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Abstract

Submodular functions have appeared to be a key tool for proving the monotonicity of several
graph searching games. In this paper, we provide a general game theoretic framework able to
unify old and new monotonicity results in a unique min–max theorem. Our theorem provides a
game theoretic analogue to a wide number of graph theoretic parameters such as linear-width
and cutwidth.
? 2003 Elsevier B.V. All rights reserved.

1. Introduction

A considerable part of graph theory is oriented to the following general problem:
Given a non-trivial graph property P, 5nd a complete characterization of the graphs that
do not satisfy P. In general, such a characterization is achieved by describing some
“forbidding” structure whose existence in G obstructs P from being satis5ed. As a
5rst example, we mention the Kuratowski theorem asserting that a graph is non-planar
i: it topologically contains an obstructing structure of two forbidden graphs. Many
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graph theoretic parameters have been characterized by their obstructing analogue and
this characterization is typically achieved by a so-called min–max theorem (for a good
source of min–max theorems, see [5]). Several examples of such characterizations
emerge from the work of Robertson and Seymour on their Graph Minors series. As a
sample, we mention the characterization of treewidth via screens [20], of branchwidth
via tangles [19], of pathwidth via blockages [3], and of carving-width via antipodalities
[21] (see also [10,14]).

In many cases, it appears that min–max theorems are useful in the study of graph
searching games. Roughly, a graph searching game has as objective to capture an om-
niscient fugitive residing on the vertices or/and the edges of a graph by systematically
moving a speci5c number on searchers on it. Such a search strategy can, in general,
allow “recontamination” in the sense that it can let the fugitive occupy parts of G that
have already been searched. If this is not the case the strategy is called monotone. The
“monotonicity question” for a graph searching game asks whether “allowing recontam-
ination” makes the capturing of the fugitive easier than in the case where the player
restricts his/her attention only to monotone strategies.

It frequently appears that the monotonicity question can be answered with the use of a
suitable min–max theorem. The reason is that, in the majority of the cases, the minimum
number of searchers required to capture the fugitive is equivalent to some known
graph theoretic parameter. The existence of a min–max theorem for this parameter
implies the existence of a forbidden structure that, in turn, indicates an escape strategy
for the fugitive no matter whether the searching strategy is monotone or not. That
way, the min–max theorems for treewidth and pathwidth, developed in [3,20], were
the cornerstones for proving the monotonicity of the corresponding graph searching
variants (see also [7]).

Our paper is motivated and constitutes an extension of the ideas in the proofs of
the monotonicity of the agile fugitive search games examined in [2–4,12,13,15,17,22]
as well as the proofs of the min–max theorems in [19,21]. Our main observation is
that the kernel argument of all these proofs is based on the fact that, in any game
variant, the cost of the search can be expressed by a connectivity function that is a
non-negative-valued function on the set of subsets of a set M that is invariant over
complement and satis5es the submodular property.

In this paper, we show how a graph parameter can be generated by a connectivity
function and we prove a general min–max theorem for it. Moreover, we de5ne for any
such parameter a one-player conquest game and we use our min–max theorem in order
to prove its monotonicity. Our game framework is general in the sense that it provides
a big variety of games depending on the choice of the connectivity function � that
generates it. In particular, for suitable choices of �, it provides obstruction characteri-
zations, game counterparts, and monotonicity proofs for the parameters of linear-width,
cutwidth and their extensions. Finally, our general min–max theorem implies in a uni-
form way the monotonicity proofs of all the agile fugitive search games developed so
far in [4,12,15,17,22].

To illustrate the main motivation of our research let us give a simple example
of an “expansion” game. Suppose that we have a set of countries subject to join
some organization. At every moment of time we can either add a bounded number
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of countries to the union or expel an arbitrary number of countries. Adding countries
and keeping them in the union needs some resources, say for guarding its border from
the countries outside the union. The question is how to add all the countries using the
minimal amount of resources.

More concretely, let M be the set of faces of a planar map, every face of M
representing a country. For a set of countries X ⊆ M , let �(X ) be the number of edges
adjacent to a face in X and a face in MX = M − X . The question is: for a given k¿ 0
is there a sequence

(∅ = X0; X1; : : : ; Xn = M);

such that for every 16 i6 n; |Xi − Xi−1|6m (at every step we add at most m
countries) and �(Xi)6 k (at every step of the expansion the border of the union is of
length at most k)?

There are a number of interesting questions concerning this game. One of them is
the “monotonicity question”: can it be useful at some step to expel countries from the
union? Another is the “min–max question”: what kind of structure in a map provides
necessary and suPcient conditions for obstructing the intended expansion? In this paper,
we provide the answers to both questions for a more general version of expansion game.

The paper is organized as follows. The main min–max theorem is proved in Section
2. In Section 3, we present our general game, and in Section 4, we present the conse-
quences of the min–max theorem on its variants. In Section 5, we end up with further
examples, remarks, and open problems.

2. A min–max theorem for connectivity functions

Given a 5nite set M , a function � mapping the subsets of M to integers is called a
connectivity function for M [19] if the following two conditions are satis5ed:

∀A ⊆ M; �(A) = �( MA) (we denote MA = M − A); (1)

∀A; B ⊆ M; �(A ∪ B) + �(A ∩ B)6 �(A) + �(B): (2)

Note that for any X ⊆ M; �(X )¿ �(?) because 2�(X )=�(X )+�(M −X )¿ �(?)+
�(M)=2�(?). It is more convenient for our purposes to think that �(?)=0 (replacing
�′(X ) = �(X ) − �(?) if it is not the case).

To warm up, let us consider some examples of connectivity functions. Let G be a
graph with the vertex set V (G) and the edge set E(G).

• Take M = E(G) and for any A ⊆ M , let �(A) be the number of vertices incident
both with an edge in A and an edge in M − A.

• Take M =V (G) and for any A ⊆ M , let �(A) be the number of edges incident both
with a vertex in A and a vertex in M − A.

• Another example is a matroid M with rank function �, where we de5ne, for any
A ⊆ M; �(A) = �(A) + �(M − A).
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For a given 5nite set M , let O be a set of subsets of M and let � be a connectivity
function for M . A sequence A = (A1; : : : ; Ar) is a (k; m)-expansion in O (for M with
respect to a connectivity function �) if

∀i; 16 i6 r; Ai ⊆ M and �(Ai)6 k; (3)

A1; MAr ∈O; (4)

∀i; 16 i6 r − 1; |Ai+1 − Ai|6m: (5)

If, additionally,

∀i; 16 i6 r; Ai ⊆ Ai+1; (6)

then we say that A is monotone. Finally, a (k; m)-expansion in {?}, i.e. expansion
with A1 =? and Ar = M , is referred to as complete.

For facilitating the notation, in this section we will assume that all the expansions are
de5ned with respect to a 5xed connectivity function �. The following lemma uses the
ideas of Bienstock–Seymour’s monotonicity proof for graph crusades [4]. We include
the proof of the lemma for completeness.

Lemma 1. If there is a (k; m)-expansion in O for M then there is a monotone
(k; m)-expansion in O for M.

Proof. Let us choose a (k; m)-expansion (A1; A2; : : : ; Ar) in O for M such that
r∑

i=1

�(Ai) is minimum (7)

and, subject to (7),
r∑

i=1

(|Ai| + 1) is minimum: (8)

To prove (6), we will show that Ai−1 ⊆ Ai for i∈{2; : : : ; r}.
We 5rst claim that

�(Ai−1 ∪ Ai)¿ �(Ai): (9)

Suppose that �(Ai−1 ∪ Ai)¡�(Ai). Then because (Ai−1 ∪ Ai) − Ai−1 = Ai − Ai−1 we
have that

|(Ai−1 ∪ Ai) − Ai−1|6m: (10)

Also,

|Ai+1 − (Ai−1 ∪ Ai)|6 |Ai+1 − Ai|6m: (11)

Combining (10) and (11) we obtain that

(A1; A2; : : : ; Ai−1; Ai−1 ∪ Ai; Ai+1; : : : ; Ar)

is a (k; m)-expansion for M contradicting (7). This contradiction proves (9).
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Combining (9) and (2), we obtain

�(Ai−1 ∩ Ai)6 �(Ai−1): (12)

Since

|(Ai−1 ∩ Ai) − Ai−2|6 |Ai−1 − Ai−2|6m

and

|Ai − (Ai−1 ∩ Ai)| = |Ai − Ai−1|6m;

it follows that

(A0; A1; : : : ; Ai−2; Ai−1 ∩ Ai; Ai; Ai+1; : : : ; Ar)

is a (k; m)-expansion for M . Taking into account (12), (7) and (8), we get |Ai−1 ∩
Ai|¿ |Ai−1|. Thus Ai−1 ⊆ Ai and (A1; A2; : : : ; Ar) is a monotone (k; m)-expansion
for M .

Lemma 2. Let A = (A1; A2; : : : ; Ar) be a monotone (k; m)-expansion for M. Then
MA = ( MAr; MAr−1; : : : ; MA1) is also a monotone (k; m)-expansion for M.

Proof. Since MMA1 = A1 and �( MAi) = �(Ai), we have that MA satisfy (3) and (4). For
i∈{1; : : : ; r−1}; Ai+1 ⊇ Ai implies that MAi− MAi+1 =Ai+1−Ai and MAi+1 ⊆ MAi. Therefore,
(5) and (6) are also satis5ed.

For any integer k, we de5ne a (k; m)-obstacle for M as the set O such that

(o1) Each A∈O is a subset of M with �(A)6 k.
(o2) If A∈O; B ⊆ A and �(B)6 k then B∈O.
(o3) If A; B; C ⊆ M; A ∩ B =?; �(A)6 k; �(B)6 k; |C|6m, and A ∪ B ∪ C = M

then (A∈O ∧ B �∈ O) or (A �∈ O ∧ B∈O).

The aim of this section is to prove that the existence of a (k; m)-obstacle for M ,
obstructs the existence of a complete and monotone (k; m)-expansion for M and vice
versa. In particular, we will prove the following min–max theorem.

Theorem 3. Let M be a =nite set and � a connectivity function on M. Then the
following are equivalent:

(i) there exists no (k; m)-obstacle for M;
(ii) there exists a complete (k; m)-expansion for M;

(iii) there exists a complete and monotone (k; m)-expansion for M.

For the proof of Theorem 3, we need 5rst to prove Lemma 4 below. A set O is par-
tial (k; m)-obstacle for M if it satis5es (o1) and (o2) and if there is no (k; m)-expansion
for it. The next lemma is an analogue of the blockage Theorem (2.5) in [3].
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Lemma 4. Every partial (k; m)-obstacle for M is a subset of a (k; m)-obstacle
for M.

Proof. Let O be a partial (k; m)-obstacle for M . We assume that every O′, where
|O′|¿ |O| and satisfying (o1) and (o2), either is not a partial (k; m)-obstacle for M ,
or is a subset of a (k; m)-obstacle for M . As base of the induction we can consider
a set O0 containing any subset A of M , where �(A)6 k. Indeed the set O0 is not a
partial (k; m)-obstacle. In fact, ?, M ∈O0 because �(?) = �(M) = 06 k and (?) is
a (k; m)-expansion in O0.

If O satis5es (o1)–(o3) then O is a (k; m)-obstacle for M and the lemma holds.
Suppose that O does not satisfy (o3). Then there exist A1; A2; C ⊆ M such that

• �(A1)6 k; �(A2)6 k; |C|6m;
• A1 ∪ A2 ∪ C = M and A1 ∩ A2 =?;
• A1; A2 ∈O or A1; A2 �∈ O.

For our purpose it is more convenient to work with complements of A1 and A2. Let
T1 = MA1 and T2 = MA2. Note that

�(T1)6 k and �(T2)6 k; (13)

T1 ∪ T2 = M; (14)

|T1 ∩ T2|6m: (15)

We claim that

T1; T2 �∈ O: (16)

Indeed, note 5rst that, from (14), A1 ∩ A2 =? and thus T1 ⊇ A2. By (o2), if T1 ∈O
then A2 ∈O. Since A2 ∈O, we have that A1 ∈O. Then (A1) is a (k; m)-expansion in O,
which is impossible. The proof of T2 �∈ O is similar.

We now choose T1; T2 satisfying (13)–(16) such that |T1| is minimal. We claim
that

If X ⊆ T1 and �(X )6 k then either X ∈O; or X = T1; or MT 1 ∈O: (17)

We assume that X �∈ O and X �= T1 and we will 5rst prove that MX ∈O. For this,
we will show that if MX �∈ O, then X; MX satisfy (13)–(16), contradicting the choice of
T1; T2. Indeed, (13) follows from �(X )6 k and (1); (14) is obvious and (15) follows
as X ∩ MX =?. We now conclude the proof of (17) noting that MT 1 ⊂ MX and (o2) gives
MT 1 ∈O as required.

For i = 1; 2 we de5ne Oi as the set of all X ⊆ Ti with �(X )6 k. Note that, for
i= 1; 2; Ti �∈ O implies |O∪Oi|¿ |O|. Therefore, the result follows from the induction
hypothesis if we show that for some i = 1; 2; O∪Oi is a partial (k; m)-obstacle for M .
Clearly, (o1) and (o2) are satis5ed for both O∪Oi ; i=1; 2 and therefore, it remains to
prove that, for some i = 1; 2; there is no (k; m)-expansion in O ∪ Oi. Assume, towards
a contradiction, that, for i = 1; 2 there are (k; m)-expansions in O∪O1 and O∪O2 and,
by Lemma 1, we can also assume that they are monotone.
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Let us prove that

There is a monotone (k; m)-expansion

X = (X1; X2; : : : ; Xr) in O1 with X1 = T1 and MX r ∈O: (18)

If MT 1 ∈O then X = (T1) is a (k; m)-expansion in O1 satisfying (18).
Suppose that MT 1 �∈ O. Let X = (X1; X2; : : : ; Xr) be a monotone (k; m)-expansion in

O ∪ O1. Then X1; MX r ∈O1. By Lemma 2, MX = ( MX r; MX r−1; : : : ; MX 1) is also monotone
(k; m)-expansion in O ∪ O1.

One of the sets X1 and MX r is not in O because there is no (k; m)-expansion in O.
W.l.o.g. we can assume that X1 �∈ O. (Otherwise we can consider MX.) As X1 ∈O∪O1,
we have that X1 ∈O1 and, from the de5nition of O1, we conclude that X1 ⊆ T1. By
(17), (because X1 �∈ O and MT 1 �∈ O) X1 = T1.

From the monotonicity of X it follows that T1 = X1 ⊆ Xr . We claim that either
MX r �∈ O1 or MX r =?. Indeed, if MX r ∈O1, then the de5nition of O1 implies that MX r ⊆ T1.

Moreover, T1 ⊆ Xr implies that MX r ⊆ MT 1 and MX r =? follows.
Note now that (18) holds trivially if MX r = ?∈O. Moreover, if MX r �∈ O1, then

MX r ∈O ∪ O1 implies that MX r ∈O and this concludes the proof of (18).
Let Y = (Y1; Y2; : : : ; Ys) be a monotone (k; m)-expansion in O2. Since there is no

(k; m)-expansion in O, we have that either Y1 or MY s is not in O. W.l.o.g. we can
assume that Y1 �∈ O (otherwise we replace Y by MY). Then Y1 ⊆ T2, yielding |Y1− MX 1|6
|T2 − MT 1|6m.

We now claim that MY r �∈ O. Indeed, if this is not the case, then

( MX r; MX r−1; : : : ; MX 1; Y1; Y2; : : : ; Ys)

is a (k; m)-expansion in O, contradicting to the fact that there are no (k; m)-expansions
in O.

Recall that MY s ∈O ∪ O2 and, as MY s �∈ O, we get that MY s ∈O2, thus MY s ⊆ T2. But
Ys ⊇ MT 2 combined with (15), implies |X1 − Ys|= |T1 − Ys|6 |T1 − MT 2|= |T1 ∩ T2|6m.
As a consequence,

( MX r; MX r−1; : : : ; MX 1; Y1; Y2; : : : ; Ys; X1; X2; : : : ; Xr)

is a (k; m)-expansion in O. This is again a contradiction and the lemma is proved.

We can now proceed with the proof of Theorem 3.

Proof of Theorem 3. The fact that (ii) ⇒ (iii) follows directly from Lemma 1.
Next, we will prove that (iii) ⇒ (i). Suppose, on contrary that O is a (k; m)-obstacle

for M and A = (A1; : : : ; Ar) a complete and monotone (k; m)-expansion for M . Recall
that from (3) we have that �(A1)6 k and from (o2), ? = A1 ∈O. Condition (o3)
now implies Ar = M �∈ O. Let i be the smallest i; 06 i¡ r such that Ai+1 �∈ O.
Let Ai+1 − Ai = C and (5) gives |C|6m. Note that Ai ∪ C ∪ MAi+1 = M . Moreover,
Ai ∩ MAi+1 =? and therefore (o3) implies that Ai �∈ O, a contradiction.

It remains now to prove (i) ⇒ (ii). It is enough to show that there exists some
(k; m)-expansion in {?}. Indeed, if this is not the case and since {?} satis5es (o1)
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and (o2), we get that {?} is a partial (k; m)-obstacle for M . From Lemma 4, {?} is
the subset of some (k; m)-obstacle for M , a contradiction.

3. A general framework for conquest games

In this section, we will introduce a general framework of a game on graphs, hyper-
graphs and sets based on the notion of (k; m)-expansions.

In particular, we assume that � is a connectivity function for some set M . The
elements of M represent countries to be conquested. In the beginning, all the elements
of M are considered unoccupied. The conquest proceeds in steps. Each step can either
be the occupation of at most m new elements of M or the retreat from some already
occupied elements of M . We de5ne a move as a pair P = (S; !), where S is a set
of elements of M and ! equals 0 when these elements are removed from the set of
conquested elements (retreat move) and 1 when these elements are added to the set
of conquested elements (attack move). A conquest strategy for M is a sequence E =
(P1; : : : ; Pr) of moves. The aggressivity of a conquest strategy is max{|S| | (S; 1)∈E},
i.e. the maximal number of elements occupied at some step. Given a conquest strategy
E, we recursively de5ne the occupation sequence of E as the sequence (T0; : : : ; Tr)
where T0 =?; Ti = Ti−1 ∪ S if Pi = (S; 1), and Ti = Ti−1 − S if Pi = (S; 0). The �-cost
(or simply cost when there is no doubt about �) of a conquest strategy E is de5ned
as max06i6r �(Ti). We call a conquest strategy monotone if it does not contain any
retreat move. We call a conquest strategy successful if Tr is the set of all the elements
of M .

Lemma 5. For any set M and any connectivity function �, there exists a successful
(monotone) conquest strategy with �-cost k and aggressivity m if and only if there
exists a complete (monotone) (k; m)-expansion for M with respect to �.

Proof. Let (A1; : : : ; Ar) be a complete (monotone) (k; m)-expansion for M with respect
to �. We construct a sequence of moves E=(P′

1; P1; : : : ; P′
r−1; Pr−1) such that for every

16 i6 r − 1,

(P′
i ; Pi) =

{
((Ai − Ai+1; 0); (Ai+1 − Ai; 1)) if �(Ai−1 ∩ Ai)6 k;

((Ai+1 − Ai; 1); (Ai − Ai+1; 0)) if �(Ai−1 ∪ Ai)6 k:

Note that, (2) and the fact that �(Ai)+�(Ai+1)6 2k imply that either �(Ai−1 ∩Ai)6 k
or �(Ai−1 ∪ Ai)6 k. Therefore, E is well de5ned. It now follows directly from the
de5nitions that E is a successful (monotone) conquest strategy with �-cost k and
aggressivity m. Given now a successful (monotone) conquest strategy for G with �-cost
k and aggressivity m, it is easy to see that its occupation sequence is a complete
(monotone) (k; m)-expansion for V (G) with respect to the function �.

Given a set M and a connectivity function �, we de5ne a (k; m)-ordered par-
tition of M as a linear ordering (B1; : : : ; Br) where {B1; : : : ; Br} is a partition of
M; ∀i;16i6r |Bi|6m, and ∀i;16i6r �(B1 ∪ · · · ∪ Bi)6 k. For any set M , we de5ne the
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(�; m)-width of M as the minimum k for which there exists a (k; m)-ordered partition
of G.

We can now conclude this section with the following.

Theorem 6. Let M be a set, � be a connectivity function for M, and k; m two integers.
The following assertions are equivalent:

(1) There exists a complete (k; m)-expansion for M with respect to the function �.
(2) There exists a complete monotone (k; m)-expansion for M.
(3) There exists no (k; m)-obstacle for M with respect to the function �.
(4) The (�; m)-width of M is at most k.
(5) There exists a successful conquest strategy for G with aggressivity m and

�-cost k.
(6) There exists a successful monotone conquest strategy for G with aggressivity m

and �-cost k.

Proof. The equivalence of (1)–(3) follows directly from Theorem 3. The equivalence
of (1) and (5) as well as the equivalence of (2) and (6) follows from Lemma 5. It
remains to prove that (4) and (6) are equivalent. Let (V1; : : : ; Vr) be a (k; m)-ordered
partition of V (G). We construct E= ((S1; 1); : : : ; (Sr; 1)) where for i = 1; : : : ; r; Si =V1

and observe that E is a complete monotone (k; m)-expansion for V (G), as required.
Finally, if E = ((S1; 1); : : : ; (Sr; 1)) is a successful monotone conquest strategy, then it
is enough to note that (S1; : : : ; Sr) is a (k; m)-ordered partition of V (G).

4. Applications

In this section, we will give some examples of games on graphs where the conquest
game framework introduced in Section 2 can provide a min–max theorem.

4.1. De=nitions

We give 5rst general de5nitions of some well-known width-type parameters for
graphs.

The cutwidth of graphs has been extensively considered and emerged as a tool for
the study of VLSI layouts (see [1,16] for further references). We give below a natural
generalization of its de5nition.

Let H be a graph with the vertex set V (H) and the edge set E(H). For X ⊆
V (H) let �0(X ) be the number of edges incident to vertices in X and V (H) − X . Let
�=(B1; B2; : : : ; Bn); max16i6n |Bi|6m, be an ordered partition of V (H). For 16 i6 n
we put Vi =

⋃i
j=1 Bj and

m-cw(H;�) = max
i∈{1;:::; n}

�0(Vi):
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The m-cutwidth of H is min{m-cw(H;�): � is an ordering of V (H)}. So, in our
terms, the m-cutwidth of a graph H is equivalent to its (�0; m)-width. If in the de5nition
above we set m = 1, we have the de5nition of cutwidth.

The notion of linear width for graphs was introduced by Thomas [25]. Let G be
an undirected and 5nite graph with vertex set V (G) and edge set E(G). For X ⊆
E(G), let �1(X ) be the number of vertices incident to edges in X and E(G) − X . Let
� = (e1; e2 : : : ; em) be an ordering of E(G). For i∈{1; : : : ; m} we put Ei =

⋃i
j=1 ej. We

de5ne

lw(G; �) := max
i∈{1;:::;m}

�1(Ei)

and the linear-width of G is min{lw(G; �): � is an ordering of E(G)}. In a simi-
lar way, one can de5ne the notion of linear-width for hypergraphs. In our terms the
linear-width of G is the (�1; 1)-width of G. Certainly, it is possible to extend the
linear-width to m-linear-width considering ordered partitions of edges in the fashion
we did for m-cutwidth. This would de5ne a parameter equivalent to (�1; m)-width.
Note that both de5nitions given in this subsection can be generalized to hypergraphs
and can have various extensions based on a weight assignment function for the vertices
or the (hyper)edges of G. Any of these versions are equivalent to some (�; m)-width
for suitable choices of M; � and m.

4.2. A game for cutwidth

We consider 5rst the case where M is the vertex set of a graph G and � maps
any of its subsets S to the number of edges with endpoints in both S and V (G) − S.
That way, (�; m)-width is the m-cutwidth of G and Theorem 3 provides an obstruction
characterization and a min–max theorem for m-cutwidth (which in case m = 1 is sim-
ply the cutwidth of G). For a more intuitive approach, we can consider the vertices
of G as the countries of the world where existence of “common borders” between
two countries implies the existence of an edge between the corresponding edges. The
aggressivity of the game indicates how many countries are permitted to be occupied
after each attack. The cost function � may indicate the resources the player can use
in order to keep the occupied positions. For a more realistic scenario, we can assign a
cost on each of the edges indicating the length of the corresponding border portion or
simply the cost of guarding it. It is easy to check that, in any case, the cost function
is a connectivity function and, therefore, Theorem 3 indicates that the player can re-
strict his/her attention only to monotone conquest strategies (those that do not contain
retreats) as this does not imply any deterioration of his/her ability to take over the
world.

4.3. Linear-width and search games on graphs

Recall that, using the terminology of the previous sections, the linear-width of a graph
G is equivalent to its (�1; 1)-width. Theorem 3 provides an obstruction characterization
and a conquest game for linear-width. In what follows, we will show how this conquest
game can modelize the three variants of the graph searching game.
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A mixed searching game is de5ned in terms of a graph representing a system of
tunnels where an agile and omniscient fugitive with unbounded speed is hidden (al-
ternatively, we can formulate the same problem considering that the tunnels are con-
taminated by some poisonous gas). The object of the game is to clear all edges,
using one or more searchers. An edge of the graph is cleared if any of the following
occurs:

A : both of its endpoints are occupied by a searcher,
B : a searcher slides along it, i.e., a searcher is moved from one endpoint of the

edge to the other endpoint.

A search is a sequence containing some of the following moves: (i) placing a new
searcher on v, (ii) deleting a searcher from v, (iii) sliding a searcher on v along {v; u}
and placing it on u.

The object of a mixed search is to clear all edges using a search. The search number
of a search is the maximum number of searchers on the graph during any move. The
mixed search number, ms(G), of a graph G is the minimum search number over all
the possible searches of it. A move causes recontamination of an edge if it causes the
appearance of a path from an uncleared edge to this edge not containing any searchers
on its vertices or its edges. (Recontaminated edges must be cleared again.) A search
without recontamination is called monotone.

The node (edge) search number, ns(G) (es(G)) is de5ned similarly to the mixed
search number with the di:erence that an edge can be cleared only if A (B)
happens.

The following is a combination of results in [4,24].

Theorem 7. For any graph G the following hold:

• If Gp is the graph occurring from G after subdividing its pendant edges, then
ms(G) = lw(Gp). (We call pendant any edge with an endpoint of degree 1.)

• If Ge is the graph occurring from G after subdividing each of its edges, then
es(G) = lw(Ge).

• If Gn is the graph occurring from G after replacing every edge in G with two edges
in parallel, then ns(G) = lw(Gn).

We mention that the mixed search number is equivalent to the parameter of proper-
pathwidth de5ned by Takahashi, Ueno, and Kajitani in [22,23]. It is also known that
the node search number is equivalent to the pathwidth, the interval thickness, and the
vertex separation number (see [8,11–13,18]).

Theorem 7 gives a way to transform any searching game to a conquest game for
linear-width. Therefore, the obstruction characterization for linear-width provided by
Theorem 3, can serve as an obstruction characterization for any variant of the search
parameters. Applying Theorems 3 and 7, we can directly derive the monotonicity re-
sults of [2,13,15] for the three variants of the search game. In particular, we have the
following.
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Theorem 8. Let G be a graph and k; m two positive integers. The following assertions
are equivalent:

(1) There exists a k-expansion for E(Gn)=E(Ge)=E(Gp) with respect to the
function �1.

(2) There exists a monotone k-expansion for E(Gn)=E(Ge)=E(Gp) with respect to
the function �1.

(3) There exists no (k; m)-obstacle for E(Gn)=E(Ge)=E(Gp) with respect to the func-
tion �1.

(4) There exists a node/edge/mixed search for G using k searchers.
(5) There exists a monotone node/edge/mixed search for G using k searchers.

5. Conclusions

It appears that Theorem 6 gives a framework to prove the monotonicity for any
search/conquest game based on some connectivity function �. Several interesting ver-
sions of the conquest game can be generated like that. In particular, we can set � to be
any connectivity function mapping vertex sets of V (G) to non-negative integers. As an
example, we can de5ne � :V (G) → {0; : : : ; |V (G)|} such that for A ⊆ V (G); �(A) is
the number of endpoints of the edges in {{v; u} | v∈A; u∈V (G)−A}, i.e. the number
of countries lying on both sides of the frontier of the occupied area de5ned by A. By
observing that this version of � is indeed a connectivity function, we can directly apply
Theorem 3 and derive a min–max theorem as well as the monotonicity property of the
corresponding game.

As a last application of Theorem 3, we de5ne a conquest game on a plane graph
where now the regions represent countries and the cost of the strategy is the maximum
number of vertices incident to its frontier. This game seems similar to the “dual” version
of the game of Section 4.3 when restricted to planar graphs. The only di:erence is that
now the cost is determined by the vertices of the frontier and not by the edges. In both
cases, the cost function is a connectivity function and the monotonicity property is a
consequence of Theorem 3. We conjecture that the two games are equivalent, in the
sense that when they have the same aggressivity, the existence of an optimal complete
conquest strategy for one implies the existence of an optimal complete conquest strategy
for the other.

Another way of obtaining game theoretical approaches to width-type parameters is
the study of conquest games with an “average” criteria of optimality. For example,
instead of the �-cost of a conquest strategy E, one can de5ne the �-sum-cost of a
conquest strategy E as

∑
06i6r �(Ti). Similar to Lemma 1, it is possible to prove

monotonicity results for expansion games with minimal sum-cost. This idea can be
used to obtain the monotonicity result for the game related to the sum bandwidth
problem [6] (or optimal linear arrangement). (See also [9] for similar approach to the
interval completion problem.) Nevertheless, to 5nd an analogue of Theorem 3, if any
exists, appears to be an interesting and hard open problem.
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In conclusion, we 5nd interesting the question whether there are monotone search
or conquest games where the cost is not expressed by a connectivity function.
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