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Abstract. We prove that for every 2-connected planar graph the pathwidth of its geometric
dual is less than the pathwidth of its line graph. This implies that pathwidth(H) <
pathwidth(H*) + 1 for every planar triangulation A and leads us to a conjecture that
pathwidth(G) < pathwidth(G*) + 1 for every 2-connected graph G.
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1. Definitions

We use the standard graph-theoretic terminology compatible with [4] where basic
definitions may be found. We use the following notations: G is an undirected,
simple (without loops and multiple edges) and finite graph with the vertex
set 7 (G) and the edge set E(G); A(G) is the maximum degree of the vertices of G;
L(G) is the line graph of G. If G is a plane graph then G* denotes its geometric
dual.

A tree decomposition of a graph G is a pair (T, %), where T is a tree and
X = (X;:i € V(T)) is a family of subsets of ¥ (G) indexed by V(7T) such that

(TD Uiey(r) Xi = V(G);
(T2) for every edge {u,v} € E(G) there is i € V(T) such that u,v € X;;
(T3) for every i, j,k € V(T) if j is on the path between i and k then X; N .X; C X;.

A path decomposition of G is a tree decomposition (7, %) where T is a path.
The width of a decomposition (T,%) is maxX,cy(r)|X;| — 1. Robertson and
Seymour [18] define the treewidth tw(G) (the pathwidth pw(G)) of G is the mini-
mum width over all tree decompositions (path decompositions) of G.
In this paper, we study the pathwidth of planar graphs. First, we prove that for
any 2-connected plane graph G pw(G*) < pw(L(G)). (We also demonstrate how
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our proof technique can be used to prove that tw(G*) < tw(L(G)).) Then we show
that for a graph G of A(G) < 3 and line graph L(G) ‘width’ parameters are ‘close’.
Our results imply that pw(G) > pw(G*) — 1 for every 2-connected planar graph G
of A(G) < 3. Finally, we conjecture that every planar graph has a planar split
of the same linear width and discuss how this conjecture implies that
pw(G) < pw(G*) + 1 for every 2-connected graph G.

2. Vertex Separators

There are different equivalent ways to define the treewidth and the pathwidth of a
graph. Closer examination of these parameters may be found in survey papers of
Bodlaender [3] and Reed [16] (see also the book of Diestel [7]). The following
definitions are more convenient for our purposes.

For S C V(G) we define

0S := {u € S and there exists w € V'(G) \ S such that {u,w} € E(G)}.

Let ¢ = (v, v2,...,0,) be an ordering of V(G). For je {1,...,n} we put
V; = U__,v;. Setting

vs(G, 0) := max } |OV;],

ie{l,...,n

we define the vertex separation of G (see [8] for more information on this
parameter) as

vs(G) := min{vs(G, 0): gis an ordering of V' (G)}.
The following lemma is well known. (See the survey of Mohring [15] for an
overview of the related results.) It follows directly form the results of Kirousis and

Papadimitriou [11] on interval width (see also Kinnersley [10]).

Lemma 1. For any graph G, vs(G) = pw(G).

Theorem 2. For any 2-connected plane graph G
vs(G*) < vs(L(G)).
Therefore,

pw(G") < pw(L(G)).

Proof. For a face v* of G (or a vertex v* € V(G*)) let E(v*) be the edges of the
boundary of v*.
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Let g; = (e, ea,...,en) be an ordering of E(G) (or vertices of L(G)). To prove
the theorem we construct an ordering ¢* = (v}, v3,...,v;) of V(G*) such that

vs(G,a") < vs(L(G), ay). (1)

For j € {1,...,m} we define E; = U_,e;. For v* € V'(G*) let I(v*) be the smallest
number i € {1,...,m} such that

E(v) N Ei| = 2.

Notice that at most two vertices in V(G*) have the same number /(v*). (In a
planar graph only two faces can share a set of edges.) The vertex numbering /
induces an ordering ¢* = (v, v3,...,v;) of the vertices of G* where i < j only if
I(v;) < I(v}). Loosely speaking, we scan the list o; and add a vertex to the list ¢
after passing two edges of its boundary.

We put V* = Uj.:lv;f. To prove (1) we show that for any index i€
{1,...,k — 1} one can choose

such that
07| < 0E .
First we prove that for any v* € OV*
|E(v") NOE;| > 2. (2)

From v* € OV C V* it follows that |E(v*) NE;| > 2. If |E(v*) \ E;| > 0 then at
least two edges of E(v*) are in OE;. (The boundary E(v*) is a circuit of length > 3
because G is 2-connected and has no multiply edges.) If E(v*) C E; and there
exists e € E(v*) N OE;, then e is adjacent to an edge ¢’ ¢ E;. Hence there is an edge
e” € E(v*) adjacent to e and €. Then ¢,e¢” € E(v*)NOE;. In summary, if
E(v*) € E; \ OE; we obtain (2).

To conclude the proof of (2) we show that E(v*) C E; \ OE; cannot happen.
Assume the converse. From v* € 9" it follows that there is a vertex u* ¢ V;* that
is adjacent to v*. Let e € E(G) be the dual of {v*,u*}. Then e € E(v*) N E(u*). Let
¢,¢’ € E(u*) be adjacent to e (graphs are simple and every boundary has at least
three edges). By assumption e ¢ OE;; then ¢/,¢” € E;. This implies that E(u*) has
at least three edges of E; (the edges e, ¢’ and ¢”). Hence u* € V;*. This contradiction
proves (2).

Using (2), we get

S eecon [E() N OE|

2

V7| <
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Every edge of G is adjacent to two faces of G and so the sum

Y |E(W) ok 3)

eV

counts every edge of OF; at most twice. Furthermore, v}, ; € V" and by the
definition of j, at least one edge e € E(v},,) is in E;. We conclude that e € JE;
because otherwise (v}, ) has at least three edges of E;. This yields that at least
one edge of E(v}, ) contributes in (3) at most once. Thus

ZU*GOVI.*

E(v") N OE,|
2

< |0E; .

Finally, we have proved that for any index i € {1,...,k} there is j € {1,...,m}
such that

Zv* e

E(v*) N OE|]
2

V7| < < |0Ej].

This concludes the proof of (1) and completes the proof of the theorem. O

3. Treewidth

The main purpose of this section is to show how the technique developed for the
proof of Theorem 2 can be applied for treewidth of planar graphs.
For S C V(G) and v € V(G) \ S we define

0,8 =
{u € S and there exists a (u,v)-path P such that V(P) NS = {u}}.

Let ¢ = (v1,v2,...,v,) be an ordering of V(G). For je {l,...,n} we put
V; = U__,v; and

We define the partial vertex separation of G as

vs(G),(, == min{vs(G, o) (,: ¢ is an ordering of V' (G)}.

Lemma 3. For any graph G, vs(G),., = tw(G).

Proof. Let us give only a sketch of the proof. (The proof of the similar result in
terms of graph searching is given by Dendris. Kirousis and Thilikos [6].) Let G be
a graph of treewidth k. It is well known that tw(G) = k if and only if there is a
chordal supergraph H of G with clique number & + 1.
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For every chordal graph H there is an ordering ¢ = (vy, v2, ..., v,) of V(H) such
that for every i € {1,...,n} the set of neighbours N; of v; in H \ {v,v2,...,0,_1}
is a clique in H. (Such an ordering is often called a perfect elimination ordering.)
Define 6~! = (v,,0,_1,...,v1). Then

s(G <vs(G,o7! = max |N]| =k.
vs( )\(.) <vs(G,o )\<.) el X}| |

To prove that vs(G), >tw(G) we choose ¢ = (vi,v2,...,v,) such that
vs$(G,0)y =k+ 1. Let H be a chordal supergraph of G with the minimum
number of edges such that ¢~! is the perfect elimination ordering of V' (H). Then
the clique number of H is at most £ + 1. O

The proof of the next theorem is similar to the proof of Theorem
Theorem 4. For any 2-connected plane graph G

vs(G™) () < VS(L(G))y)-
Therefore,

tw(G") < tw(L(G)).

Proof. Let g; = (ey,e,...,e,) be an ordering of E(G). We define E;, V*, E(v*),
I(v*) and ¢* = (v},v5,...,v}) as in Theorem 2.

To prove the theorem, we show that for any i€ {l,...,k—1} and
J=1v) -1
0 V'l <10, Ej-

As in Theorem 2, we claim that for every v* € (8‘,)11 v — oY)

E@) N0, Ef| = 2. (4)
By definition v* € 9V}, and there exists a path

* * * * *
(le,ul,uz,...,up,v)

such that
Ui N1 =0.

Since every facial boundary in G contains at least three edges, we have that for any
adjacent vertices x*,)* € V(G*) the set E(x*) contains at least three edges having
neighbours (as vertices of L(G)) in E(y*). In addition, each of these three edges is
adjacent to at least two edges in E(y*). For any k € {1,...,p} the boundary E(u;)
has at most one edge in £;. Therefore thereise € E(u;) (the case e = ej; is possible)
such that
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2. there is an (ej;1,e)-path P in L(G) such that V(P)NE; = 0;
3. e is adjacent to at least two edges of E(v*).

By definition of ¢*, |E(v*)NE;[>2 and so there are at least two edges
e1,e; € E(v*) NE; such that (e,e;) and (e, e;)-paths do not internally intersect E;.
This concludes the proof of (4).

Notice that |E(vf) N E;| > 1. Combining the latter with (4), we obtain

Zv*eﬁw v
i+1

E(U*) N 8\€j+1E/|

1.
) +

|a\vl’;l V;*| <

Since exactly two edges of E(v}, ;) are in E;;;, we have that one of them is in
8‘¢/+]Ej. Thus

Zv*ef)m IVI.* |E(U*) N a|e,»+1Ej|
2

< |8|eHEj|.

(Each edge of JE; is counted at most twice in the sum and e = (E(vf,,) N E)) is
counted once.)
Finally,

|a|v§‘+lVi*| < |8\ei,-qu|7

which completes the proof. O

4. Line Graphs of Small Degree Graphs

Golovach in [9] obtained the following result about the vertex separation of line
graphs and cutwidth (see Makedon and Sudborough [14] for definitions and
further results on cutwidth).

Theorem 5 (Golovach, [9]). For any graph G,

ew(G) < vs(L(G)) < ew(G) + |A(G)/2] — 1,

where cw(G) is the cutwidth of G.

The well known result of Makedon and Sudborough [14] is that for any graph
G of A(G) < 3 the cutwidth of G is equal to the edge search number. Since the
edge search number of G is at most vs(G) + 2, we obtain the following corollary
of Golovach’s theorem. (We refer the reader to the survey of Bienstock [1] for
further more detailed information on graph searching.)

Lemma 6. For any graph G of A(G) < 3, vs(L(G)) < vs(G) + 2.
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Corollary 7. For any 2-connected planar graph G of A(G) <3

pw(G) > pw(G") — 1.

Proof. By Lemma 6 vs(G) + 2 > vs(L(G)) and by Theorem 2 vs(L(G)) > vs(G*)+
1. Finally,

pW(G) + 1 = vs(G) + 1 > vs(L(G)) — 1 > vs(G*) = pw(G"). O

Corollary 7 can be restated in a weak form.

Corollary 8. For any planar triangulation H

pw(H) < pw(H") + L.

5. Concluding Remarks

Let v be a vertex in a graph G and N[v] be the set of all vertices adjacent to v.
Consider a partition of the set N[v] into any two sets M and N. (Note that M or N
may be empty.) Let us transform G as follows: delete v with all incident edges, add
new vertices u and w with edge {u, w}, and make u adjacent to all vertices of M
and w to all vertices of N. We say that the result of this transformation is obtained
from G by vertex splitting of v. A graph H is said to be a split of G if H is obtained
from G by a sequence of vertex splittings.

To state Conjecture 5 we need the notion of linear width. This notion was
introduced by Thomas [21] and is closely related to crusades of Bienstock and
Seymour [2] (see also Bienstock’s survey [1]). For X C E(G) let (X) be the set of
all vertices incident to edges in X and E(G)\ X. Let 0 = (e, e2,...,e,) be an
ordering of E(G). Fori € {l,...,m} we put E; = szle_,-. We define

w(G, o) := ieglaxm} |0(E:)],

and the linear width of G as
Iw(G) := min{lw(G, 0): o is an ordering of E(G)}.

The results of Bienstock and Seymour [2] imply that for graphs without vertices of
degree 1, the linear width has a game theoretic interpretaton in terms of mixed
search number. (See also the article by Takahashi, Ueno and Kajitani [20] on
further discussions of mixed search number.)
Notice that for any graph G with minimum vertex degree at least 2
vs(G) < Iw(G) < vs(G) + 1.
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This fact follows from the game-theoretical interpretation of these parameters.
For any graph G, vs(G) is equal to the node search number of G minus one, i.e.,
ns(G) — 1 =vs(G) (see the paper of Kirousis and Papadimitriou [12] for the
proof). By the result of Bienstock and Seymour [2] for a graph G with minimum
vertex degree at least 2 the mixed search number ms(G) of G is equal to Iw(G) and
it is well known that

ns(G) — 1 < ms(G) < ns(G).

The reader is also referred to Bienstock’s survey [1] on graph searching.

Let us remark that not every split of a planar graph is planar. But every planar
graph G has a planar split H# of A(H) < 3. Tt is also easy to show that for every
planar graph G there is split H such that A(H) < 3 and Iw(G) = Iw(H).

We conjecture that the following statement is true.

Conjecture. For every planar graph G there is planar split H such that A(H) < 3
and lw(G) = 1w(H).

Our Conjecture is related to the following statement of Robertson and Sey-
mour [17]:

It seems that the tree-width of a planar graph and the tree-width of its geometric

dual are approximately equal — indeed, we have convinced ourselves that they differ
by at most one.
Lapoire [13] proved this result using algebraic approach. Recently Bouchitté,
Mazoit and Todinca [5] obtain nice combinatorial proof of this result by clever
usage of minimal separators. It is also worth to mention the results of Seymour
and Thomas [19] based on the heavy machinery developed in Graph Minors
Theory which imply that the branchwidth of a planar graph is equal to the
branchwidth of its dual. (The branchwidth of a graph is the graph parameter
related to linear width.)

If Conjecture 5 is true then pw(G) > pw(G*) — 1 for any 2-connected planar
graph G. Indeed, suppose that for a planar graph G there is a planar split H such
that A(H) < 3 and Iw(G) = lw(H). Then by Lemma 6, Iw(H) > vs(L(H)) — 1 and
by Theorem 2, vs(L(H)) > vs(H*). G* is a subgraph of H* and

pw(G) +1 > 1w(G) =1Iw(H) > vs(L(H)) — 1 > vs(H") > vs(G") = pw(G").

Acknowledgments. I am grateful to Petr Golovach, Roland Opfer and anonymous referee
for their useful comments and suggestions.
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