
Journal of Algorithms 43 (2002) 190–200

www.academicpress.com

Approximation of pathwidth of outerplanar
graphs✩

Hans L. Bodlaendera and Fedor V. Fominb,∗

a Institute of Information and Computing Sciences, Utrecht University, PO Box 80.089,
3508 TB Utrecht, The Netherlands

b Graduiertenkolleg des PaSCo, Heinz Nixdorf Institut and University of Paderborn,
Fürstenallee 11, D-33102 Paderborn, Germany

Received 31 July 2000; received in revised form 4 February 2002; accepted 4 February 2002

Abstract

There exists a polynomial time algorithm to compute the pathwidth of outerplanar
graphs, but the large exponent makes this algorithm impractical. In this paper, we give
an algorithm that, given a biconnected outerplanar graphG, finds a path decomposition
of G of pathwidth at most twice the pathwidth ofG plus one. To obtain the result,
several relations between the pathwidth of a biconnected outerplanar graph and its dual
are established. 2002 Elsevier Science (USA). All rights reserved.

Keywords: Pathwidth; treewidth; approximation algorithm; outerplanar graph

1. Introduction

Much research has been done to compute the pathwidth of graphs. The notion
of pathwidth first appeared in the theory on graph minors by Robertson and
Seymour [1], and is equivalent to several other graph theoretic notions, e.g.,
vertex separation number, interval thickness, node search number. See [2,3] for
overviews.

✩ This research was partially supported by EC contract IST-1999-14186: Project ALCOM-FT
(Algorithms and Complexity–Future Technologies).

* Corresponding author.
E-mail addresses: hansb@cs.uu.nl (H.L. Bodlaender), fomin@uni-paderborn.de (F.V. Fomin).

0196-6774/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
PII: S0196-6774(02)00001-9

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200 191

In this paper, we consider the problem of approximating the pathwidth of
outerplanar graphs. In [4], it was shown that the pathwidth of graphs with
bounded treewidth can be computed in polynomial time. As outerplanar graphs
have treewidth two, we know that pathwidth is polynomial time computable for
outerplanar graphs. However, the exponent in the running time of this algorithm
is rather large—already one step in the algorithm requires working with sets of
sizeO(n11). In this paper, we give a linear algorithm, which approximates the
pathwidth of a 2-connected outerplanar graph with multiplicative factor two. Our
algorithm is based on structural results on the relation between the pathwidth of
a 2-connected outerplanar graph and its dual, which are interesting in their own
right. This ‘dual’ relation combined with the results of Ellis et al. [5] that the
pathwidth of trees can be computed in linear time are the main ingredients of our
algorithm. Also, we show how to construct the corresponding path decomposition
in O(n logn) time.

In [6], Govindran et al. give anO(n logn) time algorithm for approximating
the pathwidth of an outerplanar graph with a multiplicative factor of three. We
improve upon this paper for biconnected outerplanar graphs.

2. Definitions and notations

We use the following notations:G = (V ,E) is an undirected and finite graph
with vertex setV and the edge setE which is assumed to be without self-loops or
parallel edges. Aplane graph is a particular drawing of a planar graph in the plane
without crossings. Anouterplane graph is a planar embedding of an outerplanar
graph with every vertex on the exterior face. Edges of an outerplane graph that
are not on the boundary of the exterior face are calledinternal. If G = (V ,E) is
a plane graph thenG∗ = (V ∗,E∗) denotes its geometric dual. Theweak dual of
a plane graphG is the graph obtained from the dualG∗ by deleting the vertex
corresponding to the exterior face ofG.

Observation. The weak dual of an outerplane graph is a forest.

Observation. The weak dual of a 2-connected outerplane graph is a tree.

The notion of pathwidth was introduced by Robertson and Seymour [1]. (See
[2,7] for surveys.) Apath decomposition of a graphG = (V ,E) is a sequence
(X1,X2, . . . ,Xr) of subsets ofV (these subsets are calledbags), such that

• ⋃
1�i�r Xi = V ;

• for all {v,w} ∈E, there is ani, 1� i � r, with v,w ∈ Xi ;
• for all 1� i0 < i1 < i2 � r, Xi0 ∩Xi2 ⊆Xi1.

192 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200

The width of path decomposition(X1,X2, . . . ,Xr) is max1�i�r |Xi | − 1. The
pathwidth of a graph is the minimum width over its path decompositions.

The notion of treewidth is strongly related to the notion of pathwidth. In this
paper, we use a variant of this notion, which we callsemi-treewidth.

A semi-tree decomposition of a graphG= (V ,E) is a pair
({Xi | i ∈ I }, T = (I,F)

)
,

with {Xi | i ∈ I } a collection of subsets ofV andT = (I,F) a tree, such that

• ⋃
i∈I Xi = V ;

• for all {v,w} ∈ E, there is ani ∈ I with v,w ∈ Xi , or there are nodesi0, i1 ∈ I

with v ∈ Xi0, w ∈ Xi1, andi0 andi1 are adjacent inT ;
• for all i0, i1, i2 ∈ I , if i1 is on the path inT from i0 to i2, thenXi0 ∩Xi2 ⊆Xi1.

Thewidth of a semi-tree decomposition({Xi | i ∈ I }, T = (I,F)) is a number
maxi∈I |Xi | − 1, and thesemi-treewidth of a graph is the minimum width over its
semi-tree decompositions.

The definition of tree decomposition is obtained by replacing the second
condition in the definition above by

• for all {v,w} ∈ E, there is ani ∈ I with v,w ∈Xi .

The treewidth of a graph is the minimum width over its tree decompositions. No-
tice thatpath decomposition of a graphG can be defined as a tree decomposition
with a treeT being path.

3. Pathwidth of outerplane graphs

The main purpose of this section is to prove the following theorem.

Theorem 1. Let G be a 2-connected outerplane graph without loops and multiple
edges, and let G∗ be the dual of G. Then

pw(G∗) � pw(G)� 2 pw(G∗)+ 2.

Notice that in Theorem 1 it is allowed for the dual graphG∗ to have multiple
edges.

The remaining part of this section is devoted to the proof of Theorem 1. We
need the following fact about pathwidth of trees.

Theorem 2 (Ellis et al. [5]). 1. Every tree T of pathwidth k + 1, k � 1, has a
vertex u such that the forest T \ {u} has at least three connected components of
pathwidth � k.

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200 193

2. For any tree T , pw(T) � k + 1, k � 1, if and only if there is a path P such
that every connected component of the forest T \ V (P) has pathwidth � k.

Lemma 3. Let G∗ = (V ∗,E) be the dual and let T = (VT ,ET) be the weak dual
of a 2-connected outerplane graph G= (V ,E). Then pw(T)+ 1 = pw(G∗).

Proof. Let v ∈ V ∗ be the vertex corresponding to the exterior face ofG, i.e.,
T =G∗ \ {v}.

Let us prove that pw(G∗) � pw(T) + 1. Suppose that pw(T) = k. Then by
Theorem 2 there is a vertexu ∈ VT such that at least three branches atu have
pathwidth� k − 1. LetT1, T2, andT3 be these branches.

Let (X1,X2, . . . ,Xr) be a path decomposition ofG∗. In this path decom-
position there are setsXij containing at leastk vertices ofTj , j ∈ {1,2,3}, as
the pathwidth of eachTj is at leastk − 1. Without loss of generality, we sup-
pose thati1 < i2 < i3. Choosea ∈ Xi1 \ Xi2 and b ∈ Xi3 \ Xi2. ThenXi2 is
an (a, b)-separator. But there are at least two vertex disjoint(a, b)-paths inG∗
containing no vertex ofT2 (one passing throughu and one throughv). Hence
pw(G∗)� (k + 2)− 1 = k + 1.

The proof of pw(G∗) � pw(T)+ 1 is obvious becauseT =G∗ − v. ✷
Lemma 4. Let G be a 2-connected outerplane graph without loops and multiple
edges. Then pw(G∗)� pw(G).

Proof. Let T = (VT ,ET) be the weak dual ofG. By Lemma 3, pw(T) =
pw(G∗) − 1. We now will show that pw(T) � pw(G) − 1, using induction to
the pathwidth ofT . In the case pw(T)= 1 the result clearly holds.

Suppose now that for every 2-connected outerplane graph having a weak dual
of pathwidth� k, the lemma is correct.

Let G be a 2-connected outerplane graph andT be its weak dual with
pw(T) = k + 1. Then by Theorem 2 there is a vertexu ∈ VT such that the
graphT \ {v} has at least three componentsT1, T2, andT3 of pathwidth� k.
Let H1, H2, andH3 be the subgraphs ofG having T1, T2, and T3 as weak
duals. These graphs are 2-connected and outerplane and by induction hypothesis
pw(Hi)� k + 1, i ∈ {1,2,3}.

BecauseG is a 2-connected outerplane graph without loops and multiple
edges, the face ofG corresponding to vertexu is bounded by a cycleC of length
� 3. See Fig. 1 for a schematic diagram. Notice that for everyi ∈ {1,2,3} the
subgraphHi has some vertices ofC and there is a pathpi in C from Hj to Hk

avoidingHi , i
= j
= k. Let (X1,X2, . . . ,Xk) be a path decomposition ofG∗. In
this path decomposition there are setsXij containing at leastk + 2 vertices of
Hj , j ∈ {1,2,3}. We may assume, without loss of generality, thati1 < i2 < i3.
Then Xi2 separatesXi1 and Xi3. ThereforeXi2 contains a vertex ofp2 and
|Xi2| � k + 2+ 1 = k + 3. ✷

194 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200

Fig. 1. Illustration of the proof of Lemma 4.

A triangulation of a plane graphG is a maximal plane supergraph, i.e., a plane
supergraph ofG with every face (including the exterior face) a triangle.

An inner triangulation of a plane graphG is a plane supergraph ofG, such
that all interior faces are a triangle, i.e., we allow the exterior face not to be a
triangle, and no edges are added to the outer face ofG. Notice that every inner
triangulation is a maximal outerplane graph.

Lemma 5. Let G be a 2-connected outerplane graph without loops and multiple
edges. Then there exists an inner triangulation H of G such that pw(G∗) �
pw(H ∗)− 1.

Proof. Consider the followingface split operation on plane graphs: take an
interior face that is not a triangle, and add an edge between two non-adjacent
vertices of the face. Clearly, when we repeat the face split operation until it is
no longer possible, we end up with an inner triangulation of the original graph. It
remains to be shown that we can do this such that the pathwidth of the dual graphs
do not change.

The face split operation onG corresponds to the following operation on the
dual G∗, or, similarly, to the weak dualT . Take a vertexv of degree at least
4 in G∗. Let N[v] be the set of the vertices that are adjacent tov. Assume a
clockwise ordering of the neighbors ofv, v1, v2, . . . , vs . (The ordering is forced
by the embedding, up to a cyclic shift.) Now, partition the setN[v] into two setsM
andN , whereM consists of the vertices in some consecutive part of the ordering,
i.e.,M = {vi, vi+1, . . . , vj }, 1� i < j � s. M andN have size at least two. Now,
transformG∗ as follows: deletev with all its incident edges, add new vertices
u andw with an edge{u,w}, and makeu adjacent to all vertices ofM andw
adjacent to all vertices ofN . Notice that the degree ofu in new graph is|N | + 1
and the degree ofw is |M| + 1. We say that the result of this transformation is
obtained fromG∗ by avertex splitting of v. A graphH ∗ is said to be avertex split
of G∗ if H ∗ is obtained fromG∗ by a sequence of vertex splittings.

Notice that ifG = (V ,E) is an outerplane graph andF ∗ = (V ∗
F ,E

∗
F) is a vertex

split ofG∗ = (V ∗,E∗) thenF = (VF ,EF) is outerplane andVF = V , EF ⊇E.

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200 195

Let T be a weak dual tree ofG. We wish to prove first that there is a splitTS
of T such that pw(T) � pw(TS)− 1 and maximum vertex degree 3.

By Theorem 2, every tree of pathwidth� k + 1 has a pathP such that every
branch at this path (connected component ofT \ V (P)) has pathwidth at mostk.
Using this fact one can find the splitTS easily. In fact, choose the pathP as in
Theorem 2 and split (if necessarily) the vertices ofP . Since the new path has the
same branches, such splittings do not increase the pathwidth. Then we can split
the branches ofP recursively, unless such a branch consists of a single vertex. If
a branch consists of a single vertex then the splitting is obtained by splitting the
vertex adjacent to the vertex of the branch. Thus the corresponding branch in the
split will be a path: this increases the pathwidth of the branch by one.

If we do the corresponding face splits toG, then we obtain the desired inner
triangulationH of G. In fact, by Lemma 3, pw(G∗) = pw(T)+ 1 and pw(H ∗)=
pw(TS)+ 1. Therefore pw(G∗) = pw(T)+ 1 � pw(TS) = pw(H ∗)− 1. ✷

Note that a graph remains outerplanar when we apply an inner triangulation.

Lemma 6. Let G0 be a graph, and let G1 be obtained from G0 by removing all
vertices of degree two whose neighbors are adjacent. Then pw(G1) � pw(G0) �
pw(G1)+ 1.

Proof. As G1 is a subgraph ofG0, clearly, pw(G1)� pw(G0).
Suppose we have a path decomposition(X1,X2, . . . ,Xr) of G1. For each

vertexv in G0 with degree two whose neighborsw, x are adjacent, find a setXi

with w,x ∈ Xi and add afterXi in sequence of the path decomposition a set
Xi ∪ {v}. This gives a path decomposition ofG0 whose width is at most one
larger than the given path decomposition ofG1. ✷
Lemma 7. Let H be a 2-connected inner triangulated outerplane graph. Let
T = (VT ,ET) be the weak dual of H . Let H− be the graph, obtained by removing
all vertices of degree two from H . Then there is a semi-tree decomposition
({Xi | i ∈ VT }, T) of H− with width 1.

Proof. Choose an arbitrary leaf nodev0 from T , and viewT as a rooted tree with
root v0. We takeXv0 = ∅. For all nodesw
= v0, consider the edge fromw to
its parent inT . This edge is dual (crosses in the diagram) to an edge, say{y, z}
fromH . Then takeXw = {y, z}.

We claim that ({Xi | i ∈ VT }, T) defined in this way is a semi-tree de-
composition ofH−. We will verify the second and the third condition of semi-tree
decomposition. BecauseH− is connected the first condition then follows directly
from the second.

Consider an edge{y, z} fromH−. If {y, z} is an internal edge, then it crosses an
edge say{v,w} from T . Supposev is the parent ofw in T . Then, by construction,

196 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200

Fig. 2. Illustration of the proof of Lemma 7.

{y, z} = Xw. Now, suppose{y, z} is not an internal edge. Suppose{y, z} is
adjacent to an internal face, represented by a vertexv from T . As the graph is
triangulated, this face must also be a triangle. The face must be adjacent to two
other internal faces inH ; otherwisey or z would have degree two inH , and hence
{y, z} would not be an edge inH−. Say these faces are represented by nodesw

andx. As the root ofT is a node of degree one inT , eitherw or x is a child of
v in T . Supposew is a child ofv in T . Theny ∈ Xv andz ∈ Xw or z ∈ Xv and
y ∈Xw. (See Fig. 2.)

Finally, for a nodez in H−, note that the edges fromT that cross an edge with
z as endpoint form a path inT . By the choice of a leaf node as root ofT , this is
a directed path and hence the collection of setsXv thatz induces a path inT . ✷
Lemma 8. Let (X,T) be a semi-tree decomposition of a graph G = (V ,E) with
width k. Then

pw(G) � (k + 1)(pw(T)+ 1)− 1.

Proof. Let (Y1, Y2, . . . , Yr) be a path decomposition ofT of pathwidth pw(T).
Consider the sequence(Z1,Z2, . . . ,Zr) with Zi = ⋃

j∈Yi Xi .
We now will verify that this sequence is a path decomposition ofG. First,

supposei1 < i2 < i3, andv ∈ Zi1 ∩ Zi3. Hence,v ∈ Xj1 for somej1 ∈ Yi1, and
v ∈ Xj3 for somej3 ∈ Yi3. By the properties of path decomposition, we have that
Yi2 must contain a node from the path fromj1 to j3 in T ; call this nodej2. By the
definition of semi-tree decomposition,v ∈Xj2, and hencev ∈Zi2.

Next, consider an edge{v,w} ∈ E. If there is an edge{i1, i2} in T with
v ∈ Xi1 andw ∈ Xi2, then there must be anj , 1� j � r, with i1, i2 ∈ Yj . Hence,
v,w ∈ Zj . The case that there is ani ∈ I with v,w ∈Xi is easy.

One directly sees that the width of this path decomposition is at most

(k + 1)(pw(T)+ 1)− 1. ✷
Lemma 9. Let H be a 2-connected inner triangulated outerplane graph with
dual H ∗. Then pw(H)� 2 · pw(H ∗).

Proof. Let H− be the graph obtained by removing the nodes of degree two
from H . Note that, asH is triangulated, the neighbors of every vertex of degree
two in H are adjacent. By Lemma 6, pw(H)� pw(H−)+ 1. LetT be the weak

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200 197

dual of H . By Lemma 7, there is a semi-tree decomposition(X,T) of H− of
width 1; hence, by Lemma 8, pw(H−)� 2 · pw(T)+ 1. Now

pw(H)� pw(H−)+ 1� 2 · pw(T)+ 2 = 2 · pw(H ∗). ✷
We are in the position now to conclude the proof of Theorem 1.

Proof of Theorem 1. By Lemma 4, pw(G∗) � pw(G). By Lemma 5, there is a
planar inner triangulationH of G such that pw(H ∗) � pw(G∗) + 1. Notice that
pw(G) � pw(H). Applying Lemma 9 forH ∗ we have that pw(H) � 2 pw(H ∗).
So we have

pw(G∗)� pw(G)� pw(H)� 2 pw(H ∗)� 2 pw(G∗)+ 2. ✷

4. An approximation algorithm for biconnected outerplanar graphs

In this section, we give an algorithm that given a 2-connected outerplanar graph
G = (V ,E) with n vertices finds a path decomposition ofG that has a width that
is at most two times the pathwidth ofG plus 2. The algorithm usesO(n logn)
time, and follows the structure of the proof, given in the previous section. Note
that if we just want to have a bound on the pathwidth ofG, then the algorithm can
run in linear time.

Step 1: Remove loops and parallel edges. If we allow our input graph to have
self-loops (edges of the form{v, v}), or parallel edges, then we just remove such
edges: this does not change the pathwidth of the graph.

Step 2: Compute an outerplane embedding of G. It is well known that given
a graphG∗, one can test in linear time ifG∗ is outerplanar, and if so, find an
embedding ofG∗ with all vertices on the exterior face. See, e.g., [8,9].

Step 3: Compute the dual graph G∗ of G. It is well known, that, given a plane
embedding of a planar graph, one can find its dual in linear time.

Step 4: Compute the pathwidth of the dual graph G∗. The pathwidth of the
dual graphG∗ can be computed in linear time, in the following way. First, we
take the treeT that is obtained fromG∗ by removing the vertexv representing
the exterior face; i.e.,T is the weak dual ofG. Using the algorithm of Ellis
et al. [5], we can compute in linear time the pathwidth ofT , and compute
a path decomposition(X1, . . . ,Xr) of T of optimal width inO(n logn) time.
The pathwidth ofG∗ is one larger, by Lemma 3, and the path decomposition
(X1∪{v},X2∪{v}, . . . ,Xr ∪{v}) is a path decomposition ofG∗ of optimal width.
By Euler’s formula the number of vertices inG∗ isO(n) and the pathwidth ofG∗
can be computed inO(n) time.

If we are satisfied with abound on the pathwidth ofG that is at most two
times plus 2 larger than the exact bound, then by Theorem 1 we are done, as
2 pw(G∗) + 2 is such a bound. However, if we want apath decomposition of G

198 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200

whose width at most two times plus 2 than the pathwidth ofG, then more work
has to be done.

Step 5: Compute an inner triangulation H of G, such that pw(H ∗) �
pw(G∗) + 1. In this step, we make the proof of Lemma 5 constructive; i.e.,
we compute an inner triangulationH of G, such that the pathwidth ofG∗ equals
the pathwidth ofH ∗, whereH ∗ is the dual ofH .

Let T be again the weak dual ofG. Suppose the pathwidth ofT is k.
Now, first we find a pathP in T , such that all branches at this path have

pathwidth< k. This can be done in linear time, using a minor modification of the
algorithm from Ellis et al. [5]. When we have the pathP , the split can easily be
applied. After this, we continue recursively on the branches. As the pathwidth of
a tree witht vertices isO(logt), every edge ofT is involved inO(logt) recursive
steps, and the total time of this step becomesO(t logt) =O(n logn).

Step 6: Compute a path decomposition for the weak dual of H . Compute
the weak dualT of the inner triangulationH , computed in the previous step,
and use the linear time algorithm of Ellis et al. [5] to compute an optimal path
decomposition ofT .

Step 7: Compute the semi-tree decomposition of H−. Let H− be the graph
obtained by removing the vertices of degree two fromH . Following construction
described in the proof of Lemma 7, we can make a semi-tree decomposition
(X,T) of width 1, with T the weak dual ofH . It is not hard to see that this
step can be done in linear time.

Step 8: Make a path decomposition of H−. The proof of Lemma 8 can be
made constructive in a straightforward way; we thus obtain a path decomposition
of H− of width 2 pw(T)+ 3 = 2 pw(H ∗)+ 1 of H−.

Step 9: Make a path decomposition of H . Finally, we have to add back the
vertices with degree two, while increasing the pathwidth with at most one, as in
the proof of Lemma 6. This can be done in linear time by using the following
method.

Suppose that the vertices inH are numberedv1, . . . , vn. We use also a boolean
arrayZ with indexes{1, . . . , n}. Initially, all Z[i] are false.

1. Suppose thatS is the set of vertices of degree two. Make a setP of (ordered)
pairs of vertices, with for everyv ∈ S, its two neighbors as two ordered pairs
in P ; i.e., if v’s neighbors arex andy, then both(x, y) and (y, x) belong
to P . Maintain pointers from and to a vertexv ∈ S and its corresponding pair
in P .

2. Radix sortP ; i.e.,P is sorted with respect to the lexicographic ordering. This
can be done in linear time, using the standard radix sort algorithm.

3. Now, we can build an array, with theith entry pointing to a list of vertices
v for which (vi , v) belongs toP . This can be done in linear time, using the
sorted list of the previous step.

H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200 199

4. Next, visit the bags in the path decomposition ofH− one by one. For each
bagXi , we do the following:
(a) for everyvj ∈ Xi , makeZ[j] true;
(b) for everyvj ∈ Xi \ Xi−1 and for everyvj ′ with (vj , vj ′) ∈ P , check if

Z[j ′] is true. If it is true, then we found the bag for the neighbors of a
vertexv, namely the one corresponding to the pair(vj , vj ′). We remove
this pair and its reversed copy(vj ′ , vj) from the array of step 3, and add
a pointer fromv to bagXi ;

(c) for everyvj ∈ Xi , makeZ[j] false; i.e., now all values inZ are again
false.

5. Now, for every vertexv of degree two inH , we can follow the pointer from
v to a bagXi . Add afterXi a bag which containsXi ∪ {v}. Note that in this
way, we never create bags that are more than one larger than a bag inH−.

When(v,w) and(w,v) belong toP , consider the first bag that contains both
v andw. In this bag, we will consider eitherv or w in step 4(b), and hence the
vertex of degree 2 associated with this pair will be pointing towards this bag.

The time is linear in the size of the path decomposition plus the size ofH . The
pathwidth of a tree withk vertices isO(logk) and by construction the number of
vertices in a path decomposition isO(n). Therefore this step can be performed in
O(n logn) time.

Step 10: Obtain a path decomposition of G. The path decomposition ofH
obtained in step 9 is also the path decomposition ofG and the width of this
decomposition is at most 2 pw(G)+ 2.

5. Concluding remarks

One of the most interesting question about the pathwidth of outerplanar graphs
we left open is the existence of fast practical exact algorithms or algorithms
approximating pathwidth of outerplanar graphs to within an additive constant.
One of the possible ways of obtaining such algorithms is the proof of the following
conjecture.

Conjecture 10. There is a constantc such that for any 2-connected outerplanar
graphG without loops and multiple edges pw(G∗)� pw(G)� pw(G∗)+ c.

Moreover, we suggest that

Conjecture 11. For any 2-connected planar graphG without loops and multiple
edges pw(G∗)− 1 � pw(G) � pw(G∗)+ 1.

200 H.L. Bodlaender, F.V. Fomin / Journal of Algorithms 43 (2002) 190–200

Path decompositions of trees and of outerplanar graphs withn vertices
can have'(n) bagsXi of size '(logn); thus, when using a straightforward
representation one may need already((n logn) time just for writing the output.
However, more compact representations of path decompositions exists, e.g., mark
for each vertex the first and last bag it belongs to, or one can use the equivalent
notion of vertex separations. These representations have size linear in the number
of vertices. As Skodinis [10] has shown that (with such representations) one can
find an optimal path decomposition of a given tree in linear time, we conjecture
that the algorithm of Section 4 can be made to run in linear time, but there are
several unresolved matters in this, and we leave this as an open problem. As a side
remark, we note that the algorithm of Govindran et al. [6] can be made to run in
linear time, using Skodinis’ algorithm and a corresponding representation of the
path decompositions.

References

[1] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35
(1983) 39–61.

[2] H.L. Bodlaender, A partialk-arboretum of graphs with bounded treewidth, Theor. Comp. Sci. 209
(1998) 1–45.

[3] H.L. Bodlaender, Treewidth: Algorithmic techniques and results, in: I. Privara, P. Ruzicka (Eds.),
Proceedings 22nd International Symposium on Mathematical Foundations of Computer Science,
MFCS’97, Lecture Notes in Computer Science, Vol. 1295, Springer-Verlag, Berlin, 1997, pp. 19–
36.

[4] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth
of graphs, J. Algorithms 21 (1996) 358–402.

[5] J.A. Ellis, I.H. Sudborough, J. Turner, The vertex separation and search number of a graph,
Inform. and Comput. 113 (1994) 50–79.

[6] R. Govindran, M.A. Langston, X. Yan, Approximating the pathwidth of outerplanar graphs,
Inform. Process. Lett. 68 (1998) 17–23.

[7] R.H. Möhring, Graph problems related to gate matrix layout and PLA folding, in: E. Mayr,
H. Noltemeier, M. Sysło (Eds.), Computational Graph Theory, Comuting Suppl. 7, Springer-
Verlag, 1990, pp. 17–51.

[8] S.L. Mitchell, Linear algorithms to recognize outerplanar and maximal outerplanar graphs,
Inform. Process. Lett. 9 (1979) 229–232.

[9] M.M. Sysło, Characterisations of outerplanar graphs, Discrete Math. 26 (1979) 47–53.
[10] K. Skodinis, Computing optimal linear layouts of trees in linear time, in: M. Paterson (Ed.),

Proceedings 8th Annual European Symposium on Algorithms, ESA’00, Lecture Notes in
Computer Science, Vol. 1879, Springer-Verlag, Berlin, 2000, pp. 403–414.

