bound, then by Theorem 1 we are done, as
2pwW(G*) + 2 is such a bound. However, if we wanpath decomposition of G

198 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200

whose width at most two times plus 2 than the pathwidtiizothen more work
has to be done.

Sep 5: Compute an inner triangulation H of G, such that pw(H™*) <
pw(G*) + 1. In this step, we make the proof of Lemma 5 constructive; i.e.,
we compute an inner triangulatidd of G, such that the pathwidth @* equals
the pathwidth of*, where H* is the dual ofH .

Let T be again the weak dual @f. Suppose the pathwidth @fis k.

Now, first we find a pathP in T, such that all branches at this path have
pathwidth< k. This can be done in linear time, using a minor modification of the
algorithm from Ellis et al. [5]. When we have the pakh the split can easily be
applied. After this, we continue recursively on the branches. As the pathwidth of
a tree withr vertices isO (logr), every edge of’ is involved inO (logr) recursive
steps, and the total time of this step becor@&slogs) = O (nlogn).

Sep 6: Compute a path decomposition for the weak dual of H. Compute
the weak duall’ of the inner triangulatiorH, computed in the previous step,
and use the linear time algorithm of Ellis et al. [5] to compute an optimal path
decomposition of’.

Sep 7 Compute the semi-tree decomposition of H~. Let H~ be the graph
obtained by removing the vertices of degree two frAmFollowing construction
described in the proof of Lemma 7, we can make a semi-tree decomposition
(X, T) of width 1, with T the weak dual ofH. It is not hard to see that this
step can be done in linear time.

Sep 8: Make a path decomposition of H~. The proof of Lemma 8 can be
made constructive in a straightforward way; we thus obtain a path decomposition
of H~ of width2pwWT) + 3=2pw(H*)+10of H™.

Sep 9: Make a path decomposition of H. Finally, we have to add back the
vertices with degree two, while increasing the pathwidth with at most one, as in
the proof of Lemma 6. This can be done in linear time by using the following
method.

Suppose that the vertices Hh are numbereds, ..., v,. We use also a boolean
arrayZ with indexed(l, ..., n}. Initially, all Z[i] are false.

1. Suppose thas is the set of vertices of degree two. Make a Beif (ordered)
pairs of vertices, with for every € S, its two neighbors as two ordered pairs
in P; i.e., if v’'s neighbors arec and y, then both(x, y) and (y, x) belong
to P. Maintain pointers from and to a vertexc S and its corresponding pair
in P.

2. Radix sortP; i.e., P is sorted with respect to the lexicographic ordering. This
can be done in linear time, using the standard radix sort algorithm.

3. Now, we can build an array, with théh entry pointing to a list of vertices
v for which (v;, v) belongs toP. This can be done in linear time, using the
sorted list of the previous step.

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200 199

4. Next, visit the bags in the path decompositiontbf one by one. For each
bagX;, we do the following:

(a) foreveryv; € X;, makeZ[j] true;

(b) for everyv; € X; \ X;_1 and for everyv; with (v;,v;) € P, check if
Z[j']is true. If it is true, then we found the bag for the neighbors of a
vertexv, namely the one corresponding to the pair, v;/). We remove
this pair and its reversed copy;', v;) from the array of step 3, and add
a pointer fronw to bagX;;

(c) for everyv; € X;, makeZ[;] false; i.e., now all values i are again
false.

5. Now, for every vertex of degree two inH, we can follow the pointer from

v to a bagX;. Add afterX; a bag which containX; U {v}. Note that in this

way, we never create bags that are more than one larger than a Hag in

When (v, w) and(w, v) belong toP, consider the first bag that contains both
v andw. In this bag, we will consider eithar or w in step 4(b), and hence the
vertex of degree 2 associated with this pair will be pointing towards this bag.

The time is linear in the size of the path decomposition plus the size dhe
pathwidth of a tree witlt vertices isO (logk) and by construction the number of
vertices in a path decomposition@s(n). Therefore this step can be performed in
O (nlogn) time.

Sep 10: Obtain a path decomposition of G. The path decomposition aff
obtained in step 9 is also the path decompositiorGoand the width of this
decomposition is at most 2 g@) + 2.

5. Concluding remarks

One of the most interesting question about the pathwidth of outerplanar graphs
we left open is the existence of fast practical exact algorithms or algorithms
approximating pathwidth of outerplanar graphs to within an additive constant.
One of the possible ways of obtaining such algorithms is the proof of the following
conjecture.

Conjecture 10. There is a constant such that for any 2-connected outerplanar
graphG without loops and multiple edges p&*) < pw(G) < pw(G™*) + c.

Moreover, we suggest that

Conjecture 11. For any 2-connected planar grapghwithout loops and multiple
edges pWG*) — 1 < pw(G) < pw(G™*) + 1.

200 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190-200

Path decompositions of trees and of outerplanar graphs witrertices
can have®(n) bagsX; of size ®(logn); thus, when using a straightforward
representation one may need alre&§: logn) time just for writing the output.
However, more compact representations of path decompositions exists, e.g., mark
for each vertex the first and last bag it belongs to, or one can use the equivalent
notion of vertex separations. These representations have size linear in the number
of vertices. As Skodinis [10] has shown that (with such representations) one can
find an optimal path decomposition of a given tree in linear time, we conjecture
that the algorithm of Section 4 can be made to run in linear time, but there are
several unresolved matters in this, and we leave this as an open problem. As a side
remark, we note that the algorithm of Govindran et al. [6] can be made to run in
linear time, using Skodinis’ algorithm and a corresponding representation of the
path decompositions.

References

[1] N. Robertson, P.D. Seymour, Graph minors. |. Excluding a forest, J. Combin. Theory Ser. B 35
(1983) 39-61.

[2] H.L. Bodlaender, A partiat-arboretum of graphs with bounded treewidth, Theor. Comp. Sci. 209
(1998) 1-45.

[3] H.L. Bodlaender, Treewidth: Algorithmic techniques and results, in: I. Privara, P. Ruzicka (Eds.),
Proceedings 22nd International Symposium on Mathematical Foundations of Computer Science,
MFCS'97, Lecture Notes in Computer Science, Vol. 1295, Springer-Verlag, Berlin, 1997, pp. 19—
36.

[4] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth
of graphs, J. Algorithms 21 (1996) 358—402.

[5] J.A. Ellis, I.H. Sudborough, J. Turner, The vertex separation and search number of a graph,
Inform. and Comput. 113 (1994) 50-79.

[6] R. Govindran, M.A. Langston, X. Yan, Approximating the pathwidth of outerplanar graphs,
Inform. Process. Lett. 68 (1998) 17-23.

[7] R.H. Mo6hring, Graph problems related to gate matrix layout and PLA folding, in: E. Mayr,
H. Noltemeier, M. Systo (Eds.), Computational Graph Theory, Comuting Suppl. 7, Springer-
Verlag, 1990, pp. 17-51.

[8] S.L. Mitchell, Linear algorithms to recognize outerplanar and maximal outerplanar graphs,
Inform. Process. Lett. 9 (1979) 229-232.

[9] M.M. Systo, Characterisations of outerplanar graphs, Discrete Math. 26 (1979) 47-53.

[10] K. Skodinis, Computing optimal linear layouts of trees in linear time, in: M. Paterson (Ed.),
Proceedings 8th Annual European Symposium on Algorithms, ESA00, Lecture Notes in
Computer Science, Vol. 1879, Springer-Verlag, Berlin, 2000, pp. 403-414.

