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Abstract: The oriented diameter of a bridgeless connected undirected
(bcu ) graph G is the smallest diameter among all the diameters of strongly
connected orientations of G. We study algorithmic aspects of determining
the oriented diameter of a chordal graph. We (a) construct a linear-time
approximation algorithm that, for a given chordal bcu graph G, finds a
strongly connected orientation of G with diameter at most one plus twice
the oriented diameter of G; (b) prove that, for every k � 2 and k 6¼ 3, to
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decide whether a chordal (split for k ¼ 2) bcu graph G admits an orientation
of diameter k is NP -complete; (c) show that, unless P ¼ NP , there
is neither a polynomial-time absolute approximation algorithm nor an
�-approximation algorithm that computes the oriented diameter of a bcu
chordal graph for � < 3
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1. INTRODUCTION

When the linkage structure of a communication networks is modeled by a graph,

its diameter corresponds to the maximum number of links over which a message

between two nodes must travel. In cases where the number of links in a path is

roughly proportional to the time delay or signal degradation encountered by

messages sent along the path, the diameter is then involved in the complexity

analysis for the performance of the networks.

A variety of interrelated diameter problems are discussed in the literature

(see [4] for a survey and Chapter 2 in [2]), including the problem of finding

orientations for undirected or mixed graphs to minimize diameters. This problem

has a long history. In 1939 Robbins proved that an undirected graph G admits

a strongly connected orientation (one where every two vertices are mutually

reachable by directed paths) if and only if G is connected and bridgeless [21].

More recently, Chung, Garey, and Tarjan provided a linear-time algorithm for

testing whether a graph has a strongly connected orientation and finding one if it

does [5]. From a graph theoretical point of view, this problem has been studied for

particular graphs: the torus, the Cartesian product of complete graphs, complete

bipartite graphs, and others [12,14–17,27]. This problem also appears in the

study of network routing, broadcasting, gossip and one-way street arrangements

[4,7,13,22–25].

Chvátal and Thomassen studied how the diameter of a bridgeless connected

undirected graph G and the diameter of a strongly connected orientation of G are

related [6]. They considered the following problems.

Oriented Diameter Problem (ODP). Given a bridgeless connected undirect-

ed graph G, find a strongly connected orientation H with the smallest diameter.

Oriented Diameter Decision Problem (ODPD(k)). Given a bridgeless con-

nected undirected graph G, decide whether there exists a strongly connected

orientation H with diameter at most k.

For every k � 2 and k 6¼ 3, Chvátal and Thomassen showed that ODPD(k) is

NP-complete for general graphs. Therefore, there is a natural interest to study

complexity issues of ODPD(k) for different graph classes.

Chordal graphs form a very well-investigated class of graphs (see [9] for clas-

sical results and [3] for more recent ones). They have well-understood properties

256 JOURNAL OF GRAPH THEORY



and many NP-hard problems, such as Coloring, Clique, and Independent Set, can

be solved in polynomial time when the input is restricted to chordal graphs.

However, some other problems remain NP-complete even when restricted to

chordal graphs (for instance Pathwidth [11] and Bandwidth [20]). For some of

these problems, the nice properties of chordal graphs has been useful for con-

structing approximation algorithms (for instance Bandwidth [10,18]).

To the best of our knowledge, no work on the algorithmic aspects of ODP and

ODPD for chordal graphs has been done. Even though, the work of Chvátal and

Thomassen suggests the existence of a 3-approximation algorithm for ODP when

the input is restricted to graphs where every edge belongs to a triangle (which

holds for chordal graphs). Indeed, they proved that for every bridgeless connected

graph G, there is a strongly connected orientation H such that, if an edge fu; vg
belongs to a cycle in G of length k, then ðu; vÞ or ðv; uÞ belongs to a directed cycle

in H of length at most ðk � 2Þ2½ðk�1Þ=2� þ 2.

This paper is motivated by the searching of both approximation algorithms and

hardness results for ODP when restricted to chordal graphs.

A. Definitions

Let G be either an undirected graph or a directed graph with vertex set VðGÞ
and edge set EðGÞ. By fu; vg we denote the undirected edge with ends in u and

v and by ðu; vÞ we denote the directed arc, directed from u towards v. The

distance dGðu; vÞ between two vertices u and v of G is the length of the shortest

path (the shortest directed path if G is directed) between u and v in the graph

G (from u to v if G is directed). If there is no path from u to v then we put

dGðu; vÞ ¼ þ1. The diameter of a graph G, denoted by diamðGÞ, is defined

to be the maximum distance between two vertices of G. Thus diamðGÞ ¼
maxfdGðu; vÞ : u; v 2 VðGÞg. When G is a directed graph, we denote by
~ddGðu; vÞ ¼ maxfdGðu; vÞ; dGðv; uÞg.

Let G be a connected undirected graph. An orientation of G is a directed graph

whose arcs correspond to assignments of directions to the edges of G. An orien-

tation H of G is strongly connected if every two vertices in H are mutually

reachable in H (diamðHÞ < þ1). An edge e of G is called a bridge if G� e is

not connected. The graph G is bridgeless if G� e is connected for every edge e,

that is, there is no bridge in G. The oriented diameter of G is defined as follows.

ODðGÞ ¼ minfdiamðHÞ:H is an orientation of Gg:

It was proved by Robbins in 1939 that G is not connected or has a bridge

if and only if there is no strongly connected orientation of G. In that case,

ODðGÞ ¼ þ1. Further we consider only bridgeless connected graphs.

An algorithm A is an ð�; kÞ-approximation algorithm for ODP if for every

graph G it runs in polynomial time and outputs an orientation H of G such that

diamðHÞ � �ODðGÞ þ k.
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An ð�; 0Þ-approximation algorithm for ODP is called an �-approximation
algorithm for ODP and a ð1; kÞ-approximation algorithm for ODP is called an

absolute approximation algorithm for ODP (see [1]).

A chord of a cycle C in G is an edge not in C that has both ends in C. A

chordless or induced cycle in G is a cycle of length more than three that has no

chord. A graph G is chordal if it contains no chordless cycles.

B. Our Contribution

In Section 2, we show that for every chordal graph G there exists a linear-time

computable orientation H such that, for every pair of vertices u and v;~ddHðu; vÞ �
2dGðu; vÞ þ 1. Therefore, for every chordal graph G there is an orientation H such

that diamðHÞ � 2 diamðGÞ þ 1. On one hand, this result implies that for chordal

graphs ODðGÞ � 2 diamðGÞ þ 1. We prove that the bound is sharp by con-

structing an infinite sequence of chordal graphs such that, for every graph G in this

sequence, any strongly connected orientation of G has diameter 2 diamðGÞ þ 1.

On the other hand, since diamðGÞ � ODðGÞ, we deduce that ODP is ð2; 1Þ-
approximable.

In Section 3, we prove that ODPD(2) remains NP-complete in the subclass

of chordal graphs called split graphs. We also prove that, for k � 4, ODPD(k)

remains NP-complete for chordal graphs. Moreover, we prove two non-

approximability results: first, for every � < 3=2 (ODP) is not �-approximable

in the class of split graphs; second, there is no absolute approximation algorithm

for ODP when restricted to chordal graphs.

2. POSITIVE RESULTS

Our algorithmical contribution is stated in the following theorem.

Theorem 2.1. There is a linear-time ð2; 1Þ-approximation algorithm for ODP in

the class of chordal graphs.

Since for every u and v, we have dGðu; vÞ � diamðGÞ � ODðGÞ and

diamðHÞ ¼ max
u;v2V

~ddHðu; vÞ, Theorem 2.1 follows from the next much stronger

result.

Theorem 2.2. There is a linear-time algorithm such that, given a chordal graph

G, it computes an orientation H of G satisfying, for every pair of vertices u and v,
~ddHðu; vÞ � 2dGðu; vÞ þ 1.

Notice that Theorem 2.2 is an improvement of the bound of Chv�atal and

Thomassen applied to chordal graphs. Moreover, as stated in Theorem 2.3, this

bound is the best possible.
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Theorem 2.3. For every n � 1 there exists a chordal graph Gn such that

diamðGnÞ ¼ 2nþ 1 and diamðHÞ ¼ 2 diamðGnÞ þ 1 for every strongly connect-

ed orientation H of Gn.

Proof. In Figure 1 we show a chordal graph G2 of diameter 5 for which there

is no orientation with diameter smaller than 2 � 5 þ 1. This construction can be

easily generalized to larger graphs. To obtain Gnþ1 from Gn it suffices to add,

for every vertex x in Gn of degree 2, two new vertices x0, and x00 and connect them

in such a way that x; x0, and x00 form a copy of K3. Then diamðGnþ1Þ ¼
diamðGnÞ þ 2. Moreover, every strongly connected orientation H of Gn orients

every copy of K3 in a cyclic way. Therefore, for every strongly connected

orientation Hnþ1 of Gnþ1 and every strongly connected orientation Hn of Gn, we

have that diamðHnþ1Þ ¼ diamðHnÞ þ 4. Assuming inductively that diamðHnÞ ¼
2 diamðGnÞ þ 1, we get that diamðHnþ1Þ ¼ 2 diamðGnþ1Þ þ 1. &

The rest of this section is devoted to the proof of Theorem 2.2. The proof of

this theorem is indirect. First, we prove that every 2-connected chordal graph

has a special orientation that can be obtained in linear-time (Lemma 2.3). Then

we use this orientation to prove the theorem for 2-connected chordal graphs

(Lemma 2.4) and only then we prove Theorem 2.2.

Let us begin with some definitions. For a given chordal graph G and an

orientation H of its edges, we say that an arc in H is good if it belongs to a

directed triangle and it is bad otherwise. A good orientation is an orientation

leaving every arc good. Let Kn be the complete graph with n vertices.

In order to orient chordal graphs, we first need to construct good orientations

of complete graphs Kn for n � 5.

FIGURE 1. Connected bridgeless chordal graph of diameter 5.
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Lemma 2.1. For every n � 3 , Kn has a good orientation if and only if n 6¼ 4.

Moreover, for every n � 5 , every good orientation of Kn can be extended to a

good orientation of Knþ1 and this extension can be constructed in linear-time.

Proof. We first consider the cases n ¼ 3; 4; and 5. It is easy to see that K3 has

a good orientation and that K4 has no good orientations. Nevertheless, K4 has an

orientation with exactly one bad arc. An orientation of K5 is obtained from an

orientation of K4 with exactly one bad arc ðv1; v2Þ by orienting the edges fv2; v5g
and fv1; v5g as ðv2; v5Þ and ðv5; v1Þ and the edges fv3; v5g and fv4; v5g in such

a way that they form a directed triangle with the arc associated with the edge

fv3; v4g. This orientation of K5 is good.

Let us assume that n � 5. In order to construct a good orientation Hnþ1 for

Knþ1; we use a good orientation Hn of Kn. Let us think that Knþ1 is obtained from

Kn by adding a new vertex v.

If n is even then a good orientation of Knþ1 can be obtained from Hn by

forming n=2 directed triangles using all the edges adjacent to v. The orientation

of every triangle is induced by the arc of Hn. Clearly, this orientation can be done

in OðnÞ steps.

Suppose that n is odd. Since K4 has no good orientations, for any n � 5 and

every orientation H of Kn there are three vertices in Kn inducing a triangle that is

not strongly connected. Let a; b; and c be such vertices for the orientation Hn.

W.l.o.g. we may think that the arcs in H are of the form ða; bÞ, ða; cÞ; and ðb; cÞ.
We orient the edges fv; ag; fv; bg; and fv; cg as ðv; aÞ; ðc; vÞ; and ðb; vÞ in Hnþ1.

The remaining n� 3 edges adjacent to v are in ðn� 3Þ=2 triangles in Knþ1, each

of the triangles having one arc in Hn. Since n� 3 is even, we orient these edges as

in the previous case.

So to obtain the orientation of Knþ1, one should choose four arbitrary vertices

in Kn and find three vertices that do not induce a strongly connected triangle. This

can be done in a constant number of steps. And the orientation of the remaining

n� 3 edges can be done in OðnÞ steps. &

In terms of diameter, we have the following corollary which will be used in

Section 3.

Corollary 2.1. For every n � 3 there exists an orientation of Kn with diameter 2

if n 6¼ 4, and with diameter 3 if n ¼ 4.

A vertex v in a graph G is called simplicial if the graph induced by its

neighborhood NGðvÞ is a clique. Chordal graphs have been characterized as those

having a perfect elimination ordering ( peo) [8]. This is a vertex ordering

fv1; . . . ; vng such that for every i 2 f1; . . . ; ng, the vertex vi is simplicial in

G½vi; . . . ; vn� (where G½S� denotes the graph induced by the vertex set S). We say

that fv1; . . . ; vng is a perfect construction ordering ( pco) if fvn; . . . ; v1g is a peo.

A pco of a chordal graph can be found in linear-time using the LexBFS algorithm

[26]. Moreover, the first vertex can be chosen arbitrarily. Since LexBFS is a
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special version of BFS, it follows that every graph Gi :¼ G½v1; . . . ; vi� is

connected.

For a pco fv1; . . . ; vng, the idea of our construction is to orient all the edges

incident to vi in G½v1; . . . ; vi� sequentially (following the pco).

Let � ¼ fv1; . . . ; vng be a pco of a chordal graph G. We say that a vertex vi is

�-super-simplicial if NðviÞ \ fviþ1; . . . ; vng ¼ ;. Notice that every �-super-

simplicial vertex is simplicial in G but not vice versa.

A connected graph G is said to be 2-connected if for every vertex v, the graph

G� fvg is connected.

We need the following technical lemma about super-simplicial vertices in

2-connected graphs.

Lemma 2.2. Let � ¼ fv1; . . . ; vng be a pco of a 2-connected chordal graph G.

If a vertex vi is not �-super-simplicial, then there are k > i > l such that

fvk; vi; vlg is a clique in G.

Proof. Let vp and vq, p > i > q, be vertices adjacent to vi (they exist since Gi

is connected and vi is not a �-super-simplicial vertex). If fvp; vqg 2 EðGÞ then

fvp; vq; vig induce a clique and the lemma is proved. If fvp; vqg 62 EðGÞ then the

vertices vp; vq; vi belong to a cycle C in G (G is 2-connected). We choose C to

have the shortest length among all cycles containing vp; vq; vi. Notice that the

length of C is at least 4. The cycle contains at least one vertex which is before vi
(in �) and at least one vertex that is after vi. Therefore, there are two adjacent

vertices vp0 , vq0 with p0 > i > q0. Since C is the shortest cycle, the only chords

in this cycle are the edges adjacent to vi. The chordality of G implies that vi is

adjacent to both vp0 and vq0 and the lemma is proved. &

Lemma 2.3. There exists a linear-time algorithm such that, given a 2-connected

chordal graph G and a pco � ¼ fv1; . . . ; vng of VðGÞ, it computes an orientation

H with the following properties.

(a) Every maximal clique in G has at most one bad arc in H.

(b) If ðu; vÞ is a bad arc in H then u is a �-super-simplicial vertex of G.

(c) For every v 2 VðGÞ, ~ddHðv; v1Þ � 2dGðv; v1Þ.
(d) Every clique in H has diameter at most 3.

Proof. Iteratively, for k ¼ 3; . . . ; n, we construct an orientation Hk of

Gk ¼ G½v1; . . . ; vk� with the following properties:

(P1) Every bad arc belongs to a maximal clique (in Hk) of size four.

(P2) At most one arc is bad in each maximal clique.

(P3) If ðu; vÞ is a bad arc in Hk then u is either a �-super-simplicial vertex in G

or the vertices u; v are used in some step j > k to form a new clique,

that is, u; v 2 NGj
½vj� for some j > k.
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Let k � 2 and let us denote NGkþ1
ðvkþ1Þ ¼ fu1; . . . ; urg. Since G is

2-connected, it follows that r � 2. Therefore G3 is a triangle, and obviously its

cyclic orientation H3 satisfies properties (P1), (P2), and (P3).

Now we show how to extend, for every k ¼ 3; . . . ; n� 1 the orientation Hk to

an orientation Hkþ1 of Gkþ1 satisfying properties (P1), (P2), and (P3).

(1) If r > 4 then by (P1) we have that every arc in Hk u1; . . . ; ur½ � is good.

We use Lemma 2.1 in order to get a good orientation of G u1; . . . ; ur; vkþ1½ �.
(2) For r ¼ 4 we use the construction of a good orientation of K5 given in

Lemma 2.1 to get a good orientation of G u1; . . . ; u4; vkþ1½ �. For r ¼ 2 we

orient new edges in a directed triangle following the orientation given to

fu1; u2g. In both cases the bad arc in Hk (if any) belongs to one of the

directed triangles in H u1; . . . ; ur; vkþ1½ �. In other words, this arc becomes

good in Hkþ1.

(3) For r ¼ 3 we consider three cases. Let us define H0 :¼ Hk u1; u2; u3½ �. By

property (P2) we know that in H0 there is at most one bad arc.

(i) If in H0 there is one bad arc, let us say ðu1; u2Þ, then we direct the new

edges obtaining the following arcs: ðu2; vkþ1Þ and ðvkþ1; u1Þ. Moreover,

if ðu1; u3Þ 2 H0 then we add ðu3; vkþ1Þ to Hkþ1. Otherwise ðu3; u2Þ
belongs to H0 and we add ðvkþ1; u3Þ to Hkþ1. Then the arcs ðu2; vkþ1Þ,
ðvkþ1; u1Þ, and ðu1; u2Þ are in a directed triangle and the arc between

vkþ1 and u3 is also in a directed triangle. Therefore all arcs in

Hkþ1½u1; u2; u3; vkþ1� are good.

(ii) If H0 has no bad arcs and vkþ1 is not �-super-simplicial then by

Lemma 2.2 at least one edge, say, with ends in fvkþ1; u1g, is used in a

step j > k. Then we direct edges fvkþ1; u2g and fvkþ1; u3g to form a

directed triangle with the arc ðu2; u3Þ (or ðu3; u2Þ) and we add the bad

arc ðvkþ1; u1Þ.
(iii) The last case is when H0 has no bad arcs and vkþ1 is �-super-simplicial.

To have property (c), we direct the edges fvkþ1; u2g and fvkþ1; u3g in

order to form a directed triangle with the arc ðu2; u3Þ (or ðu3; u2Þ),
where the vertex u2 has, among all the ui’s, the minimum distance in G

to v1. Finally, we add the bad arc ðvkþ1; u1Þ.

Notice that a bad arc appears in Hkþ1½u1; . . . ; ur; vkþ1� only when r ¼ 3 and

Hkþ1½u1; u2; u3� has no bad arcs. In this case, it is ðvkþ1; u1Þ. It is easy to see that

the orientation Hkþ1 satisfies properties (P1), (P2), and (P3).

Clearly the orientation H :¼ Hn satisfies properties (a) and (b). We prove that

H satisfies property (c) by induction in k. Since the pco is the ordering obtained

for a LexBFS started at v1, we know that dGðv1; vkÞ ¼ dGk
ðv1; vkÞ. As before, let

NGkþ1
ðvkþ1Þ ¼ fu1; . . . ; urg. Let us assume that for all v 2 Gk

~ddHðv1; vÞ � 2dGðv1; vÞ: ð1Þ
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If there are no bad arcs in H connecting vkþ1 with u1; . . . ; ur then we have that
~ddHðui; vkþ1Þ � 2 for all i ¼ 1; . . . ; r and (1) holds for Gkþ1.

If vkþ1 is connected to some ui by a bad arc in H then r ¼ 3;H½u1; u2; u3�
has no bad arcs and vkþ1 is a �-super-simplicial vertex of G. Moreover

dGðv1; vkþ1Þ ¼ dGðv1; u2Þ þ 1 where u2 is, among all the ui’s, the vertex having

minimum distance to v1 in G.

By the construction of H, there exists a directed triangle that contains

vkþ1 and u2, which implies that ~ddHðu2; vkþ1Þ � 2. Therefore ~ddHðv1; vkþ1Þ �
2dGðv1; u2Þ þ 2 ¼ 2dGðv1; vkþ1Þ. Property (d) follows from (P2).

Finally, we claim that for every k , the orientation of the arcs adjacent to vkþ1

during the extension of the orientation Hk to Hkþ1 can be performed in

OðjNðvkþ1ÞjÞ. We assume that the set of �-super-simplicial vertices is known.

(Clearly this set can be computed in linear-time Oð
P

v2VðGÞjNðvÞjÞ ¼ OðjEðGÞjÞ.)
If we are in the cases 1 or 2 then the orientation of arcs can be performed in

OðjNðvkþ1ÞjÞ steps by Lemma 2.1. If we are in case 3 then subcase (i) is

performed in a constant number of steps. For subcases (ii) we should be able

to find a vertex from fu1; u2; u3g which has a common neighbor with vkþ1 in

fvkþ2; . . . ; vng. Every neighbor of vkþ1 in fvkþ2; . . . ; vng has at most three

neighbors in fv1; v2; . . . ; vkg and such a vertex can be found in OðjNðvkþ1ÞjÞ
steps. The subcase (iii) takes constant number of steps.

Therefore, the complexity of the algorithm is

Oð
X

1�k�n

jNðvkÞjÞ ¼ OðjEðGÞjÞ:
&

Lemma 2.4. There exists a linear-time algorithm such that, given a 2-connected

chordal graph G, it computes an orientation H satisfying, for every pair of

vertices u and v, ~ddHðu; vÞ � 2dGðu; vÞ þ 1.

Proof. Given G the algorithm first computes (in linear-time) a pco and then

the orientation H (in linear time) given by Lemma 2.3. We prove that H has the

desired property.

Take u; v 2 VðGÞ and let P be a shortest ðu; vÞ-path in G. If dGðu; vÞ ¼ 1 then

u; v are in some clique C; jCj � 3. From Property (d) we have ~ddHðu; vÞ � 3.

Suppose that dGðu; vÞ > 1. Let us assume that P ¼ ðu; x; . . . ; y; vÞ (where x and

y could be equal). Then dHðu; vÞ � dHðu; xÞ þ dHðx; yÞ þ dHðy; vÞ. Clearly, the

inner vertices of P cannot be simplicial; therefore, each arc in H associated

to some inner edge of P is contained in a directed triangle in H. Thus

dHðx; yÞ � 2dGðx; yÞ. In order to finish the proof, we need to prove that dHðu; xÞþ
dHðy; vÞ � 5. Since every clique in H has diameter at most three, it suffices to

show that dHðu; xÞ ¼ 2. If ðu; xÞ 2 H then dHðu; xÞ ¼ 1. Otherwise, ðx; uÞ 2 H.

Since x is not simplicial, ðx; uÞ is a good arc and then dHðu; xÞ ¼ 2. A similar

analysis shows that dHðv; uÞ � dHðv; yÞ þ dHðy; xÞ þ dHðx; uÞ � 2dGðu; vÞ þ 1

(by proving that dHðv; yÞ � 2).
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Proof of Theorem 2.2. The set of 2-connected components has a tree-like

structure T . By the classical result of Tarjan [28], the tree-like structure of

the 2-connected components can be computed in linear-time. We choose one

2-connected component C0 as a root of T . Notice that once a root has been

defined the notion of father and sons of a 2-connected component is well defined.

For every 2-connected component C, we define its father-cut vertex as the unique

vertex in C which belongs to its father.

In each 2-connected component other than the root, we compute a pco starting

in its father-cut vertex and orient it as in Lemma 2.3. For C0 we compute a pco

starting at any vertex and orient it as in Lemma 2.3. Let H be the orientation of G

so obtained. In each 2-connected component, the construction of H is done in

linear-time by Lemma 2.3.

Let u and v be two vertices of G and let P be a ðu; vÞ-shortest path in G. If P has

no cut vertices then u and v lie in the same 2-connected component. From Lemma

2.4 and the construction of H we have ~ddHðu; vÞ � 2dGðu; vÞ þ 1. Otherwise, let

u1; . . . ; ur be the cut vertices in P and Ci the 2-connected component containing

ui and uiþ1 for i ¼ 1; . . . ; r � 1. Notice that for at most one i0 neither ui0 nor ui0þ1

are father-cut vertices of Ci0 . From the construction of H, we know that
~ddHðui; uiþ1Þ � 2dGðui; uiþ1Þ for all i ¼ 1; . . . ; r not equal to i0 (in this case,
~ddHðui0 ; ui0þ1Þ � 2dGðui0 ; ui0þ1Þ þ 1). Therefore, ~ddHðu; vÞ � 2dGðu; vÞ þ 1. &

3. NEGATIVE RESULTS

Our first step is to prove the NP-completeness of ODPD(k) for chordal graphs.

In fact, we will prove two results: the NP-completeness of ODPD(2) for

split graphs and the NP-completeness of ODPD(k) for chordal graphs for every

k � 4.

A graph G is a split graph if its vertex set VðGÞ can be partitioned into sets C

and I such that C is a clique and I is an independent set. Split graphs form a

subclass of chordal graphs. Our proof, inspired by the one of Chv�atal and

Thomassen [6], relies on the NP-completeness of the 2-coloring problem for

hypergraphs [19]. Let us recall that a hypergraph H is called 2-colorable if its

vertices can be colored red and blue in such a way that every edge includes at

least one vertex of each color.

Lemma 3.1. For every t � 0 and for every hypergraph H, there exists a poly-

nomial time-computable chordal graph Gt
H (split graph for t ¼ 0) such that if

H is 2-colorable then ODðGt
HÞ ¼ 2ðt þ 1Þ and if H is not 2-colorable then

ODðGt
HÞ ¼ 3ðt þ 1Þ:

Proof. We first consider the case t ¼ 0. For a given hypergraph H, we will

construct a split graph G0
H ¼ GH such that if H is 2-colorable then ODðGHÞ ¼ 2

and if H is not 2-colorable then ODðGHÞ ¼ 3. Let H be a hypergraph with vertex

set V of size n and edge set E of size m.

264 JOURNAL OF GRAPH THEORY



The clique C of GH contains nþ 2mþ 5 vertices. More precisely, C ¼ W [ Y

with W ¼ V [ f�; �; �g and Y ¼ f�; �g [ E1 [ E2 where E1 and E2 are copies of

the edge set E of H. The independent set I of GH contains mþ 1 vertices. More

precisely, I ¼ fxg [ E.

Now let us explain how to connect the vertices of I with those of C. The vertex

x is connected to all the vertices of W . A vertex e 2 E is connected to a vertex

v 2 V if and only if v 2 e (in the hypergraph H). Finally, every vertex y 2 Y is

connected to every vertex e of E.

We construct an orientation H of GH with the required properties in two steps.

In the first step, we orient all the edges not connecting V with I. The orientation

of these edges will not depend on the 2-colorability of H. In the second step, we

orient the remaining edges: those connecting V with I.

Step 1. Notice first that the graph induced by E [ E1 [ E2 contains a copy of

Km;m;m. Gutin has proven that for all m � 1, there is an orientation of Km;m;m with

diameter 2 [12]. We use this orientation for the edges between E;E1 and E2.

The orientation of the edges inside E1 and inside E2 is irrelevant. We assume that

n � 5 and we orient the edges inside V as in Lemma 2.1. Then the diameter of the

graph GH½V � is 2.

The rest of the edges not connecting V and I ¼ fxg [ E are oriented as

indicated in the following 0 � 1 matrix. A value 1 in the position ðP;QÞ means

that all the edges connecting the vertices of P with those of Q are oriented from P

towards Q and we denote it by P ! Q.

Step 2. We first prove that, no matter the 2-colorability of the hypergraph H,

we can orient the remaining edges to obtain an orientation H of the whole graph

with diameter less than or equal to 3. Using the orientation V ! fxg and V ! E,

we obtain an orientation H satisfying dHðu; vÞ � 3, for all u; v 2 VðGHÞ. To see

this, it is enough to exhibit a ðu; vÞ-directed path of length at most three, for all

u; v 2 VðGHÞ. Here we only show the property for the case u ¼ x and for the

case u 2 E. The remaining cases can be verified easily. Since x ! f�; �g;
� ! f�;V ; �; �g, and � ! fE1;E2g, we have that dHðx; vÞ � 2 for every v =2 E.

For a vertex u 2 E, we proceed analogously: since the orientation of the copy of

x � � � V � � E E1 E2

x � 1 1 � ? � � � � �
� � � � 1 1 1 1 � � �
� � 1 � � 1 � � � 1 1

� 1 � 1 � � 1 1 � � �
V ? � � 1 � � � ? 1 1

� � � 1 � 1 � � 1 1 �
� � � 1 � 1 1 � � � 1

E � � � � ? � 1 � � �
E1 � 1 � 1 � � 1 � � �
E2 � 1 � 1 � 1 � � � �
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Km;m;m in E1 [ E2 [ E has diameter 2, there exists an arc ðu; u0Þ in H with

u0 2 E1 [ E2. Since E1 [ E2 ! f�; �g;E ! �, and � ! f�;V ; �g, we have that

dHðu; vÞ ¼ 2, for all u 2 E and all v 6¼ x. Moreover, if dHðu; vÞ ¼ 3 then u and v
respectively belong to fxg and E.

In order to conclude that if H is 2-colorable then ODðGHÞ ¼ 2 and if H is not

2-colorable then ODðGHÞ ¼ 3, it is enough to prove that

H is 2-colorable , ODðGHÞ ¼ 2.

(() Let H be an orientation of GH of diameter 2. The way we color every vertex

v of the hypergraph H is the following: if according to H, the edge connecting x

with v is oriented towards v, then we color it red. Otherwise we color it blue.

Since for every vertex e 2 E, the distance dHðx; eÞ ¼ dHðe; xÞ ¼ 2, it follows that

every edge e in H contains a red and a blue vertex.

()) Now let us suppose that H is 2-colorable. Let us denote by R and B the set

of red and blue vertices in V . We orient all the edges in GH except those with ends

in V and E or with one of their ends being x as given by the partial orientation

obtained in Step 1. In order to achieve diamðHÞ ¼ 2 we only have to reach x from

E with paths of length two and vice versa. We orient all the edges between R and

E towards E and all the edges between B and E towards B. Finally, we orient

fx; vg as ðx; vÞ if v 2 R and as ðv; xÞ otherwise. Since H is 2-colorable there is a

directed path of length 2 in H from x to every e 2 E and from every e 2 E to x.

For t > 0 the chordal graph Gt
H is constructed from t þ 1 copies of the split

graph G0
H ¼ ðC; fe1; . . . ; em; xgÞ where the vertex x of the ith copy is identified

with some element in E in the ði� 1Þth copy, for i ¼ 1; . . . ; t (see Fig. 2). It is

easy to see that Gt
H is a chordal graph and that if H is 2-colorable then

ODðGt
HÞ ¼ 2ðt þ 1Þ and if H is not 2-colorable then ODðGt

HÞ ¼ 3ðt þ 1Þ.
Theorem 3.1. ODPD(2) is NP-complete for split graphs and, for every k � 4,

ODPD(k) is NP-complete for chordal graphs.

Proof. By using Lemma 3.1 we can reduce, in polynomial time, the 2-

coloring hypergraph problem to ODPD(k). For k ¼ 2 we take t ¼ 0 and for k � 4

we take t ¼ bk
2
c � 1. &

FIGURE 2. Path-like structure of Gt
H .
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Now we prove two results concerning the hardness of approximating the

oriented diameter.

Theorem 3.2. Let � < 3
2
. Unless P ¼ NP, ODP has no �-approximation

algorithm for split graphs.

Proof. Let AðGÞ be the orientation assigned to a graph G by an �-

approximation algorithm for ODP. If H is 2-colorable then GH has diameter 2.

Thus diamðAðGHÞÞ � 2� < 3. On the other hand, if H is not 2-colorable

then every orientation of the graph GH has diameter at least 3. Whence

diamðAðGHÞÞ � 3. Therefore, since GH can be constructed in polynomial time,

by knowing diamðAðGHÞÞ we could decide the 2-colorability of H. &

Theorem 3.3. Unless P ¼ NP, there is no absolute approximation algorithms

for ODP when restricted to chordal graphs.

Proof. Let us assume that there exist K and an absolute approximation

algorithm A for ODP such that diamðAðGÞÞ � ODðGÞ þ K. By using this

algorithm, we could decide the 2-coloring problem for hypergraphs. Let H be

a hypergraph and t � K. From Lemma 3.1, there exists a chordal graph Gt
H

computable in polynomial time such that, if H is 2-colorable, then Gt
H has

diameter 2t þ 2. Thus diamðAðGt
HÞÞ � 2t þ 2 þ K � 3t þ 2. And, if H is not

2-colorable then Gt
H has diameter 3t þ 3. Thus diamðAðGt

HÞÞ � 3t þ 3. &

4. CONCLUDING REMARKS

In this paper we have provided a linear-time ð2; 1Þ-approximation algorithm for

the problem of finding the oriented diameter of chordal graphs. On the other hand,

we have proved that for every � < 3=2, finding an orientation with diameter at

most � times the oriented diameter is NP-hard. The challenge is to decrease

the gap between these lower and upper bounds. But even the existence of a

2-approximation algorithm is an interesting open problem.
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