Graphs and Combinatorics

© Springer-Verlag 2003

Pathwidth of Planar and Line Graphs*

Fedor V. Fomin

Heinz Nixdorf Institute, University of Paderborn, Fürstenalle 11, D-33102 Paderborn, Germany. e-mail: fomin@uni-paderborn.de

Abstract. We prove that for every 2-connected planar graph the pathwidth of its geometric dual is less than the pathwidth of its line graph. This implies that $pathwidth(H) \le pathwidth(H^*) + 1$ for every planar triangulation H and leads us to a conjecture that $pathwidth(G) \le pathwidth(G^*) + 1$ for every 2-connected graph G.

Key words. Pathwidth, Treewidth, Planar graphs, Line graphs

1. Definitions

We use the standard graph-theoretic terminology compatible with [4] where basic definitions may be found. We use the following notations: G is an undirected, simple (without loops and multiple edges) and finite graph with the vertex set V(G) and the edge set E(G); $\Delta(G)$ is the maximum degree of the vertices of G; L(G) is the line graph of G. If G is a plane graph then G^* denotes its geometric dual.

A tree decomposition of a graph G is a pair (T, \mathcal{X}) , where T is a tree and $\mathcal{X} = (X_i : i \in V(T))$ is a family of subsets of V(G) indexed by V(T) such that

- (T1) $\bigcup_{i \in V(T)} X_i = V(G);$
- (T2) for every edge $\{u, v\} \in E(G)$ there is $i \in V(T)$ such that $u, v \in X_i$;
- (T3) for every $i, j, k \in V(T)$ if j is on the path between i and k then $X_i \cap X_k \subseteq X_j$.

A path decomposition of G is a tree decomposition (T, \mathcal{X}) where T is a path.

The width of a decomposition (T, \mathcal{X}) is $\max_{i \in V(T)} |X_i| - 1$. Robertson and Seymour [18] define the treewidth $\operatorname{tw}(G)$ (the pathwidth $\operatorname{pw}(G)$) of G is the minimum width over all tree decompositions (path decompositions) of G.

In this paper, we study the pathwidth of planar graphs. First, we prove that for any 2-connected plane graph G pw(G^*) < pw(L(G)). (We also demonstrate how

^{*} I acknowledge support by EC contract IST-1999-14186, Project ALCOM-FT (Algorithms and Complexity - Future Technologies) and support by the RFBR grant N01-01-00235.

our proof technique can be used to prove that $\operatorname{tw}(G^*) \leq \operatorname{tw}(L(G))$.) Then we show that for a graph G of $\Delta(G) \leq 3$ and line graph L(G) 'width' parameters are 'close'. Our results imply that $\operatorname{pw}(G) \geq \operatorname{pw}(G^*) - 1$ for every 2-connected planar graph G of $\Delta(G) \leq 3$. Finally, we conjecture that every planar graph has a planar split of the same linear width and discuss how this conjecture implies that $\operatorname{pw}(G) \leq \operatorname{pw}(G^*) + 1$ for every 2-connected graph G.

2. Vertex Separators

There are different equivalent ways to define the treewidth and the pathwidth of a graph. Closer examination of these parameters may be found in survey papers of Bodlaender [3] and Reed [16] (see also the book of Diestel [7]). The following definitions are more convenient for our purposes.

For $S \subseteq V(G)$ we define

$$\partial S := \{ u \in S \text{ and there exists } w \in V(G) \setminus S \text{ such that } \{u, w\} \in E(G) \}.$$

Let $\sigma = (v_1, v_2, \dots, v_n)$ be an ordering of V(G). For $j \in \{1, \dots, n\}$ we put $V_j = \bigcup_{i=1}^j v_i$. Setting

$$vs(G,\sigma) := \max_{i \in \{1,\dots,n\}} |\partial V_i|,$$

we define the *vertex separation* of G (see [8] for more information on this parameter) as

$$vs(G) := min\{vs(G, \sigma): \sigma is \text{ an ordering of } V(G)\}.$$

The following lemma is well known. (See the survey of Möhring [15] for an overview of the related results.) It follows directly form the results of Kirousis and Papadimitriou [11] on interval width (see also Kinnersley [10]).

Lemma 1. For any graph G, vs(G) = pw(G).

Theorem 2. For any 2-connected plane graph G

$$\operatorname{vs}(G^*) < \operatorname{vs}(L(G)).$$

Therefore,

$$\mathrm{pw}(G^*) < \mathrm{pw}(L(G)).$$

Proof. For a face v^* of G (or a vertex $v^* \in V(G^*)$) let $E(v^*)$ be the edges of the boundary of v^* .

Let $\sigma_l = (e_1, e_2, \dots, e_m)$ be an ordering of E(G) (or vertices of L(G)). To prove the theorem we construct an ordering $\sigma^* = (v_1^*, v_2^*, \dots, v_k^*)$ of $V(G^*)$ such that

$$vs(G, \sigma^*) < vs(L(G), \sigma_l). \tag{1}$$

For $j \in \{1, ..., m\}$ we define $E_j = \bigcup_{i=1}^j e_i$. For $v^* \in V(G^*)$ let $l(v^*)$ be the smallest number $i \in \{1, ..., m\}$ such that

$$|E(v^*) \cap E_i| = 2.$$

Notice that at most two vertices in $V(G^*)$ have the same number $l(v^*)$. (In a planar graph only two faces can share a set of edges.) The vertex numbering l induces an ordering $\sigma^* = (v_1^*, v_2^*, \ldots, v_k^*)$ of the vertices of G^* where i < j only if $l(v_i^*) \le l(v_j^*)$. Loosely speaking, we scan the list σ_l and add a vertex to the list σ^* after passing two edges of its boundary.

We put $V_i^* = \bigcup_{j=1}^i v_j^*$. To prove (1) we show that for any index $i \in \{1, \dots, k-1\}$ one can choose

$$j = \begin{cases} l(v_i^*) & \text{if } l(v_i^*) = l(v_{i+1}^*), \\ l(v_{i+1}^*) - 1 & \text{if } l(v_i^*) \neq l(v_{i+1}^*) \end{cases}$$

such that

$$|\partial V_i^*| < |\partial E_j|.$$

First we prove that for any $v^* \in \partial V_i^*$

$$|E(v^*) \cap \partial E_j| \ge 2. \tag{2}$$

From $v^* \in \partial V_i^* \subseteq V_i^*$ it follows that $|E(v^*) \cap E_j| \ge 2$. If $|E(v^*) \setminus E_j| > 0$ then at least two edges of $E(v^*)$ are in ∂E_j . (The boundary $E(v^*)$ is a circuit of length ≥ 3 because G is 2-connected and has no multiply edges.) If $E(v^*) \subseteq E_j$ and there exists $e \in E(v^*) \cap \partial E_j$, then e is adjacent to an edge $e' \notin E_j$. Hence there is an edge $e'' \in E(v^*)$ adjacent to e and e'. Then $e', e'' \in E(v^*) \cap \partial E_j$. In summary, if $E(v^*) \nsubseteq E_j \setminus \partial E_j$ we obtain (2).

To conclude the proof of (2) we show that $E(v^*) \subseteq E_j \setminus \partial E_j$ cannot happen. Assume the converse. From $v^* \in \partial V_i^*$ it follows that there is a vertex $u^* \notin V_i^*$ that is adjacent to v^* . Let $e \in E(G)$ be the dual of $\{v^*, u^*\}$. Then $e \in E(v^*) \cap E(u^*)$. Let $e', e'' \in E(u^*)$ be adjacent to e (graphs are simple and every boundary has at least three edges). By assumption $e \notin \partial E_j$; then $e', e'' \in E_j$. This implies that $E(u^*)$ has at least three edges of E_j (the edges e, e' and e''). Hence $u^* \in V_i^*$. This contradiction proves (2).

Using (2), we get

$$|\partial V_i^*| \leq \frac{\sum_{v^* \in \partial V_i^*} |E(v^*) \cap \partial E_j|}{2}.$$

Every edge of G is adjacent to two faces of G and so the sum

$$\sum_{v^* \in \partial V_i^*} |E(v^*) \cap \partial E_j| \tag{3}$$

counts every edge of ∂E_j at most twice. Furthermore, $v_{i+1}^* \notin \partial V_i^*$ and by the definition of j, at least one edge $e \in E(v_{i+1}^*)$ is in E_j . We conclude that $e \in \partial E_j$ because otherwise $E(v_{i+1}^*)$ has at least three edges of E_j . This yields that at least one edge of $E(v_{i+1}^*)$ contributes in (3) at most once. Thus

$$\frac{\sum_{v^* \in \partial V_i^*} |E(v^*) \cap \partial E_j|}{2} < |\partial E_j|.$$

Finally, we have proved that for any index $i \in \{1, ..., k\}$ there is $j \in \{1, ..., m\}$ such that

$$|\partial V_i^*| \le \frac{\sum_{v^* \in \partial V_i^*} |E(v^*) \cap \partial E_j|}{2} < |\partial E_j|.$$

This concludes the proof of (1) and completes the proof of the theorem.

3. Treewidth

The main purpose of this section is to show how the technique developed for the proof of Theorem 2 can be applied for treewidth of planar graphs.

For
$$S \subseteq V(G)$$
 and $v \in V(G) \setminus S$ we define

$$\partial_{|v}S:=\{u\in S \text{ and there exists a } (u,v)\text{-path } P \text{ such that } V(P)\cap S=\{u\}\}.$$

Let $\sigma = (v_1, v_2, \dots, v_n)$ be an ordering of V(G). For $j \in \{1, \dots, n\}$ we put $V_j = \bigcup_{i=1}^j v_i$ and

$$\operatorname{vs}(G,\sigma)_{|(\cdot)} := \max_{i \in \{2,\dots,n\}} |\partial_{|v_i} V_{i-1}|.$$

We define the partial vertex separation of G as

$$\operatorname{vs}(G)_{|(\cdot)} := \min\{\operatorname{vs}(G,\sigma)_{|(\cdot)} \colon \sigma \text{ is an ordering of } V(G)\}.$$

Lemma 3. For any graph G, $vs(G)_{|(\cdot)|} = tw(G)$.

Proof. Let us give only a sketch of the proof. (The proof of the similar result in terms of graph searching is given by Dendris. Kirousis and Thilikos [6].) Let G be a graph of treewidth k. It is well known that $\operatorname{tw}(G) = k$ if and only if there is a chordal supergraph H of G with clique number k+1.

For every chordal graph H there is an ordering $\sigma = (v_1, v_2, \ldots, v_n)$ of V(H) such that for every $i \in \{1, \ldots, n\}$ the set of neighbours N_i of v_i in $H \setminus \{v_1, v_2, \ldots, v_{i-1}\}$ is a clique in H. (Such an ordering is often called a perfect elimination ordering.) Define $\sigma^{-1} = (v_n, v_{n-1}, \ldots, v_1)$. Then

$${\rm vs}(G)_{|(\cdot)} \leq {\rm vs}(G,\sigma^{-1})_{|(\cdot)} = \max_{i \in \{1,\dots,n\}} |N_i| = k.$$

To prove that $\operatorname{vs}(G)_{|(\cdot)} \geq \operatorname{tw}(G)$ we choose $\sigma = (v_1, v_2, \dots, v_n)$ such that $\operatorname{vs}(G, \sigma)_{|(\cdot)} = k + 1$. Let H be a chordal supergraph of G with the minimum number of edges such that σ^{-1} is the perfect elimination ordering of V(H). Then the clique number of H is at most k + 1.

The proof of the next theorem is similar to the proof of Theorem

Theorem 4. For any 2-connected plane graph G

$$\operatorname{vs}(G^*)_{|(\cdot)|} \leq \operatorname{vs}(L(G))_{|(\cdot)|}$$

Therefore,

$$tw(G^*) < tw(L(G)).$$

Proof. Let $\sigma_l = (e_1, e_2, \dots, e_m)$ be an ordering of E(G). We define E_i , V_i^* , $E(v^*)$, $l(v^*)$ and $\sigma^* = (v_1^*, v_2^*, \dots, v_k^*)$ as in Theorem 2.

To prove the theorem, we show that for any $i \in \{1, \dots, k-1\}$ and $j = l(v_{i+1}^*) - 1$

$$|\partial_{|v_{i+1}^*} V_i^*| \le |\partial_{|e_{i+1}} E_j|.$$

As in Theorem 2, we claim that for every $v^* \in (\partial_{|v_{i+1}^*} V_i^* - v_i^*)$

$$|E(v^*) \cap \partial_{|e_{j+1}} E_j| \ge 2. \tag{4}$$

By definition $v^* \in \partial V_i^*$, and there exists a path

$$(v_{i+1}^*, u_1^*, u_2^*, \dots, u_p^*, v^*)$$

such that

$$\cup_{k=1}^p u_k^* \cap V_i^* = \emptyset.$$

Since every facial boundary in G contains at least three edges, we have that for any adjacent vertices $x^*, y^* \in V(G^*)$ the set $E(x^*)$ contains at least three edges having neighbours (as vertices of L(G)) in $E(y^*)$. In addition, each of these three edges is adjacent to at least two edges in $E(y^*)$. For any $k \in \{1, \ldots, p\}$ the boundary $E(u_k^*)$ has at most one edge in E_j . Therefore there is $e \in E(u_p^*)$ (the case $e = e_{j+1}$ is possible) such that

- 1. $e \notin E_i$;
- 2. there is an (e_{j+1}, e) -path P in L(G) such that $V(P) \cap E_j = \emptyset$;
- 3. e is adjacent to at least two edges of $E(v^*)$.

By definition of σ^* , $|E(v^*) \cap E_j| \ge 2$ and so there are at least two edges $e_1, e_2 \in E(v^*) \cap E_j$ such that (e, e_1) and (e, e_2) -paths do not internally intersect E_j . This concludes the proof of (4).

Notice that $|E(v_i^*) \cap E_i| \ge 1$. Combining the latter with (4), we obtain

$$|\partial_{|v_{i+1}^*}V_i^*| \leq \frac{\sum_{v^* \in \partial_{|v_{i+1}^*}V_i^*} |E(v^*) \cap \partial_{|e_{j+1}}E_j|}{2} + 1.$$

Since exactly two edges of $E(v_{i+1}^*)$ are in E_{j+1} , we have that one of them is in $\partial_{|e_{j+1}}E_j$. Thus

$$\frac{\sum_{v^* \in \partial_{|v_{i+1}^*} V_i^*} |E(v^*) \cap \partial_{|e_{j+1}} E_j|}{2} < |\partial_{|e_{j+1}} E_j|.$$

(Each edge of ∂E_j is counted at most twice in the sum and $e = (E(v_{i+1}^*) \cap E_j)$ is counted once.)

Finally,

$$|\partial_{|v_{i+1}^*}V_i^*| \leq |\partial_{|e_{j+1}}E_j|,$$

which completes the proof.

4. Line Graphs of Small Degree Graphs

Golovach in [9] obtained the following result about the vertex separation of line graphs and cutwidth (see Makedon and Sudborough [14] for definitions and further results on cutwidth).

Theorem 5 (Golovach, [9]). For any graph G,

$$cw(G) \le vs(L(G)) \le cw(G) + \lfloor \Delta(G)/2 \rfloor - 1,$$

where cw(G) is the cutwidth of G.

The well known result of Makedon and Sudborough [14] is that for any graph G of $\Delta(G) \leq 3$ the cutwidth of G is equal to the edge search number. Since the edge search number of G is at most vs(G) + 2, we obtain the following corollary of Golovach's theorem. (We refer the reader to the survey of Bienstock [1] for further more detailed information on graph searching.)

Lemma 6. For any graph G of $\Delta(G) \leq 3$, $vs(L(G)) \leq vs(G) + 2$.

Corollary 7. For any 2-connected planar graph G of $\Delta(G) \leq 3$

$$pw(G) \ge pw(G^*) - 1$$
.

Proof. By Lemma $6 \operatorname{vs}(G) + 2 \ge \operatorname{vs}(L(G))$ and by Theorem $2 \operatorname{vs}(L(G)) \ge \operatorname{vs}(G^*) + 1$. Finally,

$$pw(G) + 1 = vs(G) + 1 \ge vs(L(G)) - 1 \ge vs(G^*) = pw(G^*).$$

Corollary 7 can be restated in a weak form.

Corollary 8. For any planar triangulation H

$$pw(H) < pw(H^*) + 1$$
.

5. Concluding Remarks

Let v be a vertex in a graph G and N[v] be the set of all vertices adjacent to v. Consider a partition of the set N[v] into any two sets M and N. (Note that M or N may be empty.) Let us transform G as follows: delete v with all incident edges, add new vertices u and w with edge $\{u, w\}$, and make u adjacent to all vertices of M and w to all vertices of N. We say that the result of this transformation is obtained from G by vertex splitting of v. A graph H is said to be a vertex splitting of v. A graph vertex splittings.

To state Conjecture 5 we need the notion of linear width. This notion was introduced by Thomas [21] and is closely related to crusades of Bienstock and Seymour [2] (see also Bienstock's survey [1]). For $X \subseteq E(G)$ let $\delta(X)$ be the set of all vertices incident to edges in X and $E(G) \setminus X$. Let $\sigma = (e_1, e_2, \ldots, e_m)$ be an ordering of E(G). For $i \in \{1, \ldots, m\}$ we put $E_i = \bigcup_{i=1}^{i} e_i$. We define

$$\operatorname{lw}(G,\sigma) := \max_{i \in \{1,\dots,m\}} |\delta(E_i)|,$$

and the *linear width* of G as

$$\mathrm{lw}(G) := \min\{\mathrm{lw}(G,\sigma) \colon \sigma \text{ is an ordering of } E(G)\}.$$

The results of Bienstock and Seymour [2] imply that for graphs without vertices of degree 1, the linear width has a game theoretic interpretation in terms of mixed search number. (See also the article by Takahashi, Ueno and Kajitani [20] on further discussions of mixed search number.)

Notice that for any graph G with minimum vertex degree at least 2

$$vs(G) \le lw(G) \le vs(G) + 1.$$

This fact follows from the game-theoretical interpretation of these parameters. For any graph G, vs(G) is equal to the node search number of G minus one, *i.e.*, ns(G) - 1 = vs(G) (see the paper of Kirousis and Papadimitriou [12] for the proof). By the result of Bienstock and Seymour [2] for a graph G with minimum vertex degree at least 2 the mixed search number ms(G) of G is equal to lw(G) and it is well known that

$$ns(G) - 1 \le ms(G) \le ns(G)$$
.

The reader is also referred to Bienstock's survey [1] on graph searching.

Let us remark that not every split of a planar graph is planar. But every planar graph G has a planar split H of $\Delta(H) \leq 3$. It is also easy to show that for every planar graph G there is split H such that $\Delta(H) \leq 3$ and lw(G) = lw(H).

We conjecture that the following statement is true.

Conjecture. For every planar graph G there is planar split H such that $\Delta(H) \leq 3$ and $\mathrm{lw}(G) = \mathrm{lw}(H)$.

Our Conjecture is related to the following statement of Robertson and Seymour [17]:

It seems that the tree-width of a planar graph and the tree-width of its geometric dual are approximately equal – indeed, we have convinced ourselves that they differ by at most one.

Lapoire [13] proved this result using algebraic approach. Recently Bouchitté, Mazoit and Todinca [5] obtain nice combinatorial proof of this result by clever usage of minimal separators. It is also worth to mention the results of Seymour and Thomas [19] based on the heavy machinery developed in Graph Minors Theory which imply that the branchwidth of a planar graph is equal to the branchwidth of its dual. (The branchwidth of a graph is the graph parameter related to linear width.)

If Conjecture 5 is true then $pw(G) \ge pw(G^*) - 1$ for any 2-connected planar graph G. Indeed, suppose that for a planar graph G there is a planar split H such that $\Delta(H) \le 3$ and $\mathrm{lw}(G) = \mathrm{lw}(H)$. Then by Lemma 6, $\mathrm{lw}(H) \ge \mathrm{vs}(L(H)) - 1$ and by Theorem 2, $\mathrm{vs}(L(H)) > \mathrm{vs}(H^*)$. G^* is a subgraph of H^* and

$$\mathrm{pw}(G)+1 \geq \mathrm{lw}(G) = \mathrm{lw}(H) \geq \mathrm{vs}(L(H))-1 \geq \mathrm{vs}(H^*) \geq \mathrm{vs}(G^*) = \mathrm{pw}(G^*).$$

Acknowledgments. I am grateful to Petr Golovach, Roland Opfer and anonymous referee for their useful comments and suggestions.

References

- 1. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. Discrete Math. Theor. Comput. Sci. 5, 33–49 (1991)
- Bienstock, D., Seymour, P.: Monotonicity in graph searching. J. Algorithms 12, 239– 245 (1991)

- Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)
- Bondy, J.A.: Basic graph theory: Paths and circuits. In: R. L. Graham, M. Grötschel, and L. Lovász: Handbook of Combinatorics, vol. 1, pp. 3–110, Elsevier Science B.V. 1995
- 5. Bouchitté, V., Mazoit, F., Todinca, I.: Treewidth of planar graphs: connections with duality. 2001 (manuscript)
- 6. Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theor. Comput. Sci. 172, 233–254 (1997)
- 7. Diestel, R.: Graph theory. New York: Springer Verlag, 1997 (Translated from the 1996 German original)
- 8. Ellis, J.A., Sudborough, I.H., Turner, J.: The vertex separation and search number of a graph. Inf. Comput. 113, 50–79 (1994)
- 9. Golovach, P.A.: The cutwidth of a graph and the vertex separation number of the line graph. Discrete Math. Appl. 3, 517–521 (1993) Diskretn. Mat. 5, 76–80 (1993) (translation)
- Kinnersley, N.G.: The vertex separation number of a graph equals its path width. Inf. Process. Lett. 42, 345–350 (1992)
- 11. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Discrete Math 55, 181–184 (1985)
- 12. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput. Sci. 47, 205–218 (1986)
- Lapoire, D.: Structuration des graphes planaires. Ph.D thesis, Universite de Bordeaux, France 1999
- 14. Makedon, F.S., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Appl. Math. 23, 243–265 (1989)
- 15. Möhring, R.H.: Graph problems related to gate matrix layout and PLA folding. In: E. Mayr, H. Noltemeier, and M. Sysło: Computational Graph Theory, Comuting Suppl. 7, pp. 17–51, Springer Verlag 1990
- Reed, B.: Treewidth and tangles: a new connectivity measure and some applications.
 In: R.A. Bailey: Surveys in Combinatorics, pp. 87–162, Cambridge University Press 1997
- Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36, 49–64 (1984)
- 18. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7, 309–322 (1986)
- 19. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica, 14, 217–241 (1994)
- 20. Takahashi, A., Ueno, S., Kajitani, Y.: Mixed-searching and proper-path-width. Theor. Comput. Sci. 137, 253–268 (1995)
- 21. Thomas, R.: Tree decompositions of graphs. Lecture notes. Atlanta: Georgia Institut of Technology 1996

Received: May 8, 2001

Final version received: March 26, 2002