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Abstract

The interval degree id(G) of a graph G is de/ned to be the smallest max-degree of any interval
supergraphs of G. One of the reasons for our interest in this parameter is that the bandwidth of
a graph is always between id(G)=2 and id(G). We prove also that for any graph G the interval
degree of G is at least the pathwidth of G2. We show that if G is an AT-free claw-free graph,
then the interval degree of G is equal to the clique number of G2 minus one. Finally, we show
that there is a polynomial time algorithm for computing the interval degree of AT-free claw-free
graphs.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction and statement of the problem

Many interesting nontrivial graph parameters can be de/ned as the minimum of
a more fundamental graph parameter (clique number, number of edges, max-degree,
etc.) taken over all supergraphs of the given graph in a certain graph class. The last
20 years were the years of the intensive study of the parameters de/ned by using
chordal and interval graphs. For example, the pro/le problem (/ll-in problem) is for
a given graph G to /nd an interval (chordal) supergraph of G with the minimum
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number of edges. Another famous example is the pathwidth (the treewidth) problem:
To /nd an interval (chordal) supergraph of G with the smallest clique number. We
refer to the surveys of Bodlaender [4] and MFohring [20] for further references. Chung
and Mumford [7] studied the relevant problem of /nding a chordal supergraph with
the smallest maximum vertex degree.

Here we introduce the related problem of /nding an interval supergraph with the
smallest max-degree. Because of the great practical and theoretical importance of path-
width, treewidth, /ll-in and pro/le, we /nd the statement of the interval degree problem
very natural and the study of this problem interesting. Another reason for our interest
to this problem is (we prove it in this paper) that the interval degree is also closely
associated with the bandwidth minimization problem. More precisely, we prove that
for any graph G the interval degree of G is at least the bandwidth of G and at most
twice the bandwidth of G. Finally, we observe the relation of the interval degree of a
graph G and the pathwidth of the square G2 of G.

The bandwidth problem has a long history and a number of practical applications.
(See the classical survey of Chinn et al. [6].) The original motivation for the problem
is the bandwidth minimization problem for matrices. This problem attracts the attention
of numerous researchers over the last 30 years which makes it of the great theoretical
importance. The problem is very hard from the computational point of view. It remains
NP-complete even for very restricted graph classes. Monien [22] proved that the prob-
lem is NP-complete for a special class of trees, called caterpillars with hair length three
and Parra and ScheIer [24] obtained NP completeness proof for cobipartite graphs.
Recently many approximability results and nice techniques to obtain these results have
appeared. Unger [27] showed that for any integer k there is no eKcient approximation
algorithm with performance ratio k (unless P=NP) of bandwidth for caterpillars with
hair length three. Bandwidth approximation algorithms for restricted classes of graphs
have been presented by Kloks et al. [17] and Kratsch and Stewart [18] among others.
Feige [10] introduced volume respecting embedding technique to obtain a polyloga-
rithmic factor approximation algorithm on bandwidth. Similar approach is discussed by
Blum et al. [3]. (See also the paper of Dunagan and Vempala [8].) An overview of
recent algorithmical results on bandwidth is given by Feige [11].

This paper is organized as follows. In Section 2 we give necessary de/nitions. In
Section 3 we restate the problem of interval completion with the smallest max-degree
in terms of linear layouts and obtain some bounds of interval degree in terms of
bandwidth and pathwidth. In Section 4 we prove that the interval degree of AT-free
claw-free graph is equal to the clique number of its square minus one. In Section 5
we introduce some complexity results. In Section 6 we give concluding remarks and
leave some open questions.

2. Statement of the problem

We use the standard graph-theoretic terminology compatible with [5], to which we
refer the reader for basic de/nitions. G is an undirected, simple (without loops and
multiple edges) and /nite graph with the vertex set V (G) and the edge set E(G).
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Unless otherwise speci/ed, n denotes the number of vertices of G. Let !(G) denotes
the clique number (maximum clique-size) of G. The degree of a vertex v in a graph
G is denoted by degG(v) and the maximum degree of the vertices of a graph G by

(G). The closed neighborhood of a vertex v in a graph G (the set of neighbors of v
in G with v) is denoted by NG[v]. The distance dG(u; v) between two vertices u and
v of G is the length of the shortest path between u and v in the graph G. Let Gk be
the graph with vertex set V (G) and such that two vertices u and v adjacent in Gk if
and only if dG(u; v)6 k.

A graph G is called an interval graph provided we can assign to each v∈V (G)
an interval Iv so that (u; v)∈E(G) if and only if Iv ∩ Iu �= ∅. Some interesting graph
parameters can be de/ned in terms of interval supergraph. For example, the pathwidth
pw(G) of a graph which was introduced by Robertson and Seymour [25] can be de/ned
(see, e.g. [20]) as

pw(G) := min{!(G′) − 1: G′ is an interval supergraph of G}:
The problem of /nding the pro/le of a graph has applications in sparse matrix com-
putations (see [6]). In terms of interval supergraphs the pro/le of a graph G can be
de/ned (see, e.g. [2]) as

p(G) := min{|E(G′)|: G′ is an interval supergraph of G}:
In the same manner we de/ne a new graph parameter, namely the interval degree of
a graph. The interval degree of a graph G is

id(G) := min{
(G′): G′ is an interval supergraph of G}:
The problem of interval completion with the smallest max-degree is for a given graph
G to /nd an interval supergraph I of G such that (I) = id(G).

3. Linear layouts

An interval representation of a graph naturally induces an ordering of its vertices
and it is not surprising that sometimes interval completion problems can be ‘rewritten’
in terms of vertex orderings or linear layouts.

A linear layout of a graph G is a one-to-one mapping f:V (G) → {1; : : : ; n}. For
linear layout f of a graph G and i∈{1; : : : ; n}, we de/ne

Si(G;f) = |{v∈V (G): f(v)6 i and ∃ (u; v)∈E(G); such that f(u)¿i}|
and

vs(G;f) = max{Si(G;f): i∈{1; : : : ; n}}:
The vertex separation number of G [9] is

vs(G) := min{vs(G;f): f is a linear layout of G}:
As noted by a number of researchers for any graph G, vs(G) = pw(G) (see, e.g. [15]
or [14]).
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Pro/le also may be ‘rede/ned’ [2] as a graph invariant p(G) by /nding a layout f
of G which minimizes the sum

∑

u∈V (G)

(f(u) − min{f(v): v∈V (G); v∈NG[u]}):

Another very important graph parameter, namely bandwidth, is de/ned by making use
of linear layouts. For a linear layout f of G setting

Wi(G;f) = max{j − i: j∈{i; : : : ; n}; f−1(j)∈NG[f−1(i)]}
and

bw(G;f) = max{Wi(G;f): i∈{1; : : : ; n}}
one can de/ne the bandwidth of G as

bw(G) := min{bw(G;f): f is a linear layout of G}:
The bandwidth problem has a long history and a number of practical applications.

In order to de/ne the interval degree in terms of linear layouts, we introduce a
‘hybrid’ of the bandwidth and the vertex separation number. Let f be a linear layout
of a graph G. We de/ne

sw(G;f) = max{Si−1(G;f) + Wi(G;f): i∈{1; : : : ; n}}
(putting S0(G;f) = 0) and

sw(G) := min{sw(G;f): f is a linear layout of G}:
Notice that Si is from the de/nition of the vertex separation number and Wi is from
the de/nition of the bandwidth.

Theorem 1. For any graph G; id(G) = sw(G).

Proof. First we prove that id(G)¿ sw(G). Let GI be an interval supergraph of G such
that 
(GI ) = id(G). Without loss of generality we can assume that the left endpoints
of the intervals that represent GI are distinct integers 1; 2; : : : ; n. Such a representation
leads to a linear layout f of G: for v∈V (G) f(v) = i if and only if i is the left point
of the corresponding interval of v. For a vertex v with f(v) = i let us de/ne

d1(v) = |{u∈V (G): f(u)¡i and (u; v)∈E(GI )}|
and

d2(v) = |{u∈V (G): f(u)¿i and (u; v)∈E(GI )}|:
Obviously, Si−1(G;f)6d1(v), Wi(G;f)6d2(v) and degGI

(v)=d1(v)+d2(v). Choose
a vertex v with a number i such that

Si−1(G;f) + Wi(G;f) is maximum:

Then 
(GI )¿ degGI
(v) =d1(v) +d2(v)¿ Si−1(G;f) +Wi(G;f) = sw(G;f)¿ sw(G).
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We now turn to id(G)6 sw(G). Let f be a linear layout of G such that sw(G) =
sw(G;f). We assign to each vertex v∈V (G) the interval (f(v); r(v)), where r(v) =
max{i∈{f(v); : : : ; n}: f−1(i)∈NG[v]}+ 1

2 . Denote the corresponding interval graph by
GI . If (u; v)∈E(G) and f(u)¡f(v) then f(v)¡r(u); hence (f(v); r(v))∩(f(u); r(u))
�= ∅. Consequently, (u; v)∈E(GI ) and GI is an interval supergraph of G. The further
proof is straightforward once the following observations are made: for a vertex v with
a number i, Si−1(G;f)¿d1(v) and Wi(G;f)¿d2(v).

The following Corollary is one of the reasons for our interest to the interval com-
pletion problem with the smallest max-degree.

Corollary 2. For any graph G

bw(G)6 id(G)6 2 bw(G):

Therefore,
id(G)

2
6 bw(G)6 id(G):

Proof. It is easy to check that for any graph G and linear layout f, vs(G;f)6
bw(G;f). Then Corollary follows immediately from Theorem 1.

Notice that 
(G)6 id(G) for any graph G and Corollary 2 is the generalization of
the well-known lower bound on the bandwidth of G (see, e.g. [6]) 
(G)=26 bw(G).
The bounds for the interval degree in terms of the bandwidth are tight. For example,
for any star K1; n, where n = 2k, id(K1; n) = 2 bw(K1; n) = n and for any path Pn with
n¿ 2 vertices, id(Pn)=2 bw(Pn)=2. For any complete graph Kn of n vertices id(Kn)=
bw(Kn) = n− 1.

Corollary 3. For any graph G; pw(G2)6 id(G).

Proof. We show that for every linear layout f, vs(G2; f)6 sw(G;f). Because pw(G2)
= vs(G2) it will prove the corollary. Let f be a linear layout and let v be a vertex of
G, i = f(v). Let j be the smallest integer for which f−1(j) has a neighbor w in G
with f(w)¿ i. De/ne Dj6 (D¡j) to be the set of all vertices x of G such that x is
adjacent in G2 to a vertex y having f(y)¿i and j6f(x)6 i (f(x)¡j). It should
be noted that Si(G2; f) = |Dj6| + |D¡j|. Using almost obvious inequalities

|Dj6|6Wj(G;f)

and

|D¡j|6 Sj−1(G;f);

we arrive at

Si(G2; f)6Wj(G;f) + Sj−1(G;f):

The bound in Corollary 3 is sharp. Let us give some simple examples.
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The disjoint union of graphs G and H is the graph G∪̇H with the vertex set
V (G)∪̇V (H) and the edge set E(G)∪̇E(H) (where ∪̇ is the disjoint union on graphs
and sets, respectively). We use G × H to denote the following type of ‘product’ of
G and H : G × H is the graph with the vertex set V (G)∪̇V (H) and the edge set
E(G)∪̇E(H) ∪ {(u; w): v∈V (G); w∈V (H)}).

Since (G × H)2 is the complete graph, we obtain the following example to
Corollary 3.

Example 4. Let G and H be graphs with V (G) ∩ V (H) = ∅. Then pw((G × H)2) =
id(G × H) = |V (G)| + |V (H)| − 1.

A graph G is a cograph if it does not contain P4 (a path with four vertices) as an
induced subgraph.

It is well-known that a graph G is a cograph if and only if one of the following
conditions is ful/lled:

(1) |V (G)| = 1;
(2) There are cographs G1; : : : ; Gk and G = G1∪̇G2∪̇ · · · ∪̇Gk ;
(3) There are cographs G1; : : : ; Gk and G = G1 × G2 × · · · × Gk .

Combining Example 4 with Corollary 3, we obtain the next example.

Example 5. Let G be a connected cograph. Then pw(G2) = id(G) = n− 1.

A graph G is said to be cobipartite if it is the complement of a bipartite graph. Let
a cobipartite graph G be the complement of a bipartite graph with bipartition (X; Y ).
We de/ne n1 = |X | and n2 = |Y |. The number of vertices of X (Y ) that are adjacent
in G to some vertices of Y (X ) is denoted by m1 (m2). The proof of our last example
is easy and we omit it here. Also this example is the direct consequence of Theorem
15 of the next section.

Example 6. Let G be a cobipartite graph. Then pw(G2) = id(G) = max{n1 + m2; n2 +
m1} − 1.

We /nd Example 6 to be interesting for the following reason. Parra and ScheIer
[24] proved that bandwidth equals pathwidth and treewidth for cobipartite graphs. Then
by the celebrated result of Arnborg et al. [1] all these problems are NP-hard even for
cobipartite graphs. Cobipartite graphs form a subclass of AT-free claw-free graphs and
we generalize this example in the next section.

4. Minimal triangulations and AT-free claw-free graphs

A chord of a cycle C is an edge not in C that has endpoints in C. A chordless
cycle in G is a cycle of length more than three in G that has no chord. A graph G
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is chordal if it does not contain a chordless cycle. A set of three vertices x; y; z of
a graph G is called an asteroidal triple (abbr. AT) if for any two of these vertices
there exists a path joining them that avoids the (closed) neighborhood of the third. A
graph G is called an asteroidal triple-free (abbr. AT-free) graph if G does not contain
an asteroidal triple. This notion was introduced by Lekkerkerker an Boland for the
following characterization of interval graphs.

Theorem 7 (Lekkerkerker and Boland [19]). G is an interval graph if and only if it
is chordal and AT-free.

A graph isomorphic to K1;3 is referred to as a claw, and a graph that does not contain
an induced claw is said to be claw-free. Notice that cobipartite graphs form a subclass
of AT-free claw-free graphs. Another subclass of AT-free claw-free graphs form proper
interval graphs. An interval graph G is a proper interval graph if it is claw-free. Thus
G is a proper interval graph if and only if it is chordal and AT-free claw-free. The
following characterization was observed by As it was observed by Kloks et al. [17]
every connected AT-free claw-free graph G is a claw-free cocomparability graph or is
a complement of a triangle-free graph.

Because of Example 6, one can conjecture that vs(G2) = id(G) for any AT-free
claw-free graph G. In order to prove this conjecture we restate the interval completion
problem in terms of minimal triangulations. A triangulation of a graph G is a graph
H on the same vertex set as G that contains all edges of G and is chordal. A min-
imal triangulation of G is a triangulation H such that no proper subgraph of H is a
triangulation of G.

MFohring generalized Theorem 7 in the following way.

Theorem 8 (MFohring [21]). Every minimal triangulation of an AT-free graph is an
interval graph.

MFohring’s theorem implies

Corollary 9. For any AT-free graph G; id(G) is equal to the smallest max-degree
over all minimal triangulations of G.

Lemma 12 provides us with some information on the structure of minimal triangula-
tions. This information is strongly used in the proof of Theorem 15. In order to obtain
Lemma 12 we need additional ‘tools’. A subset S of vertices of a connected graph G
is called an a; b-separator for non adjacent vertices a and b in V (G) \ S if a and b
are in diRerent connected component of the subgraph of G induced by V (G) \ S. If no
proper subset of an a; b-separator S separates a and b in this way, then S is called a
minimal a; b-separator. A subset S is referred to as a minimal separator, if there exist
non adjacent vertices a and b for which S is a minimal a; b-separator.

The following characterization of minimal separators is well-known (see,
e.g. [12]).
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Lemma 10. Let S be an a; b-separator of G and let Ga, Gb be two components of
G \S containing a and b, respectively. Then S is a minimal a; b-separator if and only
if every vertex s∈ S is adjacent to a vertex in each of these components.

The following lemma is an immediate consequence of characterizations of a minimal
triangulation by ‘completing’ minimal separators, see [17].

Lemma 11. Let H be a minimal triangulation of G. If an edge e=(x; y)∈E(H)\E(G)
then there is a minimal separator of G containing x and y.

The next lemma is related to a well-known theorem of Rose et al. [26] on minimal
triangulations.

Lemma 12. Let H be a minimal triangulation of G. If an edge e=(x; y)∈E(H)\E(G),
then there is an induced cycle C of length ¿ 4 in G such that x; y∈V (C).

Proof. By Lemma 11 there exists a minimal a; b-separator S in G containing x and
y. Let Ga, Gb be components of G \ S containing a and b, respectively. By Lemma
10 vertices x and y have neighbors in Ga and Gb. Hence there exist inclusion-minimal
paths (x; a1; : : : ; ak ; y); ai ∈V (Ga), and (x; b1; : : : ; bl; y), bi ∈V (Gb). Since for no pair
of vertices ai and bj (ai; bj)∈E(G), we have that vertices (x; a1; : : : ; ak ; y; bl; : : : ; b1)
induce a cycle of length ¿ 4 in G.

Lemma 12 implies some interesting corollaries.

Corollary 13. Let G be an AT-free graph. Then id(G)6!(G4) − 1. In particular,
pw(G2)6 id(G)6 pw(G4).

Proof. Let GI be an interval supergraph of G such that 
(GI ) = id(G). By Corollary
9 GI is a minimal triangulation of G. Since G is AT-free, we have that it does not
contain a chordless cycle of length at least 6. Let O be a vertex of the maximal degree
in GI . By Lemma 12 dG(u; w)6 4 for all u; w∈NGI [v]. Hence degGI

(O)6!(G4) −
16 pw(G4).

Corollary 14. Let G be an AT-free graph. Then 
(G2)=46 bw(G)6
(G2).

Proof. Taking into account Corollary 2 and Lemma 12, we obtain that bw(G)6 id(G)
6
(G2). It is well-known (see [6]) that for any graph G 
(G)6 2 bw(G) and
bw(G2)6 2 bw(G). Hence, 
(G2)6 4 bw(G).

We are now in a position to state the main result of this section.

Theorem 15. Let G be an AT-free claw-free graph. Then !(G2) − 1 = id(G).
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Fig. 1. Case 2.

Proof. By de/nition, !(G) − 16 pw(G) for any graph G. Therefore, the application
of Corollary 3 yields !(G2) − 16 id(G).

Now we prove !(G2) − 1¿ id(G). Let GI be an interval supergraph of G such
that 
(GI ) = id(G). Notice that owing to Corollary 9 GI may be treated as a minimal
triangulation of G. Let O be a vertex of the maximal degree in GI . Then |NGI [O]| −
1 = 
(GI ) = id(G). Let a; b be vertices of NGI [O]. We show that dG(a; b)6 2 which
implies the existence of the clique in G2 containing all vertices of NGI [O].

Let us consider three cases.
Case 1: If a; b∈NG[O] then obviously dG(a; b)6 2.
Case 2: Assume that a∈NG[O] and b �∈ NG[O]. Then (O; b)∈E(GI ) \ E(G) and

by Lemma 12 there is an induced cycle Cb in G of length at least four such that
O; b∈V (Cb). Because G is AT-free, the length of Cb is at most /ve. Hence if a∈V (Cb)
then dG(a; b)6 2. Suppose that a �∈ V (Cb). Cb is a chordless cycle and G is claw-free;
hence a is adjacent in G to at least one neighbor of O in Cb. Let b1 be such a neighbor.
If dG(b1; b)=1 (see the left half of Fig. 1) then dG(a; b)=2. Let dG(b1; b)=2. Denote
the second neighbor of O in Cb by b2 and the vertex that is placed between b1 and b
in Cb by b3 (see the right graph in Fig. 1). Then a is adjacent to at least one of the
vertices b2, b3 and b because a; b2; b3 cannot form an AT in G. Thus dG(a; b)6 2.
Case 3: Suppose that a; b �∈ NG[O]. Let Ca and Cb be chordless cycles of length at

least four in G that contain vertices O; a and O; b, respectively.
If |E(Ca ∩ Cb)|¿ 3 then the proof is obvious (the diameter of the graph Ca ∪ Cb is

at most two). Supposing |E(Ca ∩ Cb)|¡ 3, we arrive at three possible cases.
Case 3.1: |E(Ca ∩ Cb)| = 2. It is easy to check that if Ca and Cb have a common

edge that is not incident to O then the diameter of Cb ∪Ca is at most two. Because of
this, we can assume that O has the same neighbors in Ca and Cb, i.e. V (Ca)∩NG[O]=
V (Cb) ∩ NG[O]. We denote these neighbors by x and y (see the left graph in Fig. 2).
Since G is claw-free and Ca, Cb are chordless cycles, we have that the neighbor of x
in Ca \Cb is adjacent to the neighbor of x in Cb \Ca and the neighbor of y in Ca \Cb

is adjacent to the neighbor of y in Cb \Ca. This situation is illustrated in the right half
of Fig. 2. Then the distance in G between any two vertices from V (Cb)∪ V (Ca) is at
most two.
Case 3.2: Ca and Cb have only one common edge. If this edge is not incident to

O then it is easy to check that the diameter of Ca ∪ Cb is at most two. Suppose that
V (Cb) = {O; b1; b2; b3; b4} and V (Ca) = {O; a1; a2; a3; b4}. This case is illustrated in the
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Fig. 2. Case 3.1.

Fig. 3. Case 3.2.

Fig. 4. Case 3.2: (a3; b1)∈E(G) and (a3; b1) �∈ E(G).

left half of Fig. 2 (if Ca or Cb is a cycle of length four then the proof is the same).
Since G is claw-free, we conclude that (a1; b1)∈E(G) and (a3; b3)∈E(G) (see the
right graph in Fig. 3). If (a3; b1)∈E(G) then a2 is adjacent to b1 in G (a2; a3; b1; b4

induces a claw otherwise) (see the left graph in Fig. 4). If (a3; b1) �∈ E(G) then a3 is
adjacent to b2 in G because a3; b2; O cannot form an AT in G (see the right graph in
Fig. 4). For both graphs in Fig. 4 for i; j = {2; 3} the distance between ai and bj is at
most two.
Case 3.3: E(Ca∩Cb) =∅. It is easy to see that if |V (Ca∩Cb)|¿ 2 then the distance

between any two vertices of the set V (Ca ∪ Cb) \ NG[O] is at most two.
Suppose that V (Ca∩Cb)=O and V (Cb)={O; b1; b2; b3; b4}, V (Ca)={O; a1; a2; a3; a4}

(if Ca or Cb is the cycle of length four the proof is similar). Because G is claw-free
and Ca, Cb are chordless in G then (a1; b1); (a4; b4)∈E(G) (or (a1; b4); (a4; b1)∈E(G)
but this is the ‘symmetric’ case). (See the left graph in Fig. 5.)
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Fig. 5. Case 3.3: V (Ca ∩ Cb) = O and Case 3.3.1.

Fig. 6. Case 3.3.3.

Vertices a1; b2; b4 and a4; b1; b3 do not form ATs in G, so at least one pair from
each triple {(a1; b2); (a1; b3); (a1; b4)} and {(a4; b1); (a4; b2); (a4; b3)} is an edge of G. If
(a1; b3)∈E(G) (or (a4; b2)∈E(G) for the second triple) then (a1; b2) or (a1; b4) is in
E(G) ((a4; b1) or (a4; b3) is in E(G)) because vertices b2; b3; b4 and a1 (b1; b2; b3 and
a4) otherwise induce a claw in G. Thus at least one edge of each pair {(a1; b2); (a1; b4)},
{(a4; b1); (a4; b3)} is in E(G).

There is a need to examine the following cases:
Case 3.3.1: (a1; b4), (a4; b3)∈E(G). (See the right graph in Fig. 5.) (a4; b3)∈E(G)

implies (vertices a3; a4; O; b3 cannot induce a claw) (a3; b3)∈E(G). From (a1; b4)∈
E(G) it follows (a2; a1; b4; b1 do not induce a claw) that (a2; b1)∈E(G) or (a2; b4)
∈E(G)). If (a2; b2)∈E(G) then the diameter of Ca ∪ Cb is at most two. If (a2; b4)
∈E(G) then (a2; b4; O; b3 do not induce a claw) (a2; b3)∈E(G). Thus the distance
between any two vertices ai; bj ∈V (Ca ∪ Cb) \ NG[O] in G is at most two.
Case 3.3.2: (a1; b2), (a4; b1)∈E(G). This case is ‘symmetric’ about the previous

case.
Case 3.3.3: (a1; b4), (a4; b1)∈E(G) (see the left graph in Fig. 6). If (a1; b2)∈E(G)

then we arrive at Case 3.3.2. If (a4; b3)∈E(G) then this is Case 3.3.1. Assuming
that (a1; b2); (a4; b3) �∈ E(G) we obtain (a1; b3)∈E(G) (a4; b4; b3; a1 induce a claw
otherwise) and dG(a2; b3)6 2. Furthermore, vertices a2; a1; b3; b1 do not induce a claw
in G; hence (a2; b3)∈E(G) or (a2; b2)∈E(G). Therefore, dG(a2; b2)6 2. Vertices a4

b2 are adjacent in G because a1; b1; b2; a4 otherwise induce a claw (see the right graph
in Fig. 6). Then dG(a3; b2)6 2. The graph induced by a3; a4; b2; b4 is not a claw; hence
dG(a3; b3)6 2. Thus for i; j = {2; 3}, dG(ai; bj)6 2.
Case 3.3.4: (a1; b2), (a4; b3)∈E(G). The claw-free condition for a1; a2; O; b2 implies

(a2; b2)∈E(G) and the claw-free condition for a3; a4; O; b3 implies (a3; b3)∈E(G). This
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implies that for any i; j except i = 3 and j = 1 the distance from ai to bj is at most
2. To /x the case a3; b1 we consider the triple a2; a4; b1. The AT-free condition for
these vertices combining with the fact that cycles Ca and Cb are chordless, implies
that at least one edge from the set {(a2; b1); (a3; b1); (a4; b1)} is in E(G). Therefore,
the distance between a3 and b1 is at most 2.

We proved that for any a; b∈NGI [O] the distance between a and b in G is at most
two. Therefore, there is a clique K in G2 such that NGI [O] ⊆ K . To conclude the
proof, it remains to note that

id(G) = degGI
(O) = |NGI [O]| − 16 |K | − 16!(G2) − 1:

The following lemma is the corollary of a more general result of Ho et al. [13]
about powers of graphs with bounded asteroidal numbers.

Lemma 16. If G is AT-free then G2 is AT-free.

Lemma 17. Let G be an AT-free claw-free graph. Then G2 is AT-free claw-free.

Proof. By Lemma 16 G2 is AT-free. Suppose that there exist vertices b; c; d and a
inducing the claw K in G2, where a is the vertex of degree three. Note that at least
two edges of K are from E(G2) \E(G). If all edges of K are from E(G2) \E(G) then
vertices b; c; d form the AT in G.

Assume that only two edges, say (b; a) and (c; a), are in E(G2) \ E(G). Then
dG(b; a) = dG(c; a) = 2. Let x be a vertex adjacent to vertices a, b and y be a vertex
adjacent to a and c in G. Vertices b and c are not adjacent to d in G2; hence x
and y are not adjacent to d in G. Because G is claw-free, (x; y)∈E(G); whence it
follows that b; c; d form the AT in G. This is a contradiction and concludes the proof
of Lemma 17.

The following statement is due to Parra and ScheIer.

Theorem 18 (Parra and ScheIer [24]). Let G be an AT-free claw-free graph. Then
bw(G) = pw(G).

There are diRerent ways to de/ne the treewidth of a graph (see, e.g. [16]). For
more information on this parameter the reader is referred to the recent survey paper
of Bodlaender [4]. The following de/nition is more convenient for our purposes. The
treewidth tw(G) of a graph G is the smallest clique number over all triangulations of
G decreased by one.

The next Theorem summarize the results of this section.

Theorem 19. For any AT-free claw-free graph G,

id(G) = !(G2) − 1 = pw(G2) = tw(G2) = bw(G2):
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Proof. Let G be an AT-free claw-free graph. By Lemma 17 G2 is also AT-free
claw-free. By Theorem 8 pw(G2) = tw(G2) and by Theorem 18 pw(G2) = bw(G2).
Since for any graph G, pw(G)¿!(G)− 1 we have that Corollary 3 and Theorem 15
imply pw(G2) = !(G2) − 1 = id(G).

5. Complexity results

In [27] Unger proved that for any integer k there is no eKcient approximation
algorithm with performance ratio k (unless P=NP) of bandwidth for caterpillars with
hair length three. Combining Unger’s results with Corollary 2 we obtain the following
complexity result.

The problem of INTERVAL COMPLETION WITH THE SMALLEST MAX-DEGREE:

Instance: A graph G and an integer k.
Question: Is there an interval supergraph I of G such that 
(I)6 k?

is NP-complete even when G is stipulated to be a caterpillar with hair length three.
However, the interval degree of AT-free claw-free graphs can be computed eK-

ciently. We need the following result of MFuller.

Lemma 20 (MFuller [23]). Let G be an AT-free claw-free graph. Then G2 is a chordal
graph.

As far as we know the proof of Lemma was not published and we give it here for
completeness.

Proof. Let C = (x1; x2; : : : ; xl), be a chordless cycle in G2 and let X = {x1; x2; : : : ; xl}.
Since C is chordless, we have that for every index i∈{1; : : : ; l} at least one of the edges
(xi−1; xi) and (xi; xi+1) (summation is taken modulo l) is not present in G. For every
edge (xi; xi+1) not present in G there is a vertex yi such that NG[yi] ∩ X = {xi; xi+1}.
Let F be the subgraph of G induced by X ∪ Y . F has a hamiltonian cycle Z created
from C by adding yi between xi and xi+1. Since the number of edges of Z is at least
six, we have that Z has at least one chord e. C is chordless in G2 and therefore at
least one end of e is not in X .

If one end of e, say yi, is in Y and another end, say xj, is in X (notice that
i �= j; j + 1) then (xi; xj); (xj; xi+1)∈E(G2) and C is not chordless. Hence both ends
of e, say yi; yj are in Y . The latter contradicts G being claw-free because xi; xi+1; yi; yj
induce a claw in G.

Lemmas 17 and 20 together imply that if G is AT-free claw-free and chordal then
G squared is AT-free claw-free and chordal, which in turn implies

Corollary 21. Let G be an AT-free claw-free graph. Then G2 is a proper interval
graph.
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Fig. 7. Example of id(G) = pw(G2) + 1. id(G) = 4; every triangulation of G contains (a; d) or (b; c).
pw(G2) = 3; G2 is an interval graph and !(G2) = 4.

This corollary suggest simple algorithm computing interval degree of AT-free claw-
free graphs. (Let us remind that “related” pathwidth and bandwidth problems remain
NP-complete on this graph class.)

In fact, it easy to check that G2 can be constructed in O(n|E(G)|) time. Since the
clique number of an interval graph can be calculated in a linear time (see, e.g. [12])
we have that Theorem 19 and Corollary 20 imply.

Corollary 22. For any AT-free claw-free graph G, id(G) can be calculated in
O(n|E(G)| + |E(G2)|) time.

6. Concluding remarks

We leave many questions unanswered, a few of them are:

(1) Fig. 7 shows that the claw-free condition in Theorem 19 is necessary. Is it true
that there exists k¿ 0 such that for any AT-free graph G id(G)6 pw(G2) + k?

(2) Kloks et al. [17] obtained an O(|E(G)| + n log n) algorithm to approximate the
bandwidth of an AT-free graph within a factor 4. Because of Corollary 14 it is
interesting to know whether calculation of the max-degree of an AT-free graph
squared can be done faster.

(3) Is it possible to improve the time bound in Corollary 22? Probably the construction
of the square is not necessary for calculating !(G2).

Acknowledgements

We are grateful to Dieter Kratsch and Haiko MFuller for fruitful discussions and
suggestions.

References

[1] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of /nding embeddings in a k-tree, SIAM J.
Algebraic Discrete Methods 8 (1987) 277–284.



F.V. Fomin, P.A. Golovach /Discrete Applied Mathematics 129 (2003) 345–359 359

[2] A. Billionnet, On interval graphs and matrice pro/les, RAIRO Rech. OpWer. 20 (1986) 245–256.
[3] A. Blum, G. Konjevod, R. Ravi, S. Vempala, Semi-de/nite relaxations for minimum bandwidth and

other vertex-ordering problems, Theoret. Comput. Sci. 235 (2000) 25–42, Selected papers in honor of
Manuel Blum (Hong Kong, 1998).

[4] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209
(1998) 1–45.

[5] J.A. Bondy, Basic graph theory: paths and circuits, in: R.L. Graham, M. GrFotschel, L. LovWasz (Eds.),
Handbook of Combinatorics, Vol. 1, Elsevier Science B.V., Amsterdam, 1995, pp. 3–110.

[6] P.Z. Chinn, J. ChvWatalovWa, A.K. Dewdney, N.E. Gibbs, The bandwidth problem for graphs and
matrices—a survey, J. Graph Theory 6 (1982) 223–254.

[7] F.R.K. Chung, D. Mumford, Chordal completions of planar graphs, J. Combin. Theory Ser. B 62 (1994)
96–106.

[8] J. Dunagan, S. Vempala, On euclidean embeddings and bandwidth minimization, in: M.X. Goemans,
K. Jansen, J.D.P. Rolim, L. Trevisan (Eds.), Proceedings of the Fourth International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2001, Lecture Notes in
Computer Science, Vol. 2129, Springer, Berlin, 2001.

[9] J.A. Ellis, I.H. Sudborough, J. Turner, The vertex separation and search number of a graph, Inform.
Comput. 113 (1994) 50–79.

[10] U. Feige, Approximating the bandwidth via volume respecting embeddings, J. Comput. System Sci. 60
(2000) 510–539; Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas,
TX, 1998.

[11] U. Feige, Coping with the NP-hardness of the graph bandwidth problem, in: Algorithm theory—SWAT
2000 (Bergen), Springer, Berlin, 2000, pp. 10–19.

[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[13] T.-Y. Ho, J.-M. Chang, Y.-L. Wang, On the power of graphs with bounded asteroidal number, Discrete

Math. 223 (2000) 125–133.
[14] N.G. Kinnersley, The vertex separation number of a graph equals its path width, Inform. Process. Lett.

42 (1992) 345–350.
[15] L.M. Kirousis, C.H. Papadimitriou, Interval graphs and searching, Discrete Math. 55 (1985) 181–184.
[16] T. Kloks, Treewidth, Computation and Approximation, in: Lecture Notes in Computer Science, Vol.

842, Springer, Berlin, 1994.
[17] T. Kloks, D. Kratsch, H. MFuller, Approximating the bandwidth for asteroidal triple-free graphs, J.

Algorithms 32 (1999) 41–57.
[18] D. Kratsch, L. Stewart, Approximating bandwidth by mixing layouts of interval graphs, in: STACS 99

(Trier), Springer, Berlin, 1999, pp. 248–258.
[19] C.G. Lekkerkerker, J.C. Boland, Representation of a /nite graph by a set of intervals on the real line,

Fund. Math. 51 (1962) 45–64.
[20] R.H. MFohring, Graph problems related to gate matrix layout and PLA folding, in: E. Mayr, H.

Noltemeier, M. Sys lo (Eds.), Computational Graph Theory, Computing Suppl. 7, Springer, Berlin, 1990,
pp. 17–51.

[21] R.H. MFohring, Triangulating graphs without asteroidal triples, Discrete Appl. Math. 64 (1996)
281–287.

[22] B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete,
SIAM J. Algebraic. Discrete Methods 7 (1986) 505–512.

[23] H. MFuller, 1998, personal communication.
[24] A. Parra, P. ScheIer, Treewidth equals bandwidth for AT-free claw-free graphs, Technical Report

436/1995, Technische UniversitFat Berlin, Fachbereich Mathematik, Berlin, Germany, 1995.
[25] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983)

39–61.
[26] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J.

Comput. 5 (1976) 266–283.
[27] W. Unger, The complexity of the approximation of the bandwidth problem, in: Proceedings of the 39th

Annual Symposium on Foundations of Computer Science (FOCS’98), Vol. 39, IEEE, New York, 1998,
pp. 82–91.


	Interval degree and bandwidth of a graph
	Introduction and statement of the problem
	Statement of the problem
	Linear layouts
	Minimal triangulations and AT-free claw-free graphs
	Complexity results
	Concluding remarks
	Acknowledgements
	References


