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Abstract

A cocoloring of a graphG is a partition of the vertex set @ such that each set of the partition is either a clique or an
independent set ir. Some special cases of the minimum cocoloring problem are of particular interest.

We provide polynomial-time algorithms to approximate a minimum cocoloring on graphs, partially ordered sets and
sequences. In particular, we obtain an efficient algorithm to approximate within a factovlofalminimum partition of
a partially ordered set into chains and antichains, and a minimum partition of a sequence into increasing and decreasing
subsequences.
00 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction erties (e.g., fixed number of vertices, bounded clique
size, fixed genus) and algorithms for special graph
A cocoloring of a graplG is a partition of the ver-  classes (e.g., chordal graphs and cographs) [1,4,6-8,
tices such that each set of the partition is either a clique 10,11,19].
or an independent set i6. The cochromatic num- In this paper, besides cocoloring of graphs in gen-
ber of G is the smallest cardinality of a cocoloring €ral we study cocolorings of permutation graphs, com-
of G. The cochromatic number was originally stud- Parability graphs and cocomparability graphs. The co-
ied in [17]. Subsequent papers addressed various top-coloring problem on permutation graphs is equiva-
ics including the structure of critical graphs, bounds on lent to the cocoloring problem on repetition-free se-

the cochromatic numbers of graphs with certain prop- duéences of integers (one may assume a permutation
of the firstn integers) which has the following mo-
tivation: if one has to sort such a sequence, it is de-
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(3.-C. Novelli). tioning the original sequence is exactly the cochro-
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matic number of the permutation graph correspond-
ing to the sequence. This problem was studied in [2,
20].

Wagner showed that the problem “Given a se-
guence and an integér decide whether the sequence
can be partitioned into at mostmonotone (increasing
or decreasing) subsequences” is NP-complete [20]. In
our paper we provide a first constant-factor approxi-
mation algorithm for cocoloring sequences. More pre-
cisely our algorithm approximates a minimum cocol-
oring of a sequence within a factor of711.

In fact we derive our I7 1-approximation algorithm
for the minimum cocoloring problem on comparability
(or cocomparability) graphs. This problem is equiv-
alent to the cocoloring problem on partially ordered
sets, i.e., the problem to partition a partially ordered
set P into a minimum number of subsets each being
a chain or an antichain @. Since every permutation
graph is a comparability graph, our algorithm can also
be used to approximate within a factor a¥1 a min-
imum cocoloring of a permutation graph, and a mini-
mum partition of a sequence of integers into increasing
and decreasing subsequences.

We also present a greedy algorithm to approximate
a minimum cocoloring of perfect graphs within a
factor of logn.

2. Definitions

We denote byG = (V, E) a finite undirected and
simple graph with: vertices andn edges. For every
W C V, the subgraph off = (V, E) induced byW is
denoted byG[W]. For simplicity we denote the graph
G[V\ Alby G — A.

A clique C of a graphG = (V, E) is a subset
of V such that all the vertices of are pairwise
adjacent. A subset of verticdsC V is independent
if no two of its elements are adjacent. We denote by
w(G) the maximum number of vertices in a clique of
G and bya (G) the maximum number of vertices in an
independent set af.

An r-coloring of a graphG = (V, E) is a partition
{I1, 12, ..., I} of V suchthatforeach & j <r, I} is
an independent set. Tlshromatic numbey (G) is the
minimum size of such a partition ardG) = x (G) is
the minimum size of a partitiofiC1, Co, ..., Cs} of
the vertices of5 into cliques. Analogously, eocolor-
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ing of G is a partition{l1, I2, ..., I,,C1,Co, ..., Cs}
of V such that eachl;, 1 < j <r, is an inde-
pendent set and eaadfi;, 1< j <, is a clique.
The smallest cardinality of a cocoloring af is
the cochromatic numberz(G). Therefore,z(G) <
min{x (G), k (G)}.

A graph G = (V, E) is perfectif x(G[W]) =
w(G[W]) foreveryW C V. Perfect graphs and classes
of perfect graphs play an important role in graph
theory and algorithmic graph theory. The following
well-known classes of perfect graphs will be studied
in the sequel: comparability, cocomparability and
permutation graphs. For all information on these graph
classes and their properties not given in our paper we
refer to [3,12].

Let F = {F1, F2,...,F;} and F' = {F|, F,, ...,

F!} be two set families of subsets of a ground &et
We denote by J F the set J;_; F;. We denote byFi o
F2the setfamily{ F1, F>, ..., Fy, F{, F,, ..., F/}.

3. Partially ordered setsand comparability graphs

Let P = (V(P), <) be a finite partially ordered
set, i.e.,< is a reflexive, antisymmetric and transitive
relation on the finite ground sét(P). Two elements
a,b of P are comparable it: < b or b < a. Now
a subsetC C V(P) is a chain of P if every two
elements ofP are comparable, and a subdeC V (P)
is an antichain of P if no two elements ofA are
comparable.

An orientationH = (V, D) of an undirected graph
G = (V, E) assigns one of the two possible directions
to each edge € E. The orientation igransitive if
(a,b) € D and(b, ¢) € D implies(a, ¢) € D. A graph
G = (V, E) is a comparability graphif there is a
transitive orientationH = (V, D) of G. A graph
is a cocomparability graphif its complement is a
comparability graph.

Consider the following well-known relation be-
tween partially ordered sets and comparability graphs.
Let P = (V(P), <) be a partially ordered set. We de-
fine an undirected graph with vertex défP) and an
edge between andb iff a andb are comparable. Then
this graph is a comparability graph, its cliques corre-
spond to chains irP and its independent sets corre-
spond to antichains i®. On the other hand, suppose
G = (V, E) is a comparability graph, and Ié{ be a
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transitive orientation of grap@d. SinceH is an acyclic
and transitive directed graph it induces a partially or-
dered set with ground sét whereu < w (u # w) iff
there is a directed path fromto w in H. Now every
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Theorem 1 [9]. There is anO(nm) time algorithm
which computes for any given comparability graph
G = (V, E) simultaneously

chain in the partially ordered set corresponds to a di- (&) for all integersk with 1 <k < x(G) a maximum

rected path inH which corresponds to a clique i@
due to transitivity. Furthermore every antichain in the

partially ordered set corresponds to an independent set

in G. Thus the well-known Dilworth theorem saying
that the maximum cardinality of an antichain fis
equal to the minimum number of chains in a chain par-
tition of V (P) implies that comparability (and cocom-
parability) graphs are perfect.

More important for our paper, a cocoloring of a
comparability (or cocomparability) grapty corre-
sponds to a partition of a partially ordered set into
chains and antichains. Now we study cocolorings of
comparability graphs.

A maximumk-coloring Z; is a family of k£ inde-
pendent subsets of a gragh covering a maximum
number of vertices. Lak; (G) denote the size of the
maximumk-coloring, i.e., the number of vertices in a
maximumék-chromatic subgraph a&. A maximuny:-
coveringCy, is a family of i cliques of G covering a
maximum number of vertices. We denotedayG) the
maximum size of ari-covering ofG, i.e., the number
of vertices in a maximum subgraph 6fpartitionable
into 4 cliques.

Our approximation algorithm is based on the fol-
lowing results by Frank [9] which can be seen as algo-
rithmic proofs of Greene and Kleitman'’s [13,14] gen-
eralizations of Dilworth’s theorem.

k-coloringZy, and
(b) for all integersh with 1 < & < x(G) a maximum
h-coveringCy,.

The essential part of the algorithm is a minimum-
cost flow algorithm on a network associated @
(via a partially ordered setP having comparability
graphG).

We shall also need the procedure SQRRRATION
(see Algorithm 1) which is based on a result by &d
et al. [7] (see also Brandstadt et al. [2]).

Lemma 2 [7]. For every perfect graptG = (V, E)
with n < k(k + 1)/2, k > 2, procedureSQRTRR-
TITION outputs a cocolouring of size at mastThus
72(G) < |4/2n + 1/4 — 1/2] for every perfect graph.

Proof. For the sake of completeness we provide the
simple proof by induction o&. Fork = 2 the theorem
is true. Suppose that theorem is true or 2.

Let G be a perfectgraph with < (k + 1) (k + 2)/2
vertices. Ifx (G) < k + 2 then the procedure outputs a
cocolouring of size at mo&t+ 1.

If x(G) > k + 2 then the procedure chooses a
clique C of G such that|C| > k + 2 which exists
by the perfectness af;. The procedure removes all
vertices ofC from G, thus the number of remaining

SQRTRRTITION

INPUT: perfect graphG = (V, E) withn < k(k + 1)/2 verticesk > 2.

OuTPUT: cocoloringZ of G
e Z:=0,U:=V,
e whileU # @ do
begin

— if x(G[U)) < k + 1then compute &-coloring

I={I, 1.

LI }of GIUY;, Z:=Z0T

elsechoose a clique of size at least + 1

and addC to Z;

- U=U-Z; ki=k—-1

end

Algorithm 1.
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APPROXCOCOLOURING

INPUT: comparability graptG = (V, E)

OuTPUT: cocolouringZ of G

e Compute &-coloringZy, = {I1, I, .

.., It} and ank-covering

Cp, ={C1, Cyp, ..., Cy}of G such that the surh+/ is minimum
subject to the condition (G) + k; (G) > n;

o Z':={I1, Do, ..

I, C\NUZy, C2\ ULk, -

SO \UZkh

e Compute a cocolouring” of the graphG — | J Z’ by calling

SQRTRRTITION;
e Z:=2'02".

Algorithm 2.

vertices inG — C is less thark(k 4+ 1) /2. By induction
hypothesisG — C has a cocolouring of size at mast
and thus the theoremis true for-1. O

Lemma 3. ProcedureSQRTRRTITION has polyno-
mial running time on perfect graphs and its running
time on comparability graphs i©(y/nm).

Proof. The running time of SQRTARTITION de-
pends on the best known running time of an algorithm
to solve the problems minimum coloring and maxi-
mum clique on our special classes of graphs.

The best known running time is polynomial on
perfect graphs [15] and linear on comparability graphs
[12]. O

Now we are in the position to describe our algo-
rithm to approximate a minimum cocolouring on com-
parability graphs (see Algorithm 2).

Theorem 4. TheO(nm) time algorithmApPPROXCO-
COLOURING approximates a minimum cocolouring of
a comparability graph within a factor df.71.

Proof. Let 7, = {I1, I2, ..., I} and C, = {C1, C2,
..., Cp} be the sets produced at the first step of the
algorithm. Then by the choice éfandi as well asZ;
andC,, we have thak + 1 < z(G).

The number of vertices i’ is at least

U+ a0 (Ues) -0

sinceZ; is a family of independent sets aidy is a

family of cliques, implying| | J(Zx) N (UCr)| < kh.
Therefore, the graptG — | J Z’ has at mostk#h

vertices and by Lemma 2 procedure SQRRPITION

computes a cocolouring @& — | J Z’ having size at
most+/2kh. Consequently, APROX COCOLOURING
computes a cocolouring of G of size at most

1
khJZkhgkh(l—)
+h+ k+m\1+ 5

1
<11+ —)z(G
<(+ﬁ)2()

< 171 z(G).

The time bound follows from Theorem 1 and Lem-
ma3. O

Corollary 5. The algorithmAPPROXCOCOLOURING
can also be used to approximate within a factor of
171

(a) a minimum cocolouring of a partially ordered set,

(b) a minimum partition of a(repetition-fre@ se-
quence(of integers into increasing and decreas-
ing subsequences,

(c) a minimum cocolouring of a permutation graph,
and

(d) a minimum cocolouring of a cocomparability
graph.

4. Perfect graphs

We consider the greedy algorithm (see Algorithm 3)
for minimum cocolouring on graphs

Theorem 6. The GREEDY COCOLOURING algorithm
approximates a minimum cocolouring of a perfect
graph within a factor ofnn.
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GREEDY COCOLOURING
INPUT: graphG = (V, E)
OuTPUT: cocolouringZ of G

o Z:=0;

o U:=V,

e whileU # @ do
begin

— Compute a maximum independent ggtand a maximum cliqu€y of G[U];
— ChooseX to bely or Cy such thatX| = max(|Iy|, |Cy|) and addX to Z;

-U:=U-X.

end

Algorithm 3.

Proof. To obtain the approximation ratio of the al-
gorithm let us consider a hypergraph= (V, Eg),
where the vertex set 6 is the vertex seV of the in-
put graphG and Ey is the set of all independent sets
and cliques inG, i.e., every hyperedge 6{ is either
an independent set or a cliqueth

Any minimum cocolouring onG is equivalent to
a minimum set cover of{ and vice versa. Moreover
GREEDY COCOLOURINGCan be seen as the greedy al-
gorithm for the minimum set cover problem on input
‘H (the only difference is that &EEDY COCOLOUR
ING won't inspect all hyperedges df). It is well
known [5,16,18] that the greedy algorithm for the min-
imum set cover problem is an Anapproximation al-
gorithm. O

By a well-known result of Grétschel et al. [15]
a maximum independent set and a maximum clique
can be computed by a polynomial-time algorithm on
perfect graphs.

Corollary 7. TheGREEDY COCOLOURINGalgorithm

is a polynomial-time algorithm to approximate a
minimum cocolouring within a factor dhn on each
graph classG for which there are polynomial-time
algorithms to compute a maximum clique and a
maximum independent set. In particular this is the
case for perfect graphs.

5. Concluding remarks

We leave many questions unanswered, a few of
them are:

(1) The problem of finding a minimum partition of
a sequence into monotone subsequences is NP-
hard. We provide a 1.71-approximation algorithm
for this problem. A natural question is if there
exists a PTAS for this problem?

We have proved that @&EDY COCOLOURING is

a Inn-approximation algorithm for perfect graphs.
Are there nontrivial classes of perfect graphs
for which GREEDY COCOLOURINGapproximates
the cochromatic number within a constant factor?
What is the computational complexity of comput-
ing a maximumék-coloring and a maximunt-
covering for perfect graphs? A polynomial time
algorithm computing these parameters for perfect
graphs will imply that our I7 1-approximation al-
gorithm for a minimum cocolouring on compara-
bility graphs is also a polynomial time algorithm
on perfect graphs.

2)

®3)
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