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Abstract. We prove that for every 2-connected planar graph the pathwidth of its geometric
dual is less than the pathwidth of its line graph. This implies that pathwidthðHÞ �
pathwidthðH�Þ þ 1 for every planar triangulation H and leads us to a conjecture that
pathwidthðGÞ � pathwidthðG�Þ þ 1 for every 2-connected graph G.
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1. Definitions

We use the standard graph-theoretic terminology compatible with [4] where basic
definitions may be found. We use the following notations: G is an undirected,
simple (without loops and multiple edges) and finite graph with the vertex
set V ðGÞ and the edge set EðGÞ; DðGÞ is the maximum degree of the vertices of G;
LðGÞ is the line graph of G. If G is a plane graph then G� denotes its geometric
dual.

A tree decomposition of a graph G is a pair ðT ;XÞ, where T is a tree and
X ¼ ðXi: i 2 V ðT ÞÞ is a family of subsets of V ðGÞ indexed by V ðT Þ such that

(T1)
S

i2V ðT Þ Xi ¼ V ðGÞ;
(T2) for every edge fu; vg 2 EðGÞ there is i 2 V ðT Þ such that u; v 2 Xi;
(T3) for every i; j; k 2 V ðT Þ if j is on the path between i and k then Xi \ Xk � Xj.

A path decomposition of G is a tree decomposition ðT ;XÞ where T is a path.
The width of a decomposition ðT ;XÞ is maxi2V ðT Þ jXij 
 1. Robertson and

Seymour [18] define the treewidth tw(G) (the pathwidth pw(G)) of G is the mini-
mum width over all tree decompositions (path decompositions) of G.

In this paper, we study the pathwidth of planar graphs. First, we prove that for
any 2-connected plane graph G pwðG�Þ < pwðLðGÞÞ. (We also demonstrate how
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our proof technique can be used to prove that twðG�Þ � twðLðGÞÞ.) Then we show
that for a graph G of DðGÞ � 3 and line graph LðGÞ ‘width’ parameters are ‘close’.
Our results imply that pwðGÞ � pwðG�Þ 
 1 for every 2-connected planar graph G
of DðGÞ � 3. Finally, we conjecture that every planar graph has a planar split
of the same linear width and discuss how this conjecture implies that
pwðGÞ � pwðG�Þ þ 1 for every 2-connected graph G.

2. Vertex Separators

There are different equivalent ways to define the treewidth and the pathwidth of a
graph. Closer examination of these parameters may be found in survey papers of
Bodlaender [3] and Reed [16] (see also the book of Diestel [7]). The following
definitions are more convenient for our purposes.

For S � V ðGÞ we define

@S :¼ fu 2 S and there exists w 2 V ðGÞ n S such that fu;wg 2 EðGÞg:

Let r ¼ ðv1; v2; . . . ; vnÞ be an ordering of V ðGÞ. For j 2 f1; . . . ; ng we put
Vj ¼ [j

i¼1vi. Setting

vsðG; rÞ :¼ max
i2f1;...;ng

j@Vij;

we define the vertex separation of G (see [8] for more information on this
parameter) as

vsðGÞ :¼ minfvsðG; rÞ: ris an ordering of V ðGÞg:

The following lemma is well known. (See the survey of Möhring [15] for an
overview of the related results.) It follows directly form the results of Kirousis and
Papadimitriou [11] on interval width (see also Kinnersley [10]).

Lemma 1. For any graph G, vsðGÞ ¼ pwðGÞ.

Theorem 2. For any 2-connected plane graph G

vsðG�Þ < vsðLðGÞÞ:

Therefore,

pwðG�Þ < pwðLðGÞÞ:

Proof. For a face v� of G (or a vertex v� 2 V ðG�Þ) let Eðv�Þ be the edges of the
boundary of v�.
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Let rl ¼ ðe1; e2; . . . ; emÞ be an ordering of EðGÞ (or vertices of LðGÞ). To prove
the theorem we construct an ordering r� ¼ ðv�1; v�2; . . . ; v�kÞ of V ðG�Þ such that

vsðG; r�Þ < vsðLðGÞ; rlÞ: ð1Þ

For j 2 f1; . . . ;mg we define Ej ¼ [j
i¼1ei. For v

� 2 V ðG�Þ let lðv�Þ be the smallest
number i 2 f1; . . . ;mg such that

jEðv�Þ \ Eij ¼ 2:

Notice that at most two vertices in V ðG�Þ have the same number lðv�Þ. (In a
planar graph only two faces can share a set of edges.) The vertex numbering l
induces an ordering r� ¼ ðv�1; v�2; . . . ; v�kÞ of the vertices of G� where i < j only if
lðv�i Þ � lðv�j Þ. Loosely speaking, we scan the list rl and add a vertex to the list r�

after passing two edges of its boundary.
We put V �

i ¼ [i
j¼1v

�
j . To prove (1) we show that for any index i 2

f1; . . . ; k 
 1g one can choose

j ¼ lðv�i Þ if lðv�i Þ ¼ lðv�iþ1Þ,
lðv�iþ1Þ 
 1 if lðv�i Þ 6¼ lðv�iþ1Þ

�

such that

j@V �
i j < j@Ejj:

First we prove that for any v� 2 @V �
i

jEðv�Þ \ @Ejj � 2: ð2Þ

From v� 2 @V �
i � V �

i it follows that jEðv�Þ \ Ejj � 2. If jEðv�Þ n Ejj > 0 then at
least two edges of Eðv�Þ are in @Ej. (The boundary Eðv�Þ is a circuit of length � 3
because G is 2-connected and has no multiply edges.) If Eðv�Þ � Ej and there
exists e 2 Eðv�Þ \ @Ej, then e is adjacent to an edge e0 62 Ej. Hence there is an edge
e00 2 Eðv�Þ adjacent to e and e0. Then e0; e00 2 Eðv�Þ \ @Ej. In summary, if
Eðv�Þ 6� Ej n @Ej we obtain (2).

To conclude the proof of (2) we show that Eðv�Þ � Ej n @Ej cannot happen.
Assume the converse. From v� 2 @V �

i it follows that there is a vertex u� 62 V �
i that

is adjacent to v�. Let e 2 EðGÞ be the dual of fv�; u�g. Then e 2 Eðv�Þ \ Eðu�Þ. Let
e0; e00 2 Eðu�Þ be adjacent to e (graphs are simple and every boundary has at least
three edges). By assumption e 62 @Ej; then e0; e00 2 Ej. This implies that Eðu�Þ has
at least three edges of Ej (the edges e; e0 and e00). Hence u� 2 V �

i . This contradiction
proves (2).

Using (2), we get

j@V �
i j �

P
v�2@V �

i
jEðv�Þ \ @Ejj
2

:
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Every edge of G is adjacent to two faces of G and so the sum

X
v�2@V �

i

jEðv�Þ \ @Ejj ð3Þ

counts every edge of @Ej at most twice. Furthermore, v�iþ1 62 @V �
i and by the

definition of j, at least one edge e 2 Eðv�iþ1Þ is in Ej. We conclude that e 2 @Ej

because otherwise Eðv�iþ1Þ has at least three edges of Ej. This yields that at least
one edge of Eðv�iþ1Þ contributes in (3) at most once. Thus

P
v�2@V �

i
jEðv�Þ \ @Ejj
2

< j@Ejj:

Finally, we have proved that for any index i 2 f1; . . . ; kg there is j 2 f1; . . . ;mg
such that

j@V �
i j �

P
v�2@V �

i
jEðv�Þ \ @Ejj
2

< j@Ejj:

This concludes the proof of (1) and completes the proof of the theorem. (

3. Treewidth

The main purpose of this section is to show how the technique developed for the
proof of Theorem 2 can be applied for treewidth of planar graphs.

For S � V ðGÞ and v 2 V ðGÞ n S we define

@jvS :¼
fu 2 S and there exists a ðu; vÞ-path P such that V ðP Þ \ S ¼ fugg:

Let r ¼ ðv1; v2; . . . ; vnÞ be an ordering of V ðGÞ. For j 2 f1; . . . ; ng we put
Vj ¼ [j

i¼1vi and

vsðG; rÞjð�Þ :¼ max
i2f2;...;ng

j@jviVi
1j:

We define the partial vertex separation of G as

vsðGÞjð�Þ :¼ minfvsðG; rÞjð�Þ: r is an ordering of V ðGÞg:

Lemma 3. For any graph G, vsðGÞjð�Þ ¼ twðGÞ.

Proof. Let us give only a sketch of the proof. (The proof of the similar result in
terms of graph searching is given by Dendris. Kirousis and Thilikos [6].) Let G be
a graph of treewidth k. It is well known that twðGÞ ¼ k if and only if there is a
chordal supergraph H of G with clique number k þ 1.
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For every chordal graphH there is an ordering r ¼ ðv1; v2; . . . ; vnÞ of V ðHÞ such
that for every i 2 f1; . . . ; ng the set of neighbours Ni of vi in H n fv1; v2; . . . ; vi
1g
is a clique in H . (Such an ordering is often called a perfect elimination ordering.)
Define r
1 ¼ ðvn; vn
1; . . . ; v1Þ. Then

vsðGÞjð�Þ � vsðG; r
1Þjð�Þ ¼ max
i2f1;...;ng

jNij ¼ k:

To prove that vsðGÞjð�Þ � twðGÞ we choose r ¼ ðv1; v2; . . . ; vnÞ such that
vsðG; rÞjð�Þ ¼ k þ 1. Let H be a chordal supergraph of G with the minimum
number of edges such that r
1 is the perfect elimination ordering of V ðHÞ. Then
the clique number of H is at most k þ 1. (

The proof of the next theorem is similar to the proof of Theorem

Theorem 4. For any 2-connected plane graph G

vsðG�Þjð�Þ � vsðLðGÞÞjð�Þ:

Therefore,

twðG�Þ � twðLðGÞÞ:

Proof. Let rl ¼ ðe1; e2; . . . ; emÞ be an ordering of EðGÞ. We define Ei, V �
i , Eðv�Þ,

lðv�Þ and r� ¼ ðv�1; v�2; . . . ; v�kÞ as in Theorem 2.

To prove the theorem, we show that for any i 2 f1; . . . ; k 
 1g and
j ¼ lðv�iþ1Þ 
 1

j@jv�iþ1
V �
i j � j@jejþ1

Ejj:

As in Theorem 2, we claim that for every v� 2 ð@jv�iþ1
V �
i 
 v�i Þ

jEðv�Þ \ @jejþ1
Ejj � 2: ð4Þ

By definition v� 2 @V �
i , and there exists a path

ðv�iþ1; u
�
1; u

�
2; . . . ; u

�
p; v

�Þ

such that

[p
k¼1u

�
k \ V �

i ¼ ;:

Since every facial boundary in G contains at least three edges, we have that for any
adjacent vertices x�; y� 2 V ðG�Þ the set Eðx�Þ contains at least three edges having
neighbours (as vertices of LðGÞ) in Eðy�Þ. In addition, each of these three edges is
adjacent to at least two edges in Eðy�Þ. For any k 2 f1; . . . ; pg the boundary Eðu�kÞ
has atmost one edge in Ej. Therefore there is e 2 Eðu�pÞ (the case e ¼ ejþ1 is possible)
such that
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1. e 62 Ej;
2. there is an ðejþ1; eÞ-path P in LðGÞ such that V ðP Þ \ Ej ¼ ;;
3. e is adjacent to at least two edges of Eðv�Þ.

By definition of r�, jEðv�Þ \ Ejj � 2 and so there are at least two edges
e1; e2 2 Eðv�Þ \ Ej such that ðe; e1Þ and ðe; e2Þ-paths do not internally intersect Ej.
This concludes the proof of (4).

Notice that jEðv�i Þ \ Ejj � 1. Combining the latter with (4), we obtain

j@jv�iþ1
V �
i j �

P
v�2@jv�

iþ1
V �
i
jEðv�Þ \ @jejþ1

Ejj

2
þ 1:

Since exactly two edges of Eðv�iþ1Þ are in Ejþ1, we have that one of them is in
@jejþ1

Ej. Thus

P
v�2@jv�

iþ1
V �
i
jEðv�Þ \ @jejþ1

Ejj

2
< j@jejþ1

Ejj:

(Each edge of @Ej is counted at most twice in the sum and e ¼ ðEðv�iþ1Þ \ EjÞ is
counted once.)

Finally,

j@jv�iþ1
V �
i j � j@jejþ1

Ejj;

which completes the proof. (

4. Line Graphs of Small Degree Graphs

Golovach in [9] obtained the following result about the vertex separation of line
graphs and cutwidth (see Makedon and Sudborough [14] for definitions and
further results on cutwidth).

Theorem 5 (Golovach, [9]). For any graph G,

cwðGÞ � vsðLðGÞÞ � cwðGÞ þ bDðGÞ=2c 
 1;

where cw(G) is the cutwidth of G.

The well known result of Makedon and Sudborough [14] is that for any graph
G of DðGÞ � 3 the cutwidth of G is equal to the edge search number. Since the
edge search number of G is at most vsðGÞ þ 2, we obtain the following corollary
of Golovach’s theorem. (We refer the reader to the survey of Bienstock [1] for
further more detailed information on graph searching.)

Lemma 6. For any graph G of DðGÞ � 3, vsðLðGÞÞ � vsðGÞ þ 2.
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Corollary 7. For any 2-connected planar graph G of DðGÞ � 3

pwðGÞ � pwðG�Þ 
 1:

Proof. By Lemma 6 vsðGÞ þ 2 � vsðLðGÞÞ and by Theorem 2 vsðLðGÞÞ � vsðG�Þþ
1. Finally,

pwðGÞ þ 1 ¼ vsðGÞ þ 1 � vsðLðGÞÞ 
 1 � vsðG�Þ ¼ pwðG�Þ: (

Corollary 7 can be restated in a weak form.

Corollary 8. For any planar triangulation H

pwðHÞ � pwðH �Þ þ 1:

5. Concluding Remarks

Let v be a vertex in a graph G and N ½v� be the set of all vertices adjacent to v.
Consider a partition of the set N ½v� into any two sets M and N . (Note that M or N
may be empty.) Let us transform G as follows: delete v with all incident edges, add
new vertices u and w with edge fu;wg, and make u adjacent to all vertices of M
and w to all vertices of N . We say that the result of this transformation is obtained
from G by vertex splitting of v. A graph H is said to be a split of G if H is obtained
from G by a sequence of vertex splittings.

To state Conjecture 5 we need the notion of linear width. This notion was
introduced by Thomas [21] and is closely related to crusades of Bienstock and
Seymour [2] (see also Bienstock’s survey [1]). For X � EðGÞ let dðX Þ be the set of
all vertices incident to edges in X and EðGÞ n X . Let r ¼ ðe1; e2; . . . ; emÞ be an
ordering of EðGÞ. For i 2 f1; . . . ;mg we put Ei ¼ [i

j¼1ej: We define

lwðG; rÞ :¼ max
i2f1;...;mg

jdðEiÞj;

and the linear width of G as

lwðGÞ :¼ minflwðG; rÞ: r is an ordering of EðGÞg:

The results of Bienstock and Seymour [2] imply that for graphs without vertices of
degree 1, the linear width has a game theoretic interpretaton in terms of mixed
search number. (See also the article by Takahashi, Ueno and Kajitani [20] on
further discussions of mixed search number.)

Notice that for any graph G with minimum vertex degree at least 2

vsðGÞ � lwðGÞ � vsðGÞ þ 1:
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This fact follows from the game-theoretical interpretation of these parameters.
For any graph G, vsðGÞ is equal to the node search number of G minus one, i.e.,
nsðGÞ 
 1 ¼ vsðGÞ (see the paper of Kirousis and Papadimitriou [12] for the
proof). By the result of Bienstock and Seymour [2] for a graph G with minimum
vertex degree at least 2 the mixed search number msðGÞ of G is equal to lwðGÞ and
it is well known that

nsðGÞ 
 1 � msðGÞ � nsðGÞ:

The reader is also referred to Bienstock’s survey [1] on graph searching.
Let us remark that not every split of a planar graph is planar. But every planar

graph G has a planar split H of DðHÞ � 3. It is also easy to show that for every
planar graph G there is split H such that DðHÞ � 3 and lwðGÞ ¼ lwðHÞ.

We conjecture that the following statement is true.

Conjecture. For every planar graph G there is planar split H such that DðHÞ � 3
and lwðGÞ ¼ lwðHÞ.

Our Conjecture is related to the following statement of Robertson and Sey-
mour [17]:
It seems that the tree-width of a planar graph and the tree-width of its geometric

dual are approximately equal – indeed, we have convinced ourselves that they differ
by at most one.
Lapoire [13] proved this result using algebraic approach. Recently Bouchitté,
Mazoit and Todinca [5] obtain nice combinatorial proof of this result by clever
usage of minimal separators. It is also worth to mention the results of Seymour
and Thomas [19] based on the heavy machinery developed in Graph Minors
Theory which imply that the branchwidth of a planar graph is equal to the
branchwidth of its dual. (The branchwidth of a graph is the graph parameter
related to linear width.)

If Conjecture 5 is true then pwðGÞ � pwðG�Þ 
 1 for any 2-connected planar
graph G. Indeed, suppose that for a planar graph G there is a planar split H such
that DðHÞ � 3 and lwðGÞ ¼ lwðHÞ. Then by Lemma 6, lwðHÞ � vsðLðHÞÞ 
 1 and
by Theorem 2, vsðLðHÞÞ > vsðH�Þ. G� is a subgraph of H� and

pwðGÞ þ 1 � lwðGÞ ¼ lwðHÞ � vsðLðHÞÞ 
 1 � vsðH �Þ � vsðG�Þ ¼ pwðG�Þ:
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