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Abstract

We introduce the domination search game which can be seen as a natural modi2cation of the
well-known node search game. Various results concerning the domination search number of a
graph are presented. In particular, we establish a very interesting connection between domination
graph searching and a relatively new graph parameter called dominating target number.
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1. Introduction

Graph searching problems have attracted the attention of researchers from Discrete
Mathematics and Computer Science for a variety of nice and unexpected applications in
di;erent and seemingly unrelated 2elds. There is a strong resemblance of graph search-
ing to certain pebble games [21] that model sequential computation. Other applications
of graph searching can be found in the VLSI theory: the game-theoretic approach to
some important parameters of graph layouts such as the cutwidth [30], the topological
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bandwidth [29], the bandwidth [14], the pro2le [15], and the vertex separation number
[13] is very useful for the design of eMcient algorithms. Also let us mention the
connection between graph searching, pathwidth, and treewidth. These parameters play
a very important role in the theory of graph minors developed by Robertson and
Seymour [4,12,36]. Some search problems also have applications in problems of privacy
in distributed environments with mobile eavesdroppers (‘bugs’) [18].
In this paper, we introduce a domination search game which can be regarded as

a natural generalization of the well-known node search game (the formal de2nitions
are given in Section 2). In this version of searching at every step some searchers are
placed or are removed from vertices of a graph G. The purpose of searching is to
2nd an invisible and fast fugitive moving from vertex to vertex in G. In the node
search problem the searchers 2nd the fugitive if some of them succeeded to occupy
the same vertex as the fugitive. In the domination search problem the searchers have
more power, they 2nd the fugitive if one of them can ‘see’ it, i.e. the fugitive stands
on a vertex of the closed neighborhood of a vertex occupied by the searcher. Similar
‘see-catch’ problems on graphs with searchers having ‘radius of capture’ in di;erent
graph metrics were studied in [33,34,16]. Some variants of ‘see-catch’ pursuit-evasion
games on grids were studied in [37], see [17] for a survey.
Recently ‘see-catch’ search problems in polygonal environments attracted much at-

tention in Computational Geometry and Robotics. This variation of searching was in-
troduced by Suzuki and Yamashita in [38]. More on polygon searching problems with
di;erent variations can be found in [19,26,11,27]. The study of these problems is moti-
vated by robotic applications, such as surveillance with a mobile robot equipped with a
camera that must 2nd a moving target in a cluttered workspace. Domination searching
can also be regarded as a natural transformation of polygon searching problems into
graph searching.
The paper is organized as follows. In Section 2 we give de2nitions and prelimi-

naries. In Section 3 we establish relations between the domination search game and
the well-known node search game. In this section we also observe some complexity
results. In Section 5 we discuss upper bounds for the domination search number that
can be obtained by making use of spanning trees. The last section contains the main
theorem of the paper which settles a very interesting connection between domination
graph searching and a relatively new graph parameter called dominating target number.
The theorem gives an upper bound for the domination search number of a connected
graph in terms of its dominating target number.

2. Preliminaries

We use standard graph-theoretic terminology compatible with [6], to which we refer
the reader for basic de2nitions. G=(V; E) is an undirected, simple (without loops and
multiple edges) and 2nite graph with the vertex set V and the edge set E. We denote
by G[W ] the subgraph of G = (V; E) induced by W ⊆ V .
As customary we consider connected components (or short components) of a graph

as maximal connected subgraphs as well as vertex subsets. A vertex set S ⊆ V of a
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graph G is said to be connected if the subgraph of G induced by S is connected. We
denote by RG the complement of a graph G. The (open) neighborhood of a vertex v
is N (v) = {u∈V : {u; v}∈E} and the closed neighborhood of v is N [v] = N (v) ∪ {v}.
For a vertex set S ⊆ V we put N [S] =

⋃
v∈S N [v] and N (S) = N [S] \ S. A vertex set

D ⊆ V of a graph G = (V; E) is said to be a dominating set of G if for every vertex
u∈V \ D there is a vertex v∈D such that {u; v}∈E. Thus D is a dominating set i;
N [D] = V . The minimum cardinality of a dominating set of a graph G is denoted by
�(G). We also say that A ⊆ V dominates B ⊆ V in the graph G=(V; E) if B ⊆ N [A].
The distance dG(u; v) between two vertices u and v of G is the length of the shortest

path between u and v in the graph G. For a graph G=(V; E) let Gk be the graph with
vertex set V and two vertices u and v are adjacent in Gk if and only if dG(u; v)6 k.
For our purpose it is convenient to describe the graph searching in terms of clearing

graph vertices. Initially, all vertices are contaminated (uncleared or are occupied by
invisible fugitive). A contaminated vertex is cleared once after placing a searcher on
a vertex from its closed neighborhood. A clear vertex v is recontaminated if there is a
path avoiding closed neighborhoods of vertices occupied by searchers leading from v
to a contaminated vertex.
More precisely. A domination search program � on a graph G=(V; E) is a sequence

of pairs (also considered as the steps of �)

(D0; A0); (D1; A1); : : : ; (D2m−1; A2m−1)

such that
(1) for all i∈{0; 1; : : : ; 2m− 1}, Di ⊆ V and Ai ⊆ V ;
(2) D0 = ∅, A0 = ∅;
(3) for every i∈{1; 2; : : : ; m} at the (2i−1)th step we place new searchers and clear
vertices: D2i−2 ⊂ D2i−1 and A2i−1 = A2i−2 ∪ N [D2i−1];

(4) for every i∈{1; 2; : : : ; m− 1} at the 2ith step we remove searchers with possible
recontamination: D2i−1 ⊃ D2i and A2i is the subset of A2i−1 satisfying that for
every vertex v∈A2i every path containing v and a vertex from V \A2i−1 contains
a vertex from N [D2i]. If A2i−1 \A2i �= ∅ we say that the vertices of A2i−1 \A2i are
recontaminated at the 2ith step and that recontamination occurs at the 2ith step.

It is useful to consider Di as the set of vertices occupied by searchers and Ai as the set
of cleared vertices after the ith step. Hence V \Ai is the set of contaminated vertices
after the ith step.
Notice that a program �=((D0; A0); (D1; A1); : : : ; (D2m−1; A2m−1)) is fully determined

by the sequence (D0; D1; : : : ; D2m−1) thus we shall mainly use the shorter description
� = (D0; D1; : : : ; D2m−1).
All proofs in our paper can be given in terms of the formal de2nition of a search

program �=(D0; D1; : : : ; D2m−1) but often we prefer a more ‘informal’ (but equivalent)
way of proving.
We call a domination search program � winning if A2m−1 = V (i.e. all vertices are

cleared). A search program � = (D0; D1; : : : ; D2m−1) is monotone if Ai ⊆ Ai+1 for all
i∈{0; 1; : : : ; 2m− 2}, i.e. no recontamination occurs. We say that a domination search
program � uses k searchers if maxi∈{0; :::;2m−1} |Di| = k. We de2ne the domination
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Fig. 1. The Dobrev example.

search number by

ds(G):=min
�

max
i∈{0;:::;2m−1}

|Di|;

where the minimum is taken over all winning programs �.

Problem 1. Is there a graph G such that every monotone winning domination search
program on G uses more than ds(G) searchers? In other words; does recontamination
help to search a graph?

This question was recently answered by Dobrev who constructed the graph G de-
picted in Fig. 1. A search program clearing G by only two searchers is easy to 2nd.
However, in each such search program one vertex in the 4-cycle is recontaminated. To
see the latter fact observe that the only way to clear a 7-wheel by two searchers is to
place one of them on the central vertex.
The domination search number of a disconnected graph G is equal to the maximum

domination search number taken over all components of G. Hence from now on we
assume that all considered graphs are connected.
There is an obvious relation between domination search number and domination

number: ds(G)6 �(G). There is also a more interesting connection. Let G=(V; E) be
a graph and S2(G)= (V (S2(G)); E(S2(G))) be the graph obtained from G by replacing
every edge {u; v} of G by an (u; v)-path of length three. We call the vertices of
V ⊆ V (S2(G)) original vertices and the vertices of V (S2(G)) \ V middle vertices.

Theorem 2. For any graph G = (V; E); let H be the graph with vertex set V (S2(G))
and edge set E ∪ E(S2( RG)); i.e. H is obtained from G by connecting every two
nonadjacent vertices by a path of length three. Then

�(G)6 ds(H)6 �(G) + 1:

Proof. Let D be a dominating set in G. We 2rst put |D| searchers on the vertices of
D in H and then clear all middle vertices of S2( RG) by one additional searcher. Hence
ds(H)6 �(G) + 1.
Let us prove now that �(G) − 1 searchers cannot clear the graph H by showing

that at every step of searching there exists a contaminated original vertex. In fact,
let � = (D0; D1; : : : ; D2m−1) be a domination search program on the graph H using at
most �(G)−1 searchers. |D1|6 �(G)−1 implies that there is at least one contaminated
original vertex after the 2rst step of �. If � is winning then there is an i∈{1; 2; : : : ; m}
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such that after the (2i−1)th step all original vertices are cleared and no original vertex
is contaminated until the end of �. W.l.o.g. we may assume that at the (2i− 1)th step
a contaminated original vertex v is cleared. From |D2i−1|6 �(G)− 1 we conclude that
there is an original vertex w �∈ N [D2i−1] such that either w is adjacent to v (of course
this implies that v �∈ D2i−1) or there is a (v; w)-path of length 3 in H with two interior
middle vertices such that no vertex of this path belongs to N [D2i−2]. In both cases w
is contaminated after the (2i − 1)th step. This contradiction concludes the proof.

3. Node search number

The domination search game can be regarded as a generalization of the well known
node search game, see [4] for a survey. In the node search game at every step some
searchers are placed on or removed from vertices. Initially, all vertices are contam-
inated (uncleared). The di;erence between node and domination searching is that a
contaminated vertex v in node searching is cleared once after placing a searcher on
v. A clear vertex v is recontaminated if there is a path avoiding vertices occupied
by searchers leading from v to a contaminated vertex. More formally, a node search
program � on a graph G = (V; E) is a sequence of pairs

(D0; B0); (D1; B1); : : : ; (D2m−1; B2m−1)

such that
(1) for all i∈{0; 1; : : : ; 2m− 1}, Di ⊆ V and Bi ⊆ V ;
(2) D0 = ∅, B0 = ∅;
(3) for every i∈{1; 2; : : : ; m} at the (2i−1)th step we place new searchers and clear
vertices: D2i−2 ⊂ D2i−1 and B2i−1 = B2i−2 ∪ D2i−1;

(4) for every i∈{1; 2; : : : ; m− 1} at the 2ith step we remove searchers with possible
recontamination: D2i−1 ⊃ D2i and B2i is the subset of B2i−1 satisfying that for
every vertex v∈B2i every path containing v and a vertex from V \B2i−1 contains
a vertex from D2i. Vertices of B2i−1 \ B2i are said to be recontaminated.

Analogously to domination searching, a node search program � is winning if B2m−1=V
(all vertices are cleared). A node search program � = ((D0; B0); (D1; B1); : : : ;
(D2m−1; B2m−1)) is monotone if Bi ⊆ Bi+1 for all i∈{0; 1; : : : ; 2m− 2}. The number of
searchers used in this program is maxi∈{0; :::;2m−1} |Di|.
The smallest number of searchers that are necessary to be used in a winning node

search program on a graph G is denoted by ns(G) and is said to be the node search
number of G.
Using results of La Paugh [25], Kirousis and Papadimitriou [21] obtained the fol-

lowing fundamental result about node searching (see also [5] for an alternative proof).

Theorem 3 (Kirousis–Papadimitriou). For any graph G; there exists a monotone
search program using ns(G) searchers; i.e. G can be cleared by ns(G) searchers
without recontamination of previously cleared vertices.

Theorem 4. For any graph G = (V; E); ns(G) = ds(S2(G)).
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Proof. Let us prove that ns(G)¿ ds(S2(G)). Let �= (D0; D1; : : : ; D2m−1) be a mono-
tone node search program on G. We claim that � is also a monotone domination
search program on S2(G). Assume the converse and suppose that the 2rst recontam-
ination in domination searching occurs when we remove a searcher from a vertex v.
Since � is monotone for node searching; all neighbors of v in G are cleared before
this step. Moreover; every neighbor u of v in G was visited by a searcher. Since no
recontamination occurs before removing the searcher from v in S2(G); all vertices of
every (u; v)-path in S2(G) are also cleared. Therefore no neighbor of v in S2(G) is
adjacent to an uncleared vertex and no recontamination occurs when removing the
searcher from v.
To prove ns(G)6 ds(S2(G)) we consider a winning domination search program �

on S2(G). We simulate � by a winning node search program �G on G as follows. If
a searcher is removed from S2(G) in � then we remove it from G. If a searcher in �
is placed on an original vertex v of S2(G) then we place this searcher on v in �G. If
a searcher in � is placed on a middle vertex v of S2(G) then we place this searcher
in �G on the original vertex adjacent to v. Notice that there is only one such vertex.
Let Ai be the set of cleared vertices after the ith step of � and Bi be the set of

cleared vertices after the ith step of �G. We claim that for every i∈{0; 1; : : : ; 2m−1},

Ai ∩ V ⊆ Bi: (*)

This is obvious for i = 0. We proceed by induction assuming that for all i¡ k the
inclusion (∗) holds. If at the kth step searchers are placed on V (S2(G)) then (∗) is
clearly true. Suppose that at the kth step searchers are removed and that Ak ∩V * Bk .
Then there is a vertex v∈V that is recontaminated at the kth step in �G but is cleared
in �. Therefore after the (k − 1)th step in �G there is a contaminated vertex u and
there is also a (u; v)-path P in G containing no vertex of Dk .
By assumption, u is contaminated in � after the (k−1)th step. It can be seen easily

that the (u; v)-path P in G that does not contain vertices occupied by searchers after
the kth step of �G can be transformed into an (u; v)-path P′ in S2(G) by replacing
each edge {a; b} in the path P by its (a; b)-path of length 3 with two interior middle
vertices. Therefore no vertex of the path P′ in S2(G) is ‘seen’ by a searcher in �.
Consequently v is contaminated after the kth step in �. This contradiction proves (∗).
Since � is winning, we obtain that after step 2m − 1 of � all original vertices of

S2(G) are cleared. Then by (∗), �G is also winning.

Monien and Sudborough [31] have shown that a variant of node searching, namely
edge searching, is NP-hard even for planar graphs with vertex degree at most three.
Since the transformation of Kirousis and Papadimitriou from node to edge search prob-
lems and our transformation in Theorem 4 from domination search to node search
problems preserve planarity and degree constraints, we have the following.

Corollary 5. The problem DOMINATION SEARCHING: ‘Given a graph G and an integer
k; decide whether ds(G)6 k or not’ is NP-hard even for planar graphs with vertex
degree at most three.
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Furthermore, unless P = NP, there is no polynomial time algorithm approximating
the domination number by a constant factor [2,28] or by a factor of c log n for some
c¿ 0 [35]. Combined with Theorem 2 this implies

Corollary 6. There is a constant c¿ 0 such that there is no polynomial time algo-
rithm to approximate the domination search number of a graph within a factor of
c log n unless P =NP.

Problem 7. Is it true that for every graph G with n vertices ds(G) searchers can
clear G in O(n) steps?

4. Graphs with large search numbers

Using the relation between the search numbers we are able to 2nd graphs with large
domination search numbers.
We need the following technical lemma.

Lemma 8. For every graph G; ns(G)6�(G) ds(G) + 1.

Proof. In fact; let � be a domination search program using k searchers. This program
leads to the node search program �� using k · �(G) + 1 searchers: when we place a
searcher on a vertex v in �; in �� we place searchers on all vertices of N [v] and
then remove the searcher from v. When we remove a searcher in � from a vertex v
then in �� we remove the searchers from all vertices of N (v) that are not adjacent to
a vertex occupied by some other searcher (at this step). Obviously; if � is a winning
domination search program then �� is a winning node search program and the lemma
follows.

Let Bk be the k-dimensional cube, i.e. the graph with the vertex set consisting of
all binary vectors in Rk ; two vertices u; v in this graph are adjacent if and only if
‖u− v‖= 1, where ‖x‖ is the number of nonzero entries in x (the Hamming norm of
x). For S ⊆ Bk we de2ne

@(S):={u∈ S: there exists a w∈Bk \ S such that u is adjacent to w}:
A vertex set A ⊆ Bk is optimal if |@A|6 |@B| for each B ⊆ Bk of cardinality |A|.
De2ne a vertex ordering L={v1; v2; : : : ; v2k} of Bk as follows. Vertex vi precedes vj on
L if and only if ‖vi‖¡ ‖vj‖ or ‖vi‖=‖vj‖ and vi precedes vj lexicographically. Harper
[20] has shown that for each i the set {v1; v2; : : : ; vi} is optimal (see [3] for a survey).

Lemma 9. ns(Bk)¿ ( k
k=2 ) + 1.

Proof. Harper’s result implies that for every subset S with
∑k=2

i=1 (
k
i ) vertices |@(S)|¿

( k
k=2 ) since the 2rst

∑k=2
i=1(

k
i ) vertices in the ordering L form the k=2-dimensional ball
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in Bk . The number of ‘border vertices’ in this ball is equal to ( k
k=2 ) and by Harper’s

result this ball is the optimal set.
Consider a monotone winning node search program � on Bk . Let j be the step of

� at which the set S of cardinality
∑k=2

i=1(
k
i ) is cleared. Then every vertex of @(S)

contains a searcher at this step. Since every vertex of @(S) is adjacent to a vertex from
Bk \ S and the program is monotone, we have that at the (j + 1)th step no searcher
can be removed from @(S). Hence � uses at least ( k

k=2 ) + 1 searchers at the (j+ 1)th
step.

Theorem 10. For every j¿ 0 and every integer m there exists a graph G on n¿m
vertices such that ds(G) = $(n1−j).

Proof. For j¿ 0 we choose k such that 2kj¿ k3=2. Let G be the k-dimensional cube
Bk with n=2k vertices. By the previous lemma ns(G)¿ ( k

k=2 )+ 1. Applying Stirling’s

formula k! ∼ √
2%k(k=e)k we obtain ns(G)¿ 2k =

√
k + 1.

By Lemma 8, ns(G)6�(G) ds(G) + 1. Therefore,

ds(G)¿
2k√
k

1
k
=
2k

k3=2
¿

2k

2kj
= n1−j:

We do not know whether there is a graph class satisfying ds(G) = $(n) and we
leave that question open.

5. Spanning trees

Let '= (v1; v2; : : : ; vn) be a vertex ordering of a graph G = (V; E). The width of the
ordering ' of G is

bw(G; '):=max{|i − j|: {vi; vj}∈E};
and the bandwidth of G is

bw(G):=min{bw(G; '): ' is a vertex ordering of G}:
In the proof of the next theorem we use a theorem of Ando et al. [1] stating that for
any tree T with l leaves bw(G)6 �l=2�. We denote the set of leaves, i.e. vertices of
degree 1, of a tree T by V1(T ).

Theorem 11. Let T = (V; E(T )) be a spanning tree of a graph G = (V; E) such that
G ⊆ Tk+1 and let l be the number of leaves of the tree T1 = T − V1(T ). Then

ds(G)6 � l
2�(k + 1) + 1:

Proof. Let '=(v1; v2; : : : ; vr) be an ordering of the vertices of T1 such that bw(T1; ')6 b
= �l=2�. Note that such an ordering exists by [1].
Our domination search program works as follows. We put searchers on the 2rst

b(k + 1) + 1 vertices of '. Then we remove the searcher from v1 and place it on
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vb(k+1)+2. Suppose that after removing the searcher from v1 recontamination occurs.
Hence there is a vertex x such that {x; v1}∈E and there is a contaminated vertex y
such that {x; y}∈E. Since searchers occupy all vertices with indices at most bk + 1
unless v1, there is a vertex vi, i¿b(k + 1) + 1, such that y∈NT [vi]. Now G ⊆ Tk+1

implies that the (x; y)-path in T has length at most k + 1.
We distinguish three cases. In Case 1 we assume that x is a leaf of T and {x; v1}

∈E(T ). Then the length of the (v1; vi)-path in T is at most k since the (x; y)-path in
T passes through v1. In Case 2 we assume that x is a leaf of T and {x; v1} �∈ E(T ).
Hence the neighbor of x in T is a vertex vj for some j¿b(k + 1) + 1. G ⊆ Tk+1

implies dT (v1; x)6 k +1. Hence the length of the (v1; vj)-path in T is at most k since
the (v1; x)-path in T passes through vj. Finally in Case 3 we assume that x is not a
leaf of T . Hence x= vj for some j¿b(k+1)+1. Therefore {v1; vj}∈E which implies
dT (v1; vj)6 k + 1.
Therefore in all three cases there is a j¿b(k + 1) + 1 such that dT (v1; vj)6 k + 1.

By the pigeonhole principle there is an edge {vp; vq} in the (v1; vj)-path of T such that
|p− q|¿b which contradicts the choice of ordering '.
By the same arguments we can remove a searcher (without recontamination) from

v2 and put it on vb(k+1)+3, and so on. Finally, every vertex of G is cleared once by a
searcher because T is a spanning tree of G. Since no recontamination occurs when a
searcher is placed on vn all vertices of G are cleared.

If the spanning tree T is a caterpillar then the results of Theorem 11 can be slightly
improved. A caterpillar is a tree which consists of a path, called the backbone, and
leaves adjacent to vertices of the backbone.

Theorem 12. Let T be a spanning caterpillar of a graph G and let k be an integer
such that G is a subgraph of Tk+1. Then ds(G)6max{2; k}.

Proof. The backbone P = (v1; v2; : : : ; vm) of T is a dominating path of G; i.e.; every
vertex of G is adjacent to a vertex of P. First we suppose k¿ 2. Consider the following
domination search program � using k searchers. Initially we put searchers on the 2rst
k vertices of P. Then we remove the searcher from v1 and put it on vk+1; then remove
searcher from v2 and put it on vk+2 and so on.
Let us show that � is a monotone program. Assume the converse. Suppose that

after removing a searcher from a vertex, say vj, the 2rst recontamination occurs. Then
there is a vertex x such that {x; vj}∈E and {x; y}∈E for some contaminated vertex
y. Because y is not cleared yet, we conclude that y∈NT [vi] for some i¿ j + k − 1.
Moreover, if y = vi then i¿ j + k. Therefore the length of the (x; y)-path in T is at
least k+2. But this contradicts the de2nition of T ; hence � is monotone. Since every
vertex of G was once cleared by a searcher we obtain that � is winning.
If k6 1 then G ⊆ Tk+1 ⊆ T 2 ⊆ T 3 and two searchers are suMcient to clear G as

shown above.

An independent set of three vertices is called an asteroidal triple if every two of them
are connected by a path avoiding the neighborhood of the third. A graph is AT-free if it
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does not contain an asteroidal triple. Asteroidal triples were introduced to characterize
interval graphs and comparability graphs, see [7] for references. In their fundamental
paper [9] Corneil et al. investigate AT-free graphs. Among others properties they prove
that every connected AT-free graph contains a dominating pair, i.e. a pair of vertices
u and v such that every (u; v)-path is dominating. A dominating pair of a connected
AT-free graph can be detected by a simple linear time algorithm, called 2LexBFS [10].
In [24] it was shown how to use a dominating path found by 2LexBFS as backbone of
a caterpillar T such that T ⊆ G ⊆ T 4. We obtain the following corollary of Theorem
12.

Corollary 13. Let G be an AT-free graph. Then ds(G)6 3.

We could not 2nd an AT-free graph with domination search number 3. Moreover,
we state the following conjecture.

Conjecture 14. Let G be an AT-free graph. Then ds(G)6 2.

For some classes of AT-free graphs we are able to prove that the domination search
number of every graph in this class is at most two.
A graph G is a comparability graph if and only if G has a transitive orientation of

its edges. Cocomparability graph are the complements of comparability graphs. Every
interval graph is a cocomparability graph, and every cocomparability graph is AT-free,
see [7] for references and a survey on di;erent graph classes.

Theorem 15. Let G be a cocomparability graph. Then ds(G)6 2.

Proof. There is an ordering (v1; v2; : : : ; vn) of the vertices of a cocomparability graph
G = (V; E) such that i¡ j¡k and {vi; vk}∈E implies that vj is adjacent to vi or vk ;
see; e.g. [7].
Let us describe a winning program which uses two searchers. First we place one

searcher on v1 and one on the rightmost neighbor of v1, say vi. Now every vertex in the
interval [v1; vi] = {vk : 16 k6 i} is cleared by these two searchers. Then we remove
the searcher from v1. We claim that no recontamination occurs. In fact, if a vertex vk ,
1¡k ¡i is adjacent to a contaminated vertex vl, l¿ i, then vl is not adjacent to vi
(otherwise vl is cleared by the searcher on vi). Hence vk ∈N [vi] which means that vk
is ‘seen’ by the searcher on vi. Hence no recontamination occurs.
Thus we can place the searcher removed from v1 on the rightmost neighbor of vi.

Then we remove the searcher from vi (i.e. the leftmost vertex occupied by a searcher)
and place it on the rightmost neighbor of the only vertex occupied by a searcher. We
repeat these actions until the searchers reach a vertex, say vj, without right neighbor.
Now one searcher is placed on vj and the other one is removed from G. If vj=vn then

all vertices are cleared and searching was successful. Otherwise we place a searcher on
vj+1 and remove then the searcher from vj. We claim that no vertex is recontaminated
after removing the searcher from vj. Indeed, let vl be adjacent to vj. Then l¡ j.
Suppose that vl is adjacent to a contaminated vertex vp. Then p¿l and vp is not
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adjacent to vj+1. Consequently {vl; vj+1}∈E and vl is cleared by the searcher on vj+1.
Hence no recontamination occurs.
Then we again place a searcher on the rightmost neighbor until a vertex without

right neighbor is reached, etc. When one of the searchers is placed on vn all vertices
are cleared.

A graph isomorphic to K1;3 is referred to as a claw, and a graph that does not
contain an induced claw is said to be claw-free.

Corollary 16. The domination search number of AT-free claw-free graphs is at most
two.

Proof. As it was observed by Kloks et al. in [22] every connected AT-free claw-free
graph G is a claw-free cocomparability graph or is a complement of a triangle-free
graph. If a graph G is a cocomparability graph then by Theorem 15 it can be searched
by two searchers. Otherwise RG is triangle-free which implies �(G)6 2 and ds(G)6 2.

Parra and ScheWer [32] proved that for every AT-free claw-free graph G, ns(G)−
1= bw(G). Combining this with Corollary 16 one can obtain the following interesting
result.

Corollary 17. For any AT-free claw-free graph G;

1
2�(G)6 bw(G)6 2�(G)− 1;

where �(G) denotes the maximum degree of a vertex in G.

Proof. It is well-known and easy to see that for every graph G; �(G)6 2bw(G); see
e.g. [8].
For every AT-free claw-free graph G, bw(G)=ns(G)−1 and by Lemma 8, ns(G)6

�(G) · ds(G) + 1 holds.
In the winning search program on cocomparability graphs given in Theorem 15 we

put searchers at distance at most 2 from each other. Using this fact one can observe
that ns(G)− 26�(G) · ds(G) on cocomparability graphs. The same is true for graphs
with triangle-free complement. By Corollary 16, ds(G)6 2 and we obtain bw(G)
6 2�(G)− 1.

6. Dominating targets

We start with a result on graphs with dominating pair, a class of graphs containing
as we have mentioned all connected AT-free graphs. Let us recall the de2nition of a
dominating pair. A dominating pair is a pair of two (not necessarily di;erent) vertices
u and v of a connected graph G such that the vertex set of every (u; v)-path in G is
a dominating set of G.
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Lemma 18. The domination search number of a connected graph with dominating
pair is at most 4.

Proof. Let d1; d2 be a dominating pair in G and let P be a shortest (d1; d2)-path.
Then P is the backbone of a spanning caterpillar T in G. Since P is a shortest path;
we have that G ⊆ T 5. Then by Theorem 12; ds(G)6 4.

Problem 19. Determine the maximum domination search number of a connected graph
with dominating pair.

Dominating targets have been introduced in [23] as a generalization of dominating
pairs. A dominating target is a vertex set T ⊆ V of a connected graph G = (V; E)
such that every connected superset of T is a dominating set. The dominating target
number of a graph G, denoted by dt(G), is the smallest size of dominating target of
G. Hence graphs with dominating pair have dominating target number at most 2. The
following theorem that extends Lemma 18 is one of the main results of our paper. To
prove it we shall need some technical results about dominating targets as well as a
notion of a dominating target for a vertex set of a graph.
A vertex set T ⊆ V of a graph G = (V; E) is a dominating target for a vertex

set B ⊆ V in G if B ⊆ N [S] for every connected superset S of T . Clearly T is a
dominating target of a graph G = (V; E) if and only if T is a dominating target for V
in G.

Lemma 20. Let T be a dominating target for a vertex set B ⊆ V of a graph G=(V; E)
and let D be a set of vertices. Then for any vertex v∈B \ N [T ∪ D] the following
two statements hold:
(1) The number of connected components of G−N [v] containing vertices of T is at
least two.

(2) Let C1; C2; : : : ; Ck be the connected components of G − N [v] with T ∩ Ci �= ∅.
For every i∈{1; 2; : : : ; k} let yi ∈N [v] be a vertex with N [yi]∩Ci �= ∅. Then for
every i∈{1; 2; : : : ; k} the set Ti = (T ∩ Ci) ∪ {v} is a dominating target for the
vertex set Bi=(B∩Ci) \N [Di] in the graph G[Ci ∪N [v]]; where Di=(D∩ (Ci ∪
N [v])) ∪ {v} ∪ {yj: j �= i}.

Proof. Let v∈B \ N [T ∪D]. Suppose there is a connected component C of G − N [v]
with T ⊆ C. Then C is a connected superset of T that does not dominate the vertex
v—a contradiction. Hence at least two components of G −N [v] contain vertices of T .
For the proof of the second statement suppose that Ti is not a dominating target for

Bi in the graph G[Ci ∪ N [v]]. Then there is a connected superset Si ⊆ Ci ∪ N [v] of Ti

and a vertex w∈Bi that has no neighbor in Si. We extend Si to a connected superset
S of T in G by adding for every j �= i the vertex yj and (for simplicity) Cj. Hence
w∈B is not adjacent to a vertex of S which implies that T is not a dominating target
for B in G—a contradiction.

Theorem 21. For every connected graph G; ds(G)6 2dt(G) + 3.
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Proof. By induction on k= |T |; we prove the following stronger statement that implies
the theorem when taking a dominating target T of G such that |T |=dt(G); i.e. B=V
and D = ∅.
Let T be a dominating target for B ⊆ V in the graph G=(V; E) and let D ⊆ V be
a vertex set such that N [D] ⊇ V \ B. Then there is a winning domination search
program � on G using at most |D|+2|T |+3 searchers such that at the 2rst step
of � searchers are placed on all vertices of D and after that on each vertex of D
there is a searcher throughout all steps of the search program �.

If T is a dominating set of G[B] then T ∪D is a dominating set of G. Hence the state-
ment is true since we simply place searchers on all vertices of T∪D. Notice that |T |=1
implies that T is a dominating set of G[B]. If |T |=2 then we place a searcher on each
vertex of D and by Lemma 18; we can clear all vertices of B using four additional
searchers to be moved along a shortest path P between the two vertices of T in G.
Suppose inductively that for all D ⊆ V and all dominating targets T for B in G

with N [D] ⊇ V \ B the statement is true if |T |6 k − 1. Let T be a dominating target
for B ⊆ V in the graph G = (V; E) with |T | = k and let D ⊆ V be a vertex set such
that N [D] ⊇ V \ B.
We may assume that T∪D is a not a dominating set of G[B], thus S=B\N [T∪D] �= ∅.

Then by the 2rst part of Lemma 20, for every vertex v∈ S at least two components
of G − N [v] contain vertices of T .
Consider 2rst the easy case in which there is a vertex v∈ S such that every com-

ponent of G − N [v] contains at least 2 vertices of T . Let C1; C2; : : : ; Cm, m¿ 2, be
the components of G − N [v] with T ∩ Ci �= ∅ such that k − 2¿ |C1 ∩ T |¿ |C2 ∩
T |¿ · · ·¿ |Cm ∩ T |¿ 2. For every j∈{1; 2; : : : ; m} choose a vertex yj ∈N [v] with
N [yj] ∩ Cj �= ∅.
The domination search program works as follows. We place searchers on all ver-

tices of D and a searcher on v that will never be removed. Then the components
C1; C2; : : : ; Cm are cleared individually one by one, where each component Ci is cleared
as follows:
Place searchers on all vertices yj with j �= i. By the second part of Lemma 20,

we may conclude that Ti = (T ∩ Ci) ∪ {v} is a dominating target for the vertex set
Bi = ((B ∩ Ci) \

⋃
j �=i N [yj]) \ N [Di] in the graph G[Ci ∪ N [v]] where Di = (D ∩ (Ci ∪

N [vi]))∪{v}∪{yj: j �= i} satis2es N [Di] ⊇ Ci \Bi. Since |Ci∩T |+16 k−1 the graph
G[Ci ∪N [v]] can be searched (resp. Ci can be cleared) using 2(|Ci ∩T |+1)+3+ |Di|
searchers by our inductive assumption.
Since the components are cleared individually and |Di|6 |D|+1+(m− 1) we have

that the number of searchers needed is at most |D| + m + 2(|C1 ∩ T | + 1) + 3. Each
component Ci contains at least two vertices of T and we obtain |C1 ∩ T | + m6 k.
Combined with |C1 ∩ T |6 k − 2 this implies that the number of searchers is at most
|D|+ 2k − 2 + 5 = |D|+ 2k + 3.
Now we can concentrate our e;orts on the hard case in which for every vertex

v∈ S = B \ N [T ∪D] at least one component of G − N [v] contains exactly one vertex
of T .
We say that a vertex v∈ S is t-separating in G for a vertex t ∈T if there is a

component C of G − N [v] such that C ∩ T = {t}.
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Suppose that the dominating target T for B in G contains a vertex t for which no
vertex v∈B is t-separating. Then T \ {t} is a dominating target for B \ N [t] in the
graph G. Thus placing a searcher on vertex t and then inductively using the claim for a
dominating target of cardinality k−1, we easily obtain that 1+|D|+2k+1=|D|+2k+2
searchers are suMcient to search G.
From now on we may assume that for every vertex t ∈T there is a vertex v∈ S

which is t-separating. Notice that every vertex v∈ S is t-separating for some t ∈T
(otherwise we are in the easy case) and that a vertex v may be t-separating for various
vertices of T . It will be convenient to assume that T = {t1; t2; : : : ; tk}.
For every i∈{1; 2; : : : ; k}, let R(ti) be the set of all vertices v∈ S that are ti-separating.

Notice that R(ti) �= ∅ for all i∈{1; 2; : : : ; k} and that ⋃16i6k R(ti) = V \ N [D ∪ T ].
For vertices a; b∈R(ti) we say that a ≺i b if a and ti are in one component of

G−N [b] but b and ti are not in one component of G−N [a]. For every i∈{1; 2; : : : ; k},
we choose a ≺i-maximal element vi, i.e. a maximal element of the partially ordered
set (R(ti);≺i). (Notice that vi = vj for i �= j is possible.) Let Ci be the component of
G − N [vi] containing ti, i.e. T ∩ Ci = {ti}.
The domination search program works as follows. We place searchers on all vertices

of D and on all vertices of {v1; v2; : : : ; vk} that will never be removed throughout the
search.
Then the components C1; C2; : : : ; Ck will be cleared individually one by one, where

each component Ci is cleared as follows. Let Ci
1; C

i
2; : : : ; C

i
mi
be all components of

G − N [vi] containing a vertex of T except the component Ci, thus mi6 k − 1. For
each component Ci

j, j∈{1; 2; : : : ; mi}, we choose a vertex yi
j ∈N [vi] ∩ N (Ci

j). By the
second part of Lemma 20 and similar to the easy case we may conclude that for
every i∈{1; 2; : : : ; k}, {vi; ti} is a dominating target for the vertex set Bi = ((B ∩ Ci) \⋃

j �=i N [y
i
j]) \ N [Di] in the graph G[Ci ∪ N [vi]] where Di = (D ∩ (Ci ∪ N [vi])) ∪

{vi} ∪ {yi
j: j �= i} satis2es N [Di] ⊇ Ci \ Bi. We place searchers on all the vertices

yi
1; y

i
2; : : : ; y

i
mi
. Finally as consequence of Lemma 18 (already obtained at the beginning

of this proof), four additional searchers are suMcient to clear Ci. Finally we remove
all searchers from yi

1; y
i
2; : : : ; y

i
mi
. Altogether this clears Ci.

Hence all components C1; C2; : : : ; Ck can be cleared by using at most |D| + k +
(k − 1) + 4 = |D| + 2k + 3 searchers. After clearing the components C1; C2; : : : ; Ck

there remain |D| + k searchers on G. The current set of cleared vertices is N [D] ∪⋃
16i6k Ci∪

⋃
16i6k N [vi]. Since N [ti] ⊆ Ci and

⋃
16i6k R(ti)=V \N [T ∪D] we may

conclude that all contaminated vertices belong to the set U = (
⋃
16i6k R(ti) \ (N [vi]∪

Ci)) \ N [D].
Let us show how the vertices from the set U can be cleared by placing k additional

searchers on vertices of G. For every i∈{1; 2; : : : ; k}, we choose a vertex ui ∈N [vi]
having a neighbor in Ci. We claim that every vertex of U is adjacent to a vertex of the
set {u1; u2; : : : ; uk} which would imply that additional k searchers placed on all vertices
of {u1; u2; : : : ; uk} together with the k searchers already placed on {v1; v2; : : : ; vk} will
clear all vertices of U . In fact, choose a vertex w∈U .
Then w∈R(l) for some l∈{1; 2; : : : ; k}, thus w is tl-separating. Choose a (tl; vl)-path

P having all vertices in Cl except ul and vl. Since vl is a ≺l-maximal element, vl does
not belong to the component of G−N [w] containing tl and therefore w is adjacent to
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a vertex p of the path P. On the other hand, since w �∈ Cl ∪ N [vl] we may conclude
that p �∈ Cl. Therefore p= ul and the claim follows.
Finally we place searchers on all vertices of {u1; u2; : : : ; uk} thus clearing vertices

from U by our above claim. This needs at most 2k + |D| searchers.
Summarizing, the number of searchers needed is at most |D|+2k+3. This completes

the proof.

Corollary 22. For every disconnected graph G; ds(G)6 3 + 2maxC dt(C); where the
maximum is taken over all components C of G.

To illustrate the strength of Theorem 21 let us consider the complete graph G on
n vertices and the graph S2(G) obtained from G by replacing each edge by a path
of length 3. Clearly dt(S2(G)) = n and by Theorem 4 we have ds(S2(G)) = n. This
leads to the following conjecture which is up to our knowledge the strongest possible
strengthening of our theorem.

Conjecture 23. ds(G)6 dt(G) for all graphs G.
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