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Abstract

A cocoloring of a graphG is a partition of the vertex set ofG such that each set of the partition is either a clique or an
independent set inG. Some special cases of the minimum cocoloring problem are of particular interest.

We provide polynomial-time algorithms to approximate a minimum cocoloring on graphs, partially ordered sets and
sequences. In particular, we obtain an efficient algorithm to approximate within a factor of 1.71 a minimum partition of
a partially ordered set into chains and antichains, and a minimum partition of a sequence into increasing and decreasing
subsequences.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A cocoloring of a graphG is a partition of the ver-
tices such that each set of the partition is either a clique
or an independent set inG. The cochromatic num-
ber of G is the smallest cardinality of a cocoloring
of G. The cochromatic number was originally stud-
ied in [17]. Subsequent papers addressed various top-
ics including the structure of critical graphs, bounds on
the cochromatic numbers of graphs with certain prop-
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erties (e.g., fixed number of vertices, bounded clique
size, fixed genus) and algorithms for special graph
classes (e.g., chordal graphs and cographs) [1,4,6–8,
10,11,19].

In this paper, besides cocoloring of graphs in gen-
eral we study cocolorings of permutation graphs, com-
parability graphs and cocomparability graphs. The co-
coloring problem on permutation graphs is equiva-
lent to the cocoloring problem on repetition-free se-
quences of integers (one may assume a permutation
of the first n integers) which has the following mo-
tivation: if one has to sort such a sequence, it is de-
sirable to have a partition into a small number of
sets of already sorted elements, i.e., subsequences
which are either increasing or decreasing. Now the
minimum number of monotone subsequences parti-
tioning the original sequence is exactly the cochro-
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matic number of the permutation graph correspond-
ing to the sequence. This problem was studied in [2,
20].

Wagner showed that the problem “Given a se-
quence and an integerk, decide whether the sequence
can be partitioned into at mostk monotone (increasing
or decreasing) subsequences” is NP-complete [20]. In
our paper we provide a first constant-factor approxi-
mation algorithm for cocoloring sequences. More pre-
cisely our algorithm approximates a minimum cocol-
oring of a sequence within a factor of 1.71.

In fact we derive our 1.71-approximation algorithm
for the minimum cocoloring problem on comparability
(or cocomparability) graphs. This problem is equiv-
alent to the cocoloring problem on partially ordered
sets, i.e., the problem to partition a partially ordered
setP into a minimum number of subsets each being
a chain or an antichain ofP . Since every permutation
graph is a comparability graph, our algorithm can also
be used to approximate within a factor of 1.71 a min-
imum cocoloring of a permutation graph, and a mini-
mum partition of a sequence of integers into increasing
and decreasing subsequences.

We also present a greedy algorithm to approximate
a minimum cocoloring of perfect graphs within a
factor of logn.

2. Definitions

We denote byG = (V ,E) a finite undirected and
simple graph withn vertices andm edges. For every
W ⊆ V , the subgraph ofG = (V ,E) induced byW is
denoted byG[W ]. For simplicity we denote the graph
G[V \A] by G− A.

A clique C of a graphG = (V ,E) is a subset
of V such that all the vertices ofC are pairwise
adjacent. A subset of verticesI ⊆ V is independent
if no two of its elements are adjacent. We denote by
ω(G) the maximum number of vertices in a clique of
G and byα(G) the maximum number of vertices in an
independent set ofG.

An r-coloring of a graphG = (V ,E) is a partition
{I1, I2, . . . , Ir } of V such that for each 1� j � r, Ij is
an independent set. Thechromatic numberχ(G) is the
minimum size of such a partition andκ(G) = χ(G) is
the minimum size of a partition{C1,C2, . . . ,Cs} of
the vertices ofG into cliques. Analogously, acocolor-

ing of G is a partition{I1, I2, . . . , Ir ,C1,C2, . . . ,Cs}
of V such that eachIj , 1 � j � r, is an inde-
pendent set and eachCj , 1 � j � s, is a clique.
The smallest cardinality of a cocoloring ofG is
the cochromatic numberz(G). Therefore,z(G) �
min{χ(G), κ(G)}.

A graph G = (V ,E) is perfect if χ(G[W ]) =
ω(G[W ]) for everyW ⊆ V . Perfect graphs and classes
of perfect graphs play an important role in graph
theory and algorithmic graph theory. The following
well-known classes of perfect graphs will be studied
in the sequel: comparability, cocomparability and
permutation graphs. For all information on these graph
classes and their properties not given in our paper we
refer to [3,12].

Let F = {F1,F2, . . . ,Fs} and F ′ = {F ′
1,F

′
2, . . . ,

F ′
t } be two set families of subsets of a ground setU .

We denote by
⋃

F the set
⋃s

i=1Fi . We denote byF1◦
F2 the set family{F1,F2, . . . ,Fs,F

′
1,F

′
2, . . . ,F

′
t }.

3. Partially ordered sets and comparability graphs

Let P = (V (P ),≺) be a finite partially ordered
set, i.e.,≺ is a reflexive, antisymmetric and transitive
relation on the finite ground setV (P). Two elements
a, b of P are comparable ifa ≺ b or b ≺ a. Now
a subsetC ⊆ V (P) is a chain of P if every two
elements ofP are comparable, and a subsetA ⊆ V (P)

is an antichain of P if no two elements ofA are
comparable.

An orientationH = (V ,D) of an undirected graph
G = (V ,E) assigns one of the two possible directions
to each edgee ∈ E. The orientation istransitive if
(a, b) ∈ D and(b, c) ∈ D implies(a, c) ∈ D. A graph
G = (V ,E) is a comparability graphif there is a
transitive orientationH = (V ,D) of G. A graph
is a cocomparability graphif its complement is a
comparability graph.

Consider the following well-known relation be-
tween partially ordered sets and comparability graphs.
Let P = (V (P ),≺) be a partially ordered set. We de-
fine an undirected graph with vertex setV (P) and an
edge betweena andb iff a andb are comparable. Then
this graph is a comparability graph, its cliques corre-
spond to chains inP and its independent sets corre-
spond to antichains inP . On the other hand, suppose
G = (V ,E) is a comparability graph, and letH be a
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transitive orientation of graphG. SinceH is an acyclic
and transitive directed graph it induces a partially or-
dered set with ground setV whereu ≺ w (u �= w) iff
there is a directed path fromu to w in H . Now every
chain in the partially ordered set corresponds to a di-
rected path inH which corresponds to a clique inG
due to transitivity. Furthermore every antichain in the
partially ordered set corresponds to an independent set
in G. Thus the well-known Dilworth theorem saying
that the maximum cardinality of an antichain inP is
equal to the minimum number of chains in a chain par-
tition of V (P) implies that comparability (and cocom-
parability) graphs are perfect.

More important for our paper, a cocoloring of a
comparability (or cocomparability) graphG corre-
sponds to a partition of a partially ordered set into
chains and antichains. Now we study cocolorings of
comparability graphs.

A maximumk-coloring Ik is a family of k inde-
pendent subsets of a graphG covering a maximum
number of vertices. Letαk(G) denote the size of the
maximumk-coloring, i.e., the number of vertices in a
maximumk-chromatic subgraph ofG. A maximumh-
coveringCh is a family ofh cliques ofG covering a
maximum number of vertices. We denote byκh(G) the
maximum size of anh-covering ofG, i.e., the number
of vertices in a maximum subgraph ofG partitionable
into h cliques.

Our approximation algorithm is based on the fol-
lowing results by Frank [9] which can be seen as algo-
rithmic proofs of Greene and Kleitman’s [13,14] gen-
eralizations of Dilworth’s theorem.

Theorem 1 [9]. There is anO(nm) time algorithm
which computes for any given comparability graph
G = (V ,E) simultaneously

(a) for all integersk with 1 � k � χ(G) a maximum
k-coloringIk , and

(b) for all integersh with 1 � h � κ(G) a maximum
h-coveringCh.

The essential part of the algorithm is a minimum-
cost flow algorithm on a network associated toG
(via a partially ordered setP having comparability
graphG).

We shall also need the procedure SQRTPARTITION

(see Algorithm 1) which is based on a result by Erdős
et al. [7] (see also Brandstädt et al. [2]).

Lemma 2 [7]. For every perfect graphG = (V ,E)

with n < k(k + 1)/2, k � 2, procedureSQRTPAR-
TITION outputs a cocolouring of size at mostk. Thus
z(G) � �√2n+ 1/4− 1/2� for every perfect graph.

Proof. For the sake of completeness we provide the
simple proof by induction onk. Fork = 2 the theorem
is true. Suppose that theorem is true fork � 2.

LetG be a perfect graph withn < (k + 1)(k + 2)/2
vertices. Ifχ(G) < k + 2 then the procedure outputs a
cocolouring of size at mostk + 1.

If χ(G) � k + 2 then the procedure chooses a
clique C of G such that|C| � k + 2 which exists
by the perfectness ofG. The procedure removes all
vertices ofC from G, thus the number of remaining

SQRTPARTITION

INPUT: perfect graphG = (V ,E) with n < k(k + 1)/2 vertices,k � 2.

OUTPUT: cocoloringZ of G

• Z := ∅; U := V ;
• while U �= ∅ do

begin

– if χ(G[U ]) < k + 1 then compute ak-coloring
I = {I1, I2, . . . , Ik} of G[U ]; Z :=Z ◦ I

else choose a cliqueC of size at leastk + 1
and addC toZ ;

– U := U − ⋃
Z ; k := k − 1.

end

Algorithm 1.



288 F.V. Fomin et al. / Information Processing Letters 84 (2002) 285–290

APPROXCOCOLOURING

INPUT: comparability graphG = (V ,E)

OUTPUT: cocolouringZ of G

• Compute ak-coloringIk = {I1, I2, . . . , Ik} and anh-covering
Ch = {C1,C2, . . . ,Ch} of G such that the sumk+ l is minimum
subject to the conditionαk(G)+ κh(G) � n;

• Z ′ := {I1, I2, . . . , Ik,C1 \ ⋃
Ik,C2 \ ⋃

Ik, . . . ,Ch \ ⋃
Ik};

• Compute a cocolouringZ ′′ of the graphG − ⋃
Z ′ by calling

SQRTPARTITION;
• Z := Z ′ ◦Z ′′.

Algorithm 2.

vertices inG−C is less thank(k + 1)/2. By induction
hypothesisG − C has a cocolouring of size at mostk

and thus the theorem is true fork + 1. ✷
Lemma 3. ProcedureSQRTPARTITION has polyno-
mial running time on perfect graphs and its running
time on comparability graphs isO(

√
nm).

Proof. The running time of SQRTPARTITION de-
pends on the best known running time of an algorithm
to solve the problems minimum coloring and maxi-
mum clique on our special classes of graphs.

The best known running time is polynomial on
perfect graphs [15] and linear on comparability graphs
[12]. ✷

Now we are in the position to describe our algo-
rithm to approximate a minimum cocolouring on com-
parability graphs (see Algorithm 2).

Theorem 4. TheO(nm) time algorithmAPPROXCO-
COLOURING approximates a minimum cocolouring of
a comparability graph within a factor of1.71.

Proof. Let Ik = {I1, I2, . . . , Ik} and Ch = {C1,C2,

. . . ,Ch} be the sets produced at the first step of the
algorithm. Then by the choice ofk andh as well asIk
andCh we have thatk + h � z(G).

The number of vertices inZ ′ is at least∣∣∣⋃Ik
∣∣∣ +

∣∣∣⋃Ch
∣∣∣ −

∣∣∣(⋃
Ik

)
∩

(⋃
Ch

)∣∣∣ � n − kh

sinceIk is a family of independent sets andCh is a
family of cliques, implying|⋃(Ik)∩ (

⋃
Ch)| � kh.

Therefore, the graphG − ⋃
Z ′ has at mostkh

vertices and by Lemma 2 procedure SQRTPARTITION

computes a cocolouring ofG − ⋃
Z ′ having size at

most
√

2kh. Consequently, APPROX COCOLOURING

computes a cocolouringZ of G of size at most

k + h+ √
2kh � (k + h)

(
1+ 1√

2

)

�
(

1+ 1√
2

)
z(G)

� 1.71· z(G).

The time bound follows from Theorem 1 and Lem-
ma 3. ✷
Corollary 5. The algorithmAPPROXCOCOLOURING

can also be used to approximate within a factor of
1.71

(a) a minimum cocolouring of a partially ordered set,
(b) a minimum partition of a(repetition-free) se-

quence(of integers) into increasing and decreas-
ing subsequences,

(c) a minimum cocolouring of a permutation graph,
and

(d) a minimum cocolouring of a cocomparability
graph.

4. Perfect graphs

We consider the greedy algorithm (see Algorithm 3)
for minimum cocolouring on graphs

Theorem 6. TheGREEDY COCOLOURING algorithm
approximates a minimum cocolouring of a perfect
graph within a factor oflnn.
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GREEDY COCOLOURING

INPUT: graphG = (V ,E)

OUTPUT: cocolouringZ of G

• Z := ∅;
• U := V ;
• while U �= ∅ do

begin

– Compute a maximum independent setIU and a maximum cliqueCU of G[U ];
– ChooseX to beIU or CU such that|X| = max(|IU |, |CU |) and addX to Z ;
– U := U − X.

end

Algorithm 3.

Proof. To obtain the approximation ratio of the al-
gorithm let us consider a hypergraphH = (V ,EH ),
where the vertex set ofH is the vertex setV of the in-
put graphG andEH is the set of all independent sets
and cliques inG, i.e., every hyperedge ofH is either
an independent set or a clique inG.

Any minimum cocolouring onG is equivalent to
a minimum set cover ofH and vice versa. Moreover
GREEDY COCOLOURINGcan be seen as the greedy al-
gorithm for the minimum set cover problem on input
H (the only difference is that GREEDY COCOLOUR-
ING won’t inspect all hyperedges ofH). It is well
known [5,16,18] that the greedy algorithm for the min-
imum set cover problem is an lnn-approximation al-
gorithm. ✷

By a well-known result of Grötschel et al. [15]
a maximum independent set and a maximum clique
can be computed by a polynomial-time algorithm on
perfect graphs.

Corollary 7. TheGREEDY COCOLOURINGalgorithm
is a polynomial-time algorithm to approximate a
minimum cocolouring within a factor oflnn on each
graph classG for which there are polynomial-time
algorithms to compute a maximum clique and a
maximum independent set. In particular this is the
case for perfect graphs.

5. Concluding remarks

We leave many questions unanswered, a few of
them are:

(1) The problem of finding a minimum partition of
a sequence into monotone subsequences is NP-
hard. We provide a 1.71-approximation algorithm
for this problem. A natural question is if there
exists a PTAS for this problem?

(2) We have proved that GREEDY COCOLOURING is
a lnn-approximation algorithm for perfect graphs.
Are there nontrivial classes of perfect graphs
for which GREEDY COCOLOURINGapproximates
the cochromatic number within a constant factor?

(3) What is the computational complexity of comput-
ing a maximumk-coloring and a maximumh-
covering for perfect graphs? A polynomial time
algorithm computing these parameters for perfect
graphs will imply that our 1.71-approximation al-
gorithm for a minimum cocolouring on compara-
bility graphs is also a polynomial time algorithm
on perfect graphs.
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