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Abstract

A d-octopus of a graph G = (V; E) is a subgraph T = (W; F) of G such that W is a dom-
inating set of G, and T is the union of d (not necessarily disjoint) shortest paths of G that
have one endpoint in common. First, we study the complexity of 5nding and approximating
a d-octopus of a graph. Then we show that for some NP-complete graph problems that are
hard to approximate in general there are e9cient approximation algorithms with worst case
performance ratio c · d for some small constant c¿ 0 (depending on the problem) assum-
ing that the input graph G is given together with a d-octopus of G. For example, there is
a linear time algorithm to approximate the bandwidth of a graph within a factor of 8d. Fur-
thermore, the minimum number of subsets in a partition of the vertex set of a graph into
clusters of diameter at most k can be approximated in linear time within a factor of 3d (for
k =2) and 2d (for k¿ 3). Finally, we show that there are O(n7d+2) time algorithms to compute
a minimum cardinality dominating set, respectively, total dominating set for graphs having a
d-octopus.
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1. Introduction

The study of graph algorithms is often motivated by practical applications from var-
ious areas. Since a large part of the practically and theoretically important graph prob-
lems is NP-complete (for graphs in general), several main approaches to intractable
graph problems have been developed over the years. One of the most popular ap-
proaches is to relax the requirement to compute an optimal solution of an optimization
problem; thus, the goal will be to 5nd a (polynomial time) approximation algorithm
(see e.g. [3]).

In this paper, our goal will be to 5nd fast approximation algorithms with constant
worst case ratio. This will be achieved by allowing our approximation algorithms ac-
cess to a certain advice called a d-octopus of the graph. Among others we consider
the k-clustering problem which appears quite naturally in the context of transport,
warehousing and networking, and the bandwidth minimization problem which plays an
important role in computational linear algebra.

Another approach to intractable graph problems requires that the class of input in-
stances is severely constrained and that for these instances there is an e9cient algo-
rithm using special properties of the restricted instances. Among others, this leads to
the study of the structural properties of special graph classes and algorithms on spe-
cial graph classes (see [7]). A popular approach in this directions is the design of
algorithms for graphs of bounded treewidth because many combinatorial optimization
problems on graphs can be solved in polynomial and often even linear time on graphs
of bounded treewidth (see e.g. [4]). Quite similar, bounded bandwidth allows a consid-
erable speed-up for many matrix-operations and, as we shall show, graphs with small
octopus allow a constant-factor linear time approximation algorithm for the bandwidth
problem. More general, graphs with small octopus allow e9cient constant-factor ap-
proximation algorithms on a variety of NP-complete and often hard to approximate
graph problems. However, we must admit that our concept does not apply to such a
wide range of problems as the treewidth approach.

The recent development of complexity theory highlights a class of problems that are
hard to approximate even for very restricted graph classes. A well-known example of
such a problem is the BANDWIDTH minimization problem. As it was shown by Unger
[37], unless P=NP there is no (polynomial time) approximation algorithm with constant
performance ratio for BANDWIDTH even when restricted to a small subclass of trees,
namely caterpillars with hair length three. Hence, even for graphs with treewidth one
it is unlikely that there is a polynomial time algorithm to approximate the bandwidth
within a constant factor. The hardness result implies a natural question—what kind
of structure in a graph guarantees the existence of an approximation algorithm for
BANDWIDTH having a constant performance ratio?

To answer this question we introduce the concept of a d-octopus and show that the
existence of a small octopus can be important for approximation algorithms. Fortu-
nately, a small octopus in a graph can be used not only for BANDWIDTH approximation
but also for designing approximation algorithms for a variety of other optimization
problems. We provide several examples of such optimization problems. Almost all
these problems have the following properties: They are NP-complete even for very
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restricted subclasses of graphs with 1-octopus and unless P = NP there is no (polyno-
mial time) approximation algorithm with constant performance ratio for these problems
on general graphs.

The paper is organized as follows. In Section 2, we give some preliminaries and
introduce the concept of a d-octopus which is a generalization of the notion of a
dominating shortest path in a graph. (For the de5nition of a d-octopus see De5nition
1.) In Section 3, we prove a number of complexity results concerning the computation
and the approximation of an octopus in a graph. In particular, we present a polynomial
time ln n-approximation algorithm to compute the minimum d for which a graph has
a d-octopus. In some sense, this result is best possible since we also prove that there
is a constant c¿ 0 such that there is no polynomial time algorithm to approximate the
minimum d for which a graph has a d-octopus within a factor of c log n unless P=NP.

In Section 4, we consider approximation algorithms for diSerent optimization prob-
lems on graphs with small octopuses. In particular, in Section 4.1 we consider the
k-clustering problem (k¿ 2 a 5xed integer) which is known to be hard to approxi-
mate on graphs in general. We provide linear time approximation algorithms for the
k-clustering problem on graphs, where a d-octopus of the graph is supposed to be
part of the input. Our algorithm 5nds a k-clustering within 3d times the optimum
for k = 2, and it 5nds a k-clustering within 2d times the optimum for k¿ 3. In
Section 4.2, we provide a linear time algorithm to approximate the bandwidth of a
graph within 8d, assuming a d-octopus of the graph is part of the input. In Sections
4.3, 4.4, 4.5 and 4.6 we present simple and fast approximation algorithms with worst
case performance ratio c · d for some small constant c¿ 0 for a number of problems
(
-coloring, also known as radio-coloring, interval and chordal completions with the
smallest max-degree, domino-treewidth and domino-pathwidth), where the constant c
depends on the problem. Again all algorithms assume that a d-octopus of the graph is
part of the input.

In Section 5, we present exact polynomial time algorithms for the problems
DOMINATION and TOTAL DOMINATION for graphs with d-octopus (d a constant). These
algorithms diSer from all other algorithms presented in the paper in the way that they
do not need a d-octopus to be part of the input and they do not even attempt to com-
pute a d-octopus of the given graph. Finally, in Section 6 we discuss the limits of our
approach.

2. Preliminaries

Let G = (V; E) be an undirected, simple (without loops and multiple edges) and
5nite graph with the vertex set V and the edge set E. Unless otherwise speci5ed, n
denotes the number of vertices of G. We denote by G[W ] the subgraph of G induced
by W ⊆ V . For convenience, for a vertex x of G we write G−x instead of G[V \{x}].
Analogously, for a subset X ⊆ V we write G − X instead of G[V \ X ]. For an edge
e∈E, we denote by G − e the graph with vertex set V and edge set E \ {e}.

The maximum degree of the graph G denoted by T(G) is the maximum degree of
a vertex of G. The (open) neighborhood of a vertex v is N (v) = {u∈V : {u; v}∈E}
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and the closed neighborhood of v is N [v] = N (v) ∪ {v}. For a set S ⊆ V we put
N [S] =

⋃
v∈S N [v] and N (S) = N [S] \ S. A set D ⊆ V is said to be a dominating set

of G= (V; E) if for every vertex u∈V \D there is a vertex v∈D such that {u; v}∈E.
Thus, D is a dominating set iS N [D] = V . We also say that A ⊆ V dominates B ⊆ V
in the graph G = (V; E) if B ⊆ N [A]. A dominating set D ⊆ V is said to be a total
dominating set of G= (V; E) if G[D] has no isolated vertex. A dominating set D ⊆ V
is said to be a connected dominating set of G = (V; E) if G[D] is a connected graph.
The minimum cardinality of a dominating set, total dominating set and connected
dominating set, respectively, of a graph G is denoted by �(G), �total(G) and �conn(G),
respectively.

The distance dG(u; v) between two vertices u and v of G is the length (number of
edges) of a shortest path between u and v in the graph G. The eccentricity ecc(v; G)
of the vertex v in the graph G = (V; E) is de5ned to be max{dG(v; w): w∈V}. The
diameter of a graph G, denoted by diam(G), is de5ned to be the maximum distance
between two vertices of G. Thus diam(G) = max{ecc(v; G): v∈V}.

An edge e of a connected graph G is called a bridge if G − e is disconnected. A
connected graph G is bridgeless if G − e is connected for every edge e.

For all de5nitions and properties of special graph classes not given in the paper we
refer to [7].

Now we give the de5nition of a d-octopus.

De�nition 1. A d-octopus T = (W;F) of a graph G = (V; E) is de5ned as a subgraph
of G (i.e. W ⊆ V and F ⊆ E) such that W is a dominating set of G and there are
vertices r; l1; l2; : : : ; ld of G and for each i, 16 i6d, there is the shortest path Pi from
r to li in G, such that T is the union of the paths P1; P2; : : : ; Pd.

The common endpoint r of the d shortest paths is called the root of the d-octopus
T . Note that the paths P1; P2; : : : ; Pd need not to be disjoint.

Clearly, every graph with a d-octopus (for some d) is connected. Furthermore, every
connected graph has a d-octopus (for some d), e.g. any shortest-path tree.

An algorithm is said to be c-approximation algorithm for a minimization problem P
if for any instance of P it yields a solution whose value is at most c times the optimum.

3. Finding and approximating a d -octopus

For some graphs it is easy to 5nd a small octopus. Here graphs of bounded asteroidal
number should be mentioned, which are de5ned as follows. A set A of vertices of a
graph G is an asteroidal set if for every vertex a∈A there is one component of
G−N [a] containing all vertices of A\{a}. The asteroidal number of a graph G is the
maximum cardinality of an asteroidal set of G. Graphs of bounded asteroidal number
are an extension of AT-free graphs. In fact, the AT-free graphs (usually de5ned in a
slightly diSerent way) are exactly the graphs of asteroidal number at most two. Note
that the AT-free graphs contain well-known graph classes like interval, permutation,
cobipartite and cocomparability graphs.
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All connected AT-free graphs have a dominating pair, i.e. two vertices such that
the vertex set of every path between the two vertices is a dominating set. Such a
dominating pair of a connected AT-free graph can be found in linear time [15]. Thus,
all connected AT-free graphs have a 1-octopus that can be constructed as the shortest
path between the two vertices of a dominating pair in linear time.

Furthermore, every connected graph G has a (dt(G) − 1)-octopus, where dt(G) de-
notes the dominating target number of G (see [30] for the de5nition). Since the as-
teroidal number of a graph is an upper bound for its dominating target number [30],
every connected graph of asteroidal number at most k has a (k − 1)-octopus. Such a
(k − 1)-octopus can be constructed in time O(n3) using an algorithm to construct a
dominating target of size at most k. This algorithm can be obtained from [30].

From now on we consider graphs in general and we shall need a d-octopus as part
of the input in all of our e9cient constant factor approximation algorithms. Since the
performance of our approximation algorithms for graphs with d-octopus is best for
small d, it is important to 5nd a small d-octopus in general graphs.

Theorem 2. The problem ‘Given a graph G and an integer d, decide whether G has
a d-octopus’ is NP-complete, and it remains NP-complete when restricted to split
graphs and when restricted to bipartite graphs.

Proof. We use a reduction from DOMINATING SET to d-OCTOPUS. Let G = (V; E) be a
graph, d∈N and suppose V = {v1; : : : ; vn}. G′ = (V ′; E′) is constructed as follows:

V ′ = {v1; : : : ; vn; u1; : : : ; un; a; b} and

E′ = {{vi; vj}: 16 i; j6 n; i 	= j} ∪ {{vi; uj}: vi ∈N [vj]}

∪ {{a; vi}: 16 i6 n} ∪ {{a; b}}:

Notice that G′ is a split graph since its vertex set can be partitioned into the clique
C={v1; : : : ; vn; a} and the independent set I={u1; : : : ; un; b}. It is su9cient to show that
G has a dominating set of size at most d iS G′ has a d-octopus. Suppose D ⊆ V is a
dominating set of G. Then G′ has a d-octopus T with root a such that T is the union
of the shortest a; l-paths in G′ (each consisting of a single edge) for all l∈D. Suppose
T = (W;F) is a d-octopus of G′. W.l.o.g. we may assume a∈W and W \ {a} ⊆ V .
Otherwise, if b∈W or ui ∈W each such vertex can simply be removed from T and
we obtain another d-octopus. Since V ∪{a} is a clique in G′, W \{a} is a dominating
set in G′, and thus W \ {a} is a dominating set of size d in G.

The proof for bipartite graphs uses a similar construction (in E′ we omit the edges
{vi; vj}) and follows the same lines.

For the same reason it is of interest to know whether the decision problem (taken d
as parameter) is 5xed parameter tractable (see [17]). On the positive side, it turns out
that the problem is polynomial time solvable for any 5xed d. For example, a 1-octopus
of a given graph can be found in time O(n5), if the graph has one.



110 F.V. Fomin et al. / Discrete Applied Mathematics 134 (2004) 105–128

Our algorithm is based on a technique to compute a domination-type structure of a
graph by dynamic programming through its breadth-5rst-search levels (see [32]).

Theorem 3. For any =xed d, there is an O(n3d+3) time algorithm to decide whether
a given graph has a d-octopus. On the other hand, the problem is W[2]-hard and
thus unlikely to be =xed parameter tractable.

Proof. To show the 5rst part of the theorem we describe our algorithm, which veri5es
for every vertex v∈V whether the input graph G=(V; E) has a d-octopus T with root
v. (Note that for d′ ¡d every d′-octopus is a d-octopus by de5nition.)

To decide whether G has a d-octopus with root v, the algorithm executes a breadth-
5rst-search starting at vertex v. Hence, the vertex set of G is partitioned into the levels
Li = {w∈V : dG(v; w) = i}, 06 i6 t. For a 5xed d-octopus let Ai be the set of its
vertices in level Li. By mw we denote the number of paths in our octopus containing
vertex w. Let Bi = {(w;mw): w∈Ai} and Ci = {wj: w∈Ai and 16 j6mw}. For
consistency we set At+1 =Bt+1 =Ct+1 = ∅. The use of Ci-sets is to represent the paths
of the d-octopus, which may have vertices in common, by vertex-disjoint paths in the
auxiliary graphs Gi de5ned below. In the algorithm we will store the Bi-sets only. Note
that it is fairly easy to reconstruct Ai and Ci from Bi. Since we deal with a d-octopus
we have

|Ci| =
∑

{mw: w∈Ai}6d: (1)

We consider the bipartite graph Gi = (Ci−1; Ci; Ei) with Ei = {{uk ; wj}: {u; w}∈E}.
Then

Gi has a matching of size |Ci| (2)

because every vertex w∈Ai is linked by mw paths from the octopus to predecessors
in Ai−1. Especially, all paths extend from Li−1 to Li if and only if Gi has a perfect
matching. More general, exactly |Ci−1| − |Ci| paths of our octopus end at level i − 1.
Finally, we know

Li−1 ⊆ N (Ai−2) ∪ N [Ai−1] ∪ N (Ai) (3)

because the vertices of the octopus form a dominating set in G.
On the other hand, the existence of a sequence (B0; B1; : : : ; Bt) with B0 = {(v; d)}

ful5lling the matching property (2) and the domination property (3) for 16 i6 t
ensures that G has a d-octopus with root v. Note that B0 = {(v; d)} and the matching
property (2) inductively imply property (1). Now an i-partial solution (16 i6 t) is a
pair (Bi−1; Bi) such that

• for i = 1 we have B0 = {(v; d)} and
∑{mw: (w;mw)∈B1}6d,

• for 1¡i¡ t there is a (i − 1)-partial solution (Bi−2; Bi−1) such that properties (2)
and (3) hold true, and

• for i = t there is a (t − 1)-partial solution (Bt−2; Bt−1) such that (2) holds for i = t
and (3) holds for i = t; t + 1.



F.V. Fomin et al. / Discrete Applied Mathematics 134 (2004) 105–128 111

Basically, the dynamic programming algorithm computes all i-partial solutions for
i=1; 2; : : : ; t. Note that there are at most nd possible sets Bi for the level Li by property
(1). That is, in round i we compute up to n2d potential i-partial solutions (Bi−1; Bi).
For a given potential i-partial solution (Bi−1; Bi) this is done by checking for each of
the at most nd (i− 1)-partial solutions (Bi−2; Bi−1) whether properties (2) and (3) are
satis5ed. Thus, there are O(n3d) triples (Bi−2; Bi−1; Bi) to verify. For each of them we
can test property (2) in constant time O(d2:5) (because |Ci|6d) and property (3) in
linear time O(dn). These tests are executed for t ¡n levels. Thus the overall running
time of the algorithm (for all vertices v∈V ) is O(n3d+3).

The second part of the theorem follows directly from the W[2]-hardness result for
DOMINATING SET (shown e.g. in [17]) when using the construction given in the proof of
Theorem 2.

As is usually the case for dynamic programming algorithms, a pointer structure (here
from each i-partial solution add a pointer to the (i − 1)-partial solution from which
it was obtained) can be used to compute a d-octopus, if the input graph G has a
d-octopus, within the same timebound.

As a consequence of Theorem 3 we obtain

Corollary 4. For every =xed d¿ 1, there is a polynomial time algorithm to decide
whether a given graph G has a d-octopus, and to compute one if it does.

We consider the complexity of approximating the optimization problem MINIMUM

d-OCTOPUS ‘given a graph G, 5nd the minimum d for which G has a d-octopus’.

Theorem 5. There is a constant c¿ 0 such that there is no polynomial time algorithm
to approximate the minimum d for which a graph has a d-octopus within a factor
of c log n unless P = NP.

Proof. We use the reduction from DOMINATING SET to d-OCTOPUS described in the
proof of Theorem 2 and a result of [34] stating that there is some c¿ 0 such that the
existence of an algorithm approximating DOMINATING SET within c log n would imply
P = NP.

Finally, we present an approximation algorithm for the problem MINIMUM d-OCTOPUS

having worst case performance ratio ln n. Our greedy algorithm is a modi5cation of
the well-known greedy algorithm for the MINIMUM SET COVER problem discovered in-
dependently by Johnson [28] and Lov?asz [33].

Theorem 6. There is an O(n5) time algorithm to approximate the minimum d for
which a given graph has a d-octopus within a factor of ln n.

Proof. On 5rst view our algorithm can be seen as the greedy set cover algorithm
applied to n particular instances of MINIMUM SET COVER. For each vertex v of G, we
use an instance (V;Mv) of the set cover problem to approximate a minimum d-octopus
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T with root v of the given graph G = (V; E). For 5xed vertex v, Mv is de5ned as
follows: A∈Mv iS there is a vertex u∈V and a shortest path P between u and v such
that A = N [V (P)]. (Here V (P) denotes the vertex set of the path P.)

The greedy set cover algorithm is executed on instance (V;Mv) for every vertex v.
The solution of the greedy algorithm is an ln n-approximation of the minimum set cover
for each instance (V;Mv) [28,33]. Using the shortest u; v-paths in G corresponding to
the sets in the solution of the algorithm one can easily obtain a d-octopus T of G as
the union of all these paths. Note that d is exactly the number of sets in the solution
of (V;Mv).

To see that our algorithm has performance ratio ln n assume that Tmin is a dmin-octopus
of G with minimum possible value of d. Let vmin be the root of Tmin. By the construc-
tion of (V;Mvmin ) the solution of the set cover algorithm on instance (V;Mvmin ) contains
at most dmin · ln n sets, since the sets corresponding to the dmin diSerent u; vmin-paths
whose union forms T are a solution of (V;Mvmin ) with cardinality dmin. Hence if the
algorithm 5nds a d∗-octopus T then d∗6dmin · ln n.

Unfortunately, the size of an instance (V;Mv) could be exponential in n, thus the
algorithm as presented above has a worst case running time that cannot be guaranteed
to be polynomial. To obtain a polynomial time algorithm we modify our algorithm as
follows: instead of computing a possibly huge set cover instance (V;Mv) and running
the set cover greedy algorithm on it, we compute (again for every 5xed v) in each
round of the greedy algorithm for every suitable vertex u only one u; v-path in G.

Now let us present our algorithm. Given a graph G, the algorithm computes for
every vertex v of G a d-octopus T with root v and outputs an octopus with smallest
d (among the n octopuses computed). We describe the algorithm for root v. It starts
with T0 consisting of vertex v. In round i = 1; 2; : : : the algorithm computes a vertex
ui and Ti is obtained from Ti−1 by adding a shortest ui; v-path to Ti−1 such that the
number of dominated vertices increases as much as possible. Consequently, Ti is the
union of i shortest ui; v-paths in G.

To 5nd vertex ui in round i (i¿ 1) of the algorithm we need a procedure best-path
to compute for every vertex y not belonging to Ti−1, the value dom(y) which is the
maximum number of vertices of V \ N [V (Ti−1)] (i.e. those vertices not dominated
by V (Ti−1)) dominated by any shortest y; v-path in G. The procedure best-path
also stores a shortest y; v-path in G corresponding to dom(y). This procedure can
be implemented to run in time O(n4) by a dynamic programming approach using
a breadth-5rst-search with start vertex v. The procedure best-path uses techniques
similar to the O(n3d+3) algorithm of Theorem 3.

To compute dom(y) and the best shortest y; v-path for each suitable vertex y w.r.t.
to Ti−1, an ‘-partial solution, ‘¿ 1, is a triple (x; y; k) where x∈L‘−1; y∈L‘ and
there is the shortest v; y-path P v; : : : ; x; y dominating within the levels L0; L1; : : : ; L‘−1

exactly k vertices which are not already dominated by V (Ti−1), i.e. k = |(N [V (P)] ∩⋃‘−1
j=0 Lj)\N [V (Ti−1)])|, where N [V (Ti−1)] is the set of all vertices already dominated

by V (Ti−1).
The procedure best-path starts in round 1 with the computation of all 1-partial

solutions (v; w; 0) for all w∈L1. In round ‘, each (‘−1)-partial solution (x; y; k) is ex-
tended to an ‘-partial solution (y; z; k ′), if {y; z}∈E and k ′=k+|(L‘−1 ∩ N [{x; y; z}])\
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N [V (Ti−1)]|. Finally, for every suitable vertex y (y 	∈ V (Ti−1)) with y∈Lj, the value
dom(y) is the largest k-value over all j-partial solutions (x; y; k) (thus x∈Lj−1). The
corresponding shortest y; v-path can be found using a suitable pointer structure. To
obtain the timebound O(n4) the procedure stores in round ‘ an ‘-partial solution (x; y; k)
only if so far no ‘-partial solution (x; y; k ′) with k ′¿ k has been found.

In round i, the algorithm 5rst calls the procedure best-path w.r.t. Ti−1 and then
it chooses a vertex ymax such that dom(ymax) = max{dom(y): y∈V \ V (Ti−1)}. Then
Ti is obtained by adding to Ti−1 the shortest ymax; v-path corresponding to dom(ymax).
Thus |N [V (Ti)]| = |N [V (Ti−1)]| + dom(ymax). The algorithm terminates in round i if
V (Ti) is a dominating set of G, and thus Ti is an i-octopus of G with root v. Otherwise
it starts the next round.

Finally, notice that each path P chosen during the execution of our O(n5) algorithm
corresponds to a set N [V (P)] of the set cover instance (V;Mv) that the greedy set
cover algorithm may choose. Hence, the modi5ed algorithm also has performance ratio
ln n.

4. Approximation algorithms

In this section, we provide approximation algorithms for diSerent problems on graphs
with small octopus.

4.1. Clustering

For any 5xed integer k¿ 1, a k-clustering of a graph G = (V; E) is a partition
P = {C1; C2; : : : ; Ct} of V , such that diam(G[Ci])6 k for each set Ci, i∈{1; 2; : : : ; t}.
Each Ci is called a cluster of G. By clk(G) we denote the minimum number of clusters
in a k-clustering of G. The k-CLUSTERING problem is ‘given a graph G and an integer
l¿ 1, decide whether clk(G)6 l?’

The 1-CLUSTERING problem is also known as the NP-complete problem PARTITION INTO

CLIQUES ([GT15] in [25]) and it remains NP-complete on AT-free graphs [8]. The
k-CLUSTERING problem is NP-complete and it remains NP-complete on bipartite graphs
for every 5xed k¿ 2 [1].

The problem MINIMUM k-CLUSTERING is hard to approximate. More precisely for
any 5xed k¿ 1 and every +¡ 1, there is no (polynomial time) algorithm to approxi-
mate MINIMUM k-CLUSTERING for graphs in general within a factor of n1−+ unless
P = NP [16].

On the other hand for any k¿ 2, a linear time constant-factor approximation al-
gorithm for MINIMUM k-CLUSTERING on graphs with dominating diametral path (i.e. a
subclass of graphs with 1-octopus) is given in [16].

Our approximation algorithm for graphs with d-octopus constructs a (k−2)-clustering
of the d-octopus T = (W;F) using a partition of W in breadth-5rst-search levels of T .
(A 0-clustering is simply a partition of W into singletons.) Then a k-clustering of G
is constructed from the (k − 2)-clustering of T using that W is a dominating set of G.
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Theorem 7. For any =xed k¿ 2, there is a linear time approximation algorithm for
the MINIMUM k-CLUSTERING problem that takes as input a graph G and a d-octopus T
of G. The algorithm approximates clk(G) within a factor 3d for k = 2 and within a
factor of 2d for all k¿ 3.

Proof. Let k¿ 2, G= (V; E) be a graph and let T = (W;F) be a d-octopus of G with
root r. Since W is a dominating set of G every (k − 2)-clustering P of T can be
extended to a k-clustering P′ of G such that |P| = |P′| as follows: For every vertex
v∈V \ W choose a neighbor w(v)∈W . Then for every C ∈P, the cluster C′ ∈P′

corresponding to C is de5ned as C′ = C ∪ {v∈V \W : w(v)∈C}.
For i¿ 0 let Li = {w∈W : dT (r; w) = i} be the ith level of T . The neighborhood

of every vertex v∈Li is partitioned into a set of predecessors u∈Li−1 and a set of
successors w∈Li+1. (Note that each Li is an independent set in T .) Every vertex in
W \ {r} has a predecessor and every vertex without successor is an endpoint of one
of the d paths de5ning the octopus T .

We show how to construct a (k−2)-clustering of T with at most d ·‘ clusters, where
‘ = �(ecc(r; T ) + 1)=(k − 1)�. Let S be the union of k − 1 consecutive levels of T ,
namely �(k−3)=2� upper levels followed by one or two central levels and �(k−3)=2�
lower levels. To show clk(T )6d ·‘ it su9ces to prove clk(T [S])6d because we can
apply the following argument to the levels L0 : : : Lk−2, then to the levels Lk−1 : : : L2k−2,
and so on.

We select a spanning subgraph of T [S] by choosing one successor (if there is one)
for each vertex in an upper level, one predecessor for each vertex in a lower level
and a maximal matching between the central levels (if there are two of them). Every
connected component of this subgraph is called hourglass (Fig. 1). Note that each
hourglass H is a tree such that every path in H contains at most two vertices of the
same level. Since H contains at most one vertex from each central level this implies
diam(H)6 k − 2.

Hence the hourglasses de5ne a (k−2)-clustering of T [S]. To prove that the number of
clusters is at most d we observe that every hourglass without vertices in a central level
does not contain vertices in lower levels either and is therefore called upper hourglass.

Now we show that S is covered by at most d hourglasses. If we have d′ upper
hourglasses in the partition every central level consists of at most d − d′ vertices
because T is covered by d paths and d′ of them end in upper levels. Hence, there
are at most d − d′ hourglasses containing a central vertex, either because S contains
only one central level or because the edges in hourglasses form a maximal matching
between the two central levels.

Fig. 1. An hourglass (left) and a partition into 5ve hourglasses (right).
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Finally, we observe that the (k − 2)-clustering of T de5ned by hourglasses is com-
putable in linear time. (Note that each level contains at most d vertices.)

Summarizing, we have shown how to construct for every graph G a k-clustering P′

with at most d · ‘ clusters, assuming that a d-octopus T of G is part of the input.
Combined with a well-known lower bound (see e.g. [16]) we obtain

1
k + 1

(diam(G) + 1)6 clk(G)6 |P′|6d ·
⌈

1
k − 1

(ecc(r; T ) + 1)
⌉
:

The de5nition of T implies ecc(r; T )6 ecc(r; G). Consequently, ecc(r; T ) + 16
ecc(r; G) + 16 diam(G) + 16 (k + 1) · clk(G). Together with the upper bound for
|P′| this yields

|P′|6d ·
⌈
k + 1
k − 1

· clk(G)
⌉
:

Thus, the approximation ratio of our algorithm is bounded above by

dmax
{

1
t

⌈
t · k + 1

k − 1

⌉
: t = 1; 2; : : : ; n

}
:

4.2. Bandwidth

A layout of a graph G = (V; E) is a one-to-one mapping L :V → {1; : : : ; |V |}. The
width of a graph G and a layout L of G is

b(G; L) := max{|L(u) − L(v)|: (u; v)∈E}
and the bandwidth of a graph G is

bw(G) := min{b(G; L): L is a layout of G}:
The bandwidth problem has a long history and a number of applications (see [10,11]
for a survey). BANDWIDTH is known to be NP-complete for many graph classes, in-
cluding cobipartite and thus AT-free graphs [29]. Hence, BANDWIDTH does not become
polynomial by adding even a 1-octopus as advice to the input graph (unless P = NP),
since for connected AT-free graphs a 1-octopus can be computed in linear time while
the bandwidth problem is NP-complete on connected AT-free graphs.

Unger has shown that there is no polynomial time algorithm to approximate the
bandwidth of graphs within a constant factor unless P = NP even on a small sub-
class of trees [37]. The best-known approximation algorithm for general graphs has a
polylogarithmic performance ratio [20]. Approximation algorithms with constant factor
guarantee on AT-free graphs and graphs with dominating pair (i.e. a subclass of graphs
with 1-octopus) were obtained in [29].

We present an algorithm to approximate the bandwidth of graphs within 8d assuming
that a d-octopus of the graph is part of the input. The following partition of the vertex
set of G into levels will be useful.

Let T = (W;F) be a d-octopus of the graph G = (V; E) and r be the root of T .
First the vertices of T are partitioned into levels L0; L1; : : : ; Lm, where Li is the set of
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vertices at distance i from r in T . Notice that the number of vertices in each level
is at most d. We extend this level structure to all vertices of G by assigning vertex
v∈V \ W to level Li iS v is adjacent to a vertex of T from level Li and v is not
adjacent to a vertex of T from a level Lj with j¡ i. Since the vertices of T form a
dominating set in G, every vertex of G is assigned to one of the levels. We call such
a partition of the vertex set of G the (unique) partition of V associated to T .

Lemma 8. Let T be a d-octopus of the graph G=(V; E) and L0; : : : ; Lm be the partition
of V associated to T . Then |Li|6T(G)d for all 0¡i6m, and for any two vertices
u∈Li and w∈Lj, {u; w}∈E implies |i − j|6 3.

Proof. The 5rst statement follows from the fact that every Li is dominated by at most
d vertices. To prove the second statement we assume w.l.o.g. u∈Li, w∈Lj and i6 j.
By the construction of the partition there are vertices u′ ∈Li and w′ ∈Lj of T that are
adjacent or equal to u and w, respectively, in G.

Suppose |i− j|¿ 3. Let w′ be a vertex of the shortest r; lk -path P of G being a path
of T . Consider the path P′ of G: r; : : : ; u′; u; w; w′; : : : ; lk , where r; : : : ; u′ is a shortest
path in T (of length i) and w′; : : : ; lk is a subpath of P. Consequently, P′ is an r; lk -path
of G being shorter than P, a contradiction.

Theorem 9. Let G be a graph with d-octopus. Then bw(G)6 4dT(G) − 1.

Proof. Let T be a d-octopus of a graph G=(V; E) and let L0; L1; : : : ; Lm be the partition
of V associated to T . Consider the following layout L :V → {1; 2; : : : ; n} of G. The
vertices are labeled according to the levels, i.e. for all vertices u∈Li and w∈Lj,
L(u)¡L(v) implies i6 j. In each level Li the vertices of T are labeled 5rst. By
Lemma 8 the width of L is at most 4dT(G) − 1.

Theorem 9 and the well-known inequality bw(G)¿ �T(G)=2� (see e.g. [10]) imply
that a linear time algorithm computing a layout L as described in the proof of Theorem
9 has worst case approximation ratio 8d.

Corollary 10. There is a linear time algorithm to approximate the bandwidth of
graphs within a factor of 8d, if the input graph is given with a d-octopus.

The following theorem is an improvement of Theorem 9 for AT-free graphs (i.e.
d=1). However, with this approach we only obtain a 6-approximation algorithm which
does not beat the 2-approximation algorithm for bandwidth of AT-free graphs given in
[29].

Lemma 11. For any AT-free graph G, bw(G)6 3(T(G) − 1).

Proof. The idea of the proof is as follows. Construct by 2LexBFS a dominating pair
(a0; am), a partition of V (G) into LexBFS-levels L0; L1; : : : ; Lm such that a0 ∈L0, and
a dominating shortest path a0; a1; : : : ; am such that ai ∈Li for all i∈{0; 1; : : : ; m} as in
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[29]. Then every vertex of level Li is adjacent to vertex ai or ai−1. Therefore, the
number of vertices in two consecutive levels is at most 3T(G) − 2.

Theorem 9 also provides an upper bound for the topological bandwidth of a graph
G, denoted tbw(G), which is de5ned as the minimum bandwidth of any subdivision of
the graph G. Since for every graph G, bw(G)¿ tbw(G)¿ �T(G)=2� we observe that
there is a linear time algorithm to approximate the topological bandwidth of graphs
within a factor of 8d, if the input graph is given with a d-octopus.

Furthermore, Theorem 9 can be used to obtain an amazing upper bound on the ratio
of bandwidth and topological bandwidth of a graph.

Corollary 12. bw(G)=tbw(G)6 8d for every graph G with a d-octopus.

Thus, it seems interesting to study the ratio of bandwidth and topological bandwidth
on AT-free graphs and some of their well-known subclasses like interval and permu-
tation graphs. We mention that the equality of both parameters is known for cographs
[31], i.e. a subclass of AT-free graphs and thus a class of graphs with 1-octopus.

4.3. 
-coloring

Radio frequency assignment is the task to assign radio frequencies to transmitters at
diSerent locations without causing interference. This important practical problem can be
formulated as a graph coloring problem. The 
-coloring problem arises from a certain
restricted type of frequency assignment.

De�nition 13. Let d1 and d2 be two non-negative integers. A 
-coloring of a graph
G = (V; E) is a mapping f :V → {0; 1; : : : ; 
} (an assignment of colors from a set
{0; 1; : : : ; 
} to the vertices of G). The 
-coloring satis=es the L(d1; d2)-constraint,
d1¿d2, if for every pair u; v∈V , u 	= v, the condition d(u; v) = i, 16 i6 2, implies
|f(u)−f(v)|¿di. The minimum value 
 for which G admits a 
-coloring satisfying
the L(d1; d2)-constraint is denoted by 
d1 ;d2 (G).

Notice that 
1;0(G) + 1 is equal to the chromatic number of G and that 
1;1(G) + 1
is the chromatic number of G2.

-colorings satisfying the L(2; 1)-constraint have been studied extensively (see e.g.

[9,26]). There are polynomial time algorithms to compute 
2;1 for trees and cographs
[9]. Approximation algorithms for diSerent graph classes like planar, strongly chordal
and permutation graphs are presented in [6,9,24]. 
2;1-coloring is NP-complete on planar
graphs as well as on split graphs [6,24].

We observe that 
2;1-coloring is also NP-complete for cobipartite graphs, i.e. those
graphs that are complement of a bipartite graph. Notice that cobipartite graphs form a
very restricted subclass of AT-free graphs.

Theorem 14. 
2;1-coloring is NP-complete for cobipartite graphs.
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Proof. The proof is an immediate corollary of the following result in [6] (which in
turn is a slight modi5cation of a proof by Griggs and Yeh [26]).

Let G be a class of graphs satisfying the following two properties:

• for each graph G = (V; E)∈G, the graph obtained by adding a new vertex v and
making it adjacent to every vertex in V also belongs to G.

• HAMILTONIAN PATH is NP-complete for the class of those graphs whose complement
belongs to G.

Then the problem to decide for a given graph G = (V; E)∈G whether 
2;1(G)6 |V |
is NP-complete.

Cobipartite graphs satisfy both conditions since HAMILTONIAN PATH is NP-complete
for bipartite graphs [25], hence the theorem follows.

We need the following modi5cation of Lemma 8.

Lemma 15. Let T be a d-octopus of the graph G = (V; E) and L0; L1; : : : ; Lm be the
partition of V (G) associated to T . Then for any two vertices u∈Li and w∈Lj,
d(u; w) = 2 implies |i − j|6 4.

Proof. Let us assume that u∈Li, w∈Lj, i6 j and x∈N [u]∩N [w]. By the construction
of the partition there are vertices u′ ∈Li and w′ ∈Lj of T that are adjacent or equal to
u and w, respectively, in G.

Suppose |i − j|¿ 4. Let w′ be a vertex of the shortest r; lk -path P of G being a
path of T . Consider the path P′ of G: r; : : : ; u′; u; x; w; w′; : : : ; lk , where r; : : : ; u′ is the
shortest path in T (of length i) and w′; : : : ; lk is the subpath of P. Consequently, P′ is
an r; lk -path of G being shorter than P, a contradiction.

Theorem 16. Let G=(V; E) be a graph and let T be a d-octopus of G. Then for any
integer p¿ 1, 
p;1(G)6 4dpT(G) − p + 1.

Proof. Let T be a d-octopus of a graph G=(V; E) and let L0; L1; : : : ; Lm be the partition
of V (G) associated to T .

By Lemma 8, the number of vertices in four consecutive levels Li; Li+1; Li+2; Li+3 is
at most 4dT(G) for every i∈{0; 1; : : : ; m− 3}.

We construct a coloring f :V → N as follows. For j∈{0; 1; : : : ; �m=2�} we color
each four levels L2j+1; L2j+2; L2j+3; L2j+4 by colors from the set {0; p; 2p; : : : ; 4dpT(G)−
p}. Moreover, for each i∈{1; 2; 3; 4}, coloring f assigns to vertices of level L2j+i col-
ors from {(i− 1)dpT(G); : : : ; idpT(G)− p} using each color for at most one vertex
in these four levels.

Similarly, we color each of the four levels L2( j+1)+1; L2( j+1)+2; L2( j+1)+3, and L2( j+1)+4

by colors from {1; p + 1; 2p + 1; : : : ; 4dpT(G) − p + 1}.
Therefore, if two vertices u∈Lx and w∈Ly, obtain the same color, i.e. f(u)=f(v),

then |x − y|¿ 7 and if 0¡ |f(u) − f(v)|6p, then |x − y|¿ 4.
Notice that the coloring f does not assign a color larger than 4dpT(G)−p+1 to a

vertex. Finally, let us verify that f satis5es the L(p; 1)-constraint. If two vertices u∈Lx
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and w∈Ly are adjacent, then by Lemma 8, |x − y|6 3; hence |f(u) − f(v)|¿p. If
d(u; v) = 2 then by Lemma 15, |x − y|6 4 and |f(u) − f(v)|¿ 1.

The 
-coloring described in the proof of Theorem 16 can be computed by a linear
time algorithm. Since 
p;1(G)¿T(G) − 1 + p, for every graph G and every integer
p¿ 1, Theorem 16 implies the following

Corollary 17. For any p¿ 1, there is linear time algorithm to approximate a 
-
coloring with L(p; 1)-constraints of a graph G=(V; E) within a factor of 4dp, if the
input graph G is given with a d-octopus T of G.

The following theorem is an improvement of Theorem 16 for AT-free graphs.

Lemma 18. For any AT-free graph G = (V; E),


p;1(G)6 3p(T(G) − 1) + 1:

Proof. The idea of the proof is as follows. Find by 2LexBFS a dominating pair (a0; am)
of G, a partition of V (G) into LexBFS-levels L0; L1; : : : ; Lm and a dominating shortest
path a0; a1; : : : ; am such that ai ∈Li for all i∈{0; 1; : : : ; m}, as in the proof of Lemma 11
(see also [29]). Then every vertex of level Li is adjacent to vertex ai or ai−1. Thus, the
number of vertices in two consecutive levels is at most 3T(G) − 2 and we can color
vertices in levels L1, L2 by using colors from the set {0; p; 2p; : : : ; p(3T(G)−3)}. Then
we color vertices from L3, L4 with colors from the set {1; p+1; 2p+1; : : : ; p(3T(G)−
3) + 1}. Then we color vertices in L5; L6 by colors from {0; p; 2p; : : : ; p(3T(G)− 3)}
and so on.

Finally, it is easy to check that in such a coloring adjacent vertices obtain colors at
least p apart and that vertices at distance two have diSerent colors.

4.4. Bilateral orientations

An orientation of an undirected graph G is an assignment of directions to the edges of
G. An orientation H of G is strongly connected if every two vertices in H are mutually
reachable in H . If a graph G is thought as the plan of the system of two-way streets
then the orientations of the graph can be viewed as arrangements of one-way streets.
Some variants of one-way street assignments were studied in [36]. The orientation
problem has other applications in diSerent network routing, broadcasting and gossip
problems, see e.g. [27].

Chv?atal and Thomassen have initiated in [14] the study of the following quantitative
variation of the orientation problem: For a given connected bridgeless graph G, 5nd an
orientation of G with the smallest diameter, i.e. the maximum distance one may have
to travel in the one-way system should be as small as possible. It was shown in [14]
that the problem BILATERAL ORIENTATION: ‘Given a graph G and an integer t, decide
whether G has an orientation of diameter at most t’ is NP-complete. The problem
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Fig. 2. Orientation of edges in Q.

remains NP-complete on cobipartite graphs (a subclass of graphs with 1-octopus) and
on split graphs [23].

To prove the main result of this section we need some auxiliary results. In 1939,
Robbins [35] proved that an undirected graph G admits a strongly connected orientation
if and only if G is connected and bridgeless. This results implies the following.

Corollary 19. Every connected bridgeless graph G=(V; E) has an orientation H such
that diam(H)6 |V | − 1.

The next lemma was given in [22]. We provide its proof since it is essential to our
algorithm.

Lemma 20. Let GD = (VD; ED) be a connected bridgeless subgraph of a graph G =
(V; E) such that the vertex set of GD is a dominating set of G. Then for every strongly
connected orientation HD of GD there is an orientation H of G such that H is an
extension of HD, i.e. each edge of ED has the same orientation in H as in HD, and
diam(H)6 diam(HD) + 4. Furthermore, such an orientation H can be computed by
a linear time algorithm.

Proof. For every connected component Q of G−VD we direct the edges being incident
to a vertex of Q as follows. If Q consists of one vertex x then x is adjacent to at
least two vertices of VD, say u and v since G is bridgeless. We direct one edge
(x; u) and a second edge (v; x). Since HD is a strongly connected orientation of GD,
dH (x; w)6 1 + diam(HD) and dH (w; x)6 diam(HD) for each vertex w∈VD.

Suppose that there are at least two vertices in Q. Every vertex of Q is adjacent
in G to a vertex of VD. Choose a spanning tree of Q with a vertex v as root. We
orient the edges of this tree as follows: If a vertex x of the tree has odd distance to
v, then we orient all tree edges incident to x towards x. If x has even distance to v
then we orient all tree edges incident to x such that x becomes the head. Furthermore,
for every such vertex x we orient each edge between x and a vertex of GD towards
x if the distance from v on the tree is even, and towards the vertex of GD otherwise
(see Fig. 2.) Consequently, for every vertex x∈Q and every vertex w∈VD we have
dH (x; w)6 2 + diam(HD) and dH (w; x)6 2 + diam(HD).

All edges not oriented by the algorithm so far will be oriented arbitrarily.
In such an orientation H , for every component Q of G−VD, every vertex x∈Q and

every vertex w∈VD we have dH (x; w)6 2+diam(HD) and dH (w; x)6 2+diam(HD).
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Therefore, for every x; y∈V \ VD the distance between x and y in H is at most
diam(HD) + 4. Altogether, diam(H)6 diam(HD) + 4.

The existence of a linear time algorithm to compute such an orientation H follows
immediately from the proof.

Theorem 21. Every connected bridgeless graph G with d-octopus and diameter D has
an orientation H such that diam(H)6 3dD + 3.

Proof. Let T = (W;F) be a d-octopus of the graph G. Then the number of edges in
T is at most dD. Let us show how to transform T to a bridgeless graph T̂ by adding
at most 3dD edges.

The graph T̂ is obtained by the following procedure.

• T̂ := T
• While there is an edge e = {u; w} of T such that T̂ − e is disconnected do

◦ Let P be the shortest path among all paths in G having vertices in both
components of T̂−e and having no edges of T̂ . (In other words, P connects
two components of T̂ − e and is edge disjoint from T̂ .) Add the edges and
vertices of P to T̂ .

Notice that we can always 5nd such the shortest path P since G is bridgeless. The
number of steps in the algorithm is at most |F |6dD. Since W is a dominating set of
G, at every step of the algorithm the length of the path P is at most three. Thus, at
every step of the algorithm at most two new vertices are added to T̂ . Therefore, the
number of vertices in T̂ is at most |W | + 2dD6 3dD and by Corollary 19, T̂ has an
orientation of diameter at most 3dD− 1. The graph T̂ has the octopus T as subgraph,
thus its vertex set is a dominating set of G. By Lemma 20, G has an orientation of
diameter at most 3dD + 3.

Chung et al. provide a linear time algorithm to test whether a graph has a strong
orientation and 5nding one if it does [12]. Using this result, Lemma 20 and Theorem
21 we deduce the following:

Corollary 22. There is an O(nm) time algorithm to approximate the oriented diam-
eter of a graph within a factor of 3(d + 1), if the input graph G = (V; E) is given
with a d-octopus T of G.

4.5. Chordal and interval max-degree

The results of Section 4.2 and in particular Theorem 9 can also be used to obtain
approximation algorithms for other graph parameters.

A graph G=(V; E) is called an interval graph provided we can assign to each v∈V
an interval Iv of the real line such that {u; v}∈E if and only if Iu∩ Iv 	= ∅. A chord of
a cycle C is an edge joining two non-consecutive vertices of C. A chordless cycle in
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G is a cycle of length more than three in G that has no chord. A graph G is chordal if
it does not contain a chordless cycle. A chordal completion of a graph G is a chordal
supergraph of G.

Chung and Mumford [13] initiated the study of chordal completions with the smallest
maximum degree. They have shown that a chordal completion of the n by n grid must
contain a vertex of degree at least cn.

The chordal max-degree of a graph G is

cd(G) := min{T(G′): G′ is a chordal supergraph of G}:
This parameter has some important applications in arti5cial intelligence, see [13] for
further references.

Another related parameter, the interval max-degree of a graph, was studied by Fomin
and Golovach [21]. The interval max-degree of a graph G is

id(G) := min{T(G′): G′ is an interval supergraph of G}:
Since every interval graph is chordal (see e.g. [7]) we have that for any graph G,

T(G)6 cd(G)6 id(G). Fomin and Golovach have proved [21] that for any graph
G, bw(G)6 id(G)6 2 bw(G). Combining the latter with Theorem 9 we obtain the
following theorem.

Theorem 23. Let G be a graph with a d-octopus. Then T(G)6 cd(G)6 id(G)6
8dT(G) − 2.

Notice that the results of Unger [37] on hardness of bandwidth approximation imply
that there is no polynomial time algorithm to approximate the interval max-degree of
graphs within a constant factor unless P = NP. On the other hand, for graphs with
small octopus Corollary 10 and Theorem 23 imply the following

Corollary 24. There is a linear time algorithm to approximate the interval and the
chordal max-degree of a graph within a factor of 8d if the input graph is given with
a d-octopus.

Corollary 25. Let G be a graph with a d-octopus. Then id(G)=cd(G)6 8d.

4.6. Domino-pathwidth and domino-treewidth

Theorem 9 can be also used to approximate another graph parameter, namely the
domino-treewidth introduced in [5].

A pair (Xi ; T ) is a domino-tree-decomposition of a graph G=(V; E) if Xi={Xi: i∈ I}
is a set of subsets Xi ⊆ V and T = (I; F) is a tree such that

• 16 |{i: v∈Xi}|6 2 for each vertex v∈V ,
• for each edge e∈E there is an index i such that e ⊆ Xi,
• if j is a vertex on the path from i to k in T , then Xi ∩ Xk ⊆ Xj.
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The width of a decomposition (X; T ) is max{|Xi|: i∈ I}− 1. The domino-treewidth
of G, denoted by dtw(G), is the minimum width of a domino-tree-decomposition of G.
A domino-path-decomposition of a graph G is a domino-tree-decomposition (X; T ) of
G where T is a path. The domino-pathwidth of G, denoted by dpw(G), is the minimum
width of a domino-path-decomposition of G. Notice that dpw(G)¿ dtw(G)¿T(G)=2
for any graph G.

Lemma 26. For any graph G, 1
2 (dpw(G) + 1)6 bw(G).

Proof. Let L be an optimal bandwidth layout of G of width k. We construct a
domino-path-decomposition (X; T ) of G=(V; E) with T=(X1; : : : ; Xl−1) of width 2k−1
(we may think that |V |= lk) by setting Xi := {v: (i− 1)k ¡L(v)6 (i+1)k} for each
i∈{1; 2; : : : ; l− 1}. Since Xi ∩ Xi+2 = ∅ we have that the pair (X; T ) satis5es the 5rst
and the third property of a domino-tree-decomposition. For every edge the diSerence
between its endpoints in the layout L is at most k. Since |Xi ∩ Xi+1|= k, we have that
every edge is in some Xi, thus the second property of a domino-tree-decomposition is
also ful5lled.

Clearly, the domino-treewidth of a graph is at most its domino-pathwidth. Thus by
Theorem 9 we obtain the following result.

Theorem 27. Let G be a graph with a d-octopus. Then dtw(G)6 dpw(G)6
8dT(G) − 3.

Combining Lemma 26 with the hardness of bandwidth approximation implies that
there is no polynomial time algorithm to approximate the domino-pathwidth of graphs
within a constant factor unless P=NP. It is worth mentioning that no lower bound for
the approximation of the domino-treewidth is known.

Since dtw(G)¿T(G)=2 for any graph G, Corollary 10 and Theorem 27 imply.

Corollary 28. There is a linear time algorithm to approximate the domino-treewidth
and the domino-pathwidth of graphs within a factor of 16d if the input graph is given
with a d-octopus.

Corollary 29. Let G be a graph with a d-octopus. Then dpw(G)=dtw(G)6 16d.

5. Domination

We already mentioned that there is a constant c¿ 0 such that there is no approxi-
mation algorithm with factor c log n for the DOMINATION problem unless P = NP [34].
Similar statements hold for the problems TOTAL DOMINATION and CONNECTED DOMINATION

as a consequence of theorems on the ratios of domination parameters

�(G)6 �total(G)6 �conn(G);

�total(G)6 2�(G); [2]
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�conn(G)6 2�total(G) − 2; [19]

�conn(G)6 3�(G) − 2: [18]

(The 5rst equation is not true if �(G)=�conn(G)=1 since then �total(G)=2. Furthermore,
only graphs are considered for which the corresponding parameters exist.)

The following lemma shows that any d-octopus can already be used as output of an
approximation algorithm.

Lemma 30. Let T = (W;F) be a d-octopus of a graph G = (V; E). Then

• W is a dominating set of G with |W |6 3d�(G),
• W is a total dominating set of G with |W |6 2d�total(G), and
• W is a connected dominating set of G with |W |6d(�conn(G) + 2).

Proof. By de5nition, W is a connected dominating set of G, and thus it is also a total
dominating set a and dominating set of G.

Let r be the root of the d-octopus T and let q be the length of the longest r; li-path
in T . Let L0 = {r}; L1 =N (r); : : : ; Ls be the levels of a breadth-5rst-search on G with
start vertex r. Clearly, s¿ q since each r; li-path of T is the shortest path in G.

Each level Li, 16 i6 q, contains at most d vertices of T , thus |W |6dq + 1.
Since each dominating set of G must contain a vertex of every third BFS-level, we
obtain �(G)¿ (q+1)=3. Since each total dominating set of G must contain at least two
vertices of every four BFS-levels, we obtain �total(G)¿ (q+1)=2. Since each connected
dominating set of G must contain one vertex of each BFS-level, except possibly L0

and Ls, we obtain �conn(G)¿ q− 1.
Combining all inequalities we obtain |W |6 3d�(G), |W |6 2d�total(G) and |W |6

d(�conn(G) + 2).

To obtain exact algorithms for computing a minimum dominating set and a minimum
total dominating for graphs having a d-octopus, we shall rely on algorithms and proof
techniques developed in [32] to obtain exact algorithms for the domination and total
domination problem on AT-free graphs and on graphs with a dominating shortest path,
i.e. graphs with a 1-octopus. In particular, the algorithms mcdsw(G) and mctdsw(G)
were introduced and the following properties of these algorithms were proved in [32].

Theorem 31 (Kratsch [32, Theorem 6]). The algorithm mcdsw(G) computes in time
O(nw+2) a minimum cardinality dominating set of a given connected graph G=(V; E),
if G has a minimum cardinality dominating set D and a vertex x∈V such that at
most w vertices of D belong to any three consecutive BFS-levels when x is the start
vertex of the breadth-=rst-search.

Theorem 32 (Kratsch [32, Theorem 9]). Algorithm mctdsw(G) computes in time
O(nw+2) a minimum cardinality total dominating set of a given connected graph
G = (V; E), if G has a minimum cardinality total dominating set D′ and a vertex
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x∈V such that at most w vertices of D′ belong to any three consecutive BFS-levels
when x is the start vertex of the breadth-=rst-search.

The following lemma is an extension of Theorem 3 of [32] to graphs with a
d-octopus. In fact, we shall relax this requirement a bit. Instead of a d-octopus with
root r, we only require the existence of a dominating set S such that |{v∈ S: dG(r; v)=
i}|6d for all i¿ 0.

Lemma 33. Let G = (V; E) be a graph and x a vertex of G. Let L0 = {x}; L1 =
N (x); : : : ; Li ={w∈V : dG(x; w)= i}; : : : ; Lq ={w∈V : dG(x; w)=q} be the BFS-levels of
x. Suppose G has a (total) dominating set S, such that S has at most d vertices in
common with each BFS-level Li. Then G has a minimum cardinality (total) dominating
set D such that

∧
i∈{0;1;:::;‘}

∧
j∈{0;1;:::;‘−i}

∣∣∣∣∣D ∩
i+j⋃
s=i

Ls

∣∣∣∣∣6 (j + 5)d− 1: (∗)

Proof. We prove the part on total domination only, the proof of the other part (on
domination) follows the same lines. Starting with any minimum cardinality total dom-
inating set D0 we construct sets D1; D2; : : : until we reach a set D with property (∗).
In each step we replace some vertices in Dr by certain vertices in S such that the
resulting set Dr+1 is again a minimum cardinality total dominating set.

For 06 i6 q and 06 j6 q− i let Lji =
⋃i+j

s=i Ls and

Qr = {(i; j): |Dr ∩ Lji |¿ (j + 5)d}:
If Dr does not ful5ll property (∗) then Qr 	= ∅. We choose a pair (ir ; jr)∈Qr such
that 5rst ir = min{i: (i; j)∈Qr} and then jr = max{j: (ir ; j)∈Qr}. Now we de5ne
Dr+1 = (Dr \ Ljrir ) ∪ (S ∩ Ljr+2

ir−2).
Since both Dr and S are total dominating sets of G, Dr+1 is a total dominating

set of G because every vertex in Ls is adjacent to a vertex in S ∩ Ljr+2
ir−2 (for ir −

16 s6 ir + jr + 1) or Dr \ Ljrir (otherwise). Furthermore, Dr+1 is a minimum total
dominating set since |Dr ∩ Ljrir |¿ (jr + 5)d and |S ∩ Ljr+2

ir−2|6 (jr + 5)d. Especially,
this means that both sets contain exactly (jr + 5)d vertices and the boundary cases
ir ∈{0; 1} or ir + jr ∈{q− 1; q} are impossible because Ls = ∅ for s¡ 0 or s¿q.

It remains to show that the sequence of sets D0; D1; : : : which do not ful5ll property
(∗) is 5nite. To do this we prove ir + jr ¡ ir+1 for all steps of our construction with
Qr+1 	= ∅.

Assume ir+16 ir + jr + 2. By our choice of ir and jr this implies ir+1 + jr+1¿ ir
because Dr ∩ Lir−3

0 = Dr+1 ∩ Lir−3
0 . Next, we have ir+1 + jr+1¿ ir + jr + 2 because

|Dr+1 ∩ Ls|¿d for all indices s with ir − 26 s6 ir + jr + 2. But this implies |Dr+1 ∩
Ljr+1
ir+1

|= |Dr∩Ljr+1
ir+1

| contradicting our choice of ir and jr again. Consequently ir+1 ¿ir +
jr + 2 holds.

Combining Lemma 33 with Theorems 31 and 32, we obtain
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Theorem 34. There are O(n7d+2) time algorithms taking as input a graph G that is
known to have a d-octopus and computing a minimum dominating set and a minimum
total dominating set of G.

Remark 35. To guarantee the existence of the O(n7d+2) time algorithms it is enough
to require that the input graph G has BFS-levels L0; L1; : : : ; Lq (for some vertex) and
a dominating set S and a total dominating set S ′, respectively, such that S and S ′,
respectively, have at most d vertices in common with each BFS-level.

If the root of a d-octopus is known we shall gain a factor of n in the running
time.

6. Conclusions

We have shown how approximation algorithms can use a small octopus as ad-
vice. E9cient constant-factor approximation algorithms for graphs with small octopus
have been obtained for the problems k-CLUSTERING, BANDWIDTH, 
-COLORING, DOMINO

TREEWIDTH, DOMINO PATHWIDTH, BILATERAL ORIENTATION, INTERVAL MAX-DEGREE and
CHORDAL MAX-DEGREE. These algorithms approximate the corresponding graph param-
eters within a factor of c · d, if the input graph is given with a d-octopus. Thereby
c is a small constant depending on the problem. As a byproduct we obtained ex-
act polynomial time algorithms for the problems DOMINATION and TOTAL DOMINATION

for graphs with d-octopus, where we do not require a d-octopus to be part of the
input.

Unfortunately, there are problems for which a d-octopus as advice does not help.
Let G′ be the graph obtained from G by adding a new vertex adjacent to all vertices
of G. Whatever graph G is, G′ has a 1-octopus consisting of the additional vertex
only. By this simple construction we observe that the problems CLIQUE, INDEPENDENT

SET, COLORING, PARTITION INTO CLIQUES, TREEWIDTH and PATHWIDTH are NP-complete for
graphs with 1-octopus. Furthermore, all these problems are as di9cult to approximate
for graphs in general as for graphs having a 1-octopus. Thus, k-clustering is hard to
approximate for k=1 even when the inputs are supposed to be a graph and a 1-octopus
of the graph; on the other hand, for each k¿ 2 there are linear time constant factor
approximation algorithms for the k-clustering problem.
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