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Searching expenditure and interval graphs�
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198904 St. Petersburg, Russia

Abstract

The problem of searching a fugitive in a graph by a team of pursuers is considered. A new
criterion of optimal search called the searching expenditure is de+ned. It is proved that for each
graph G, the searching expenditure is equal to the number of edges in the least (with respect
to the number of edges) interval graph containing G as a subgraph. ? 2002 Elsevier B.V. All
rights reserved.
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1. Introduction

The problems of searching a graph attract specialists from di3erent areas of discrete
mathematics due to several reasons.
The +rst reason is the connection between some searching problems and pebble

games [8], which are related to the problems of rational usage of computer mem-
ory. Second, it turned out that some graph invariants +rst occurred in the theory of
superlarge chips, such as width in layouts [10], topological bandwidth [11], and the
size of a vertex cut in a graph [4], in many cases have a game theory interpretation.
The third reason is the connection between searching problems and the path-width and
tree-width of graphs, the important parameters in the theory of graph minors developed
by Robertson and Seymour [1,3].
Search problems occur also in problems of the coordination of robots’ movements

[17] and those of providing information privacy in bugged channels [6]. Detailed
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information on searching problems and their relatives can be found in the surveys
[1,5,13]. See also [12,14–16] for further references.
Sometimes it is convenient to interpret a searching problem as the pursuit-evasion

problem for a “di3used” fugitive (e.g., dust or gas). At each step of the search, the
vertices and edges where the fugitive can appear are declared to be polluted, and all
the other vertices and edges are declared to be clean. The pursuers clean the graph as
follows: at each step, a pursuer is put to a vertex of the graph, and after that, some
pursuers can be removed. It is supposed that at the beginning all edges of the graph
are polluted. A polluted edge becomes clean if both its ends are occupied by pursuers.
A clean edge e becomes polluted if after removing a pursuer a path occurs connecting
it to a polluted edge and having no pursuers on interior vertices.
An interesting interpretation of searching problems related to cleaning a graph is

described by Bienstock [1]. Consider the behavior of a computer virus in a network.
We are informed of its presence but do not know how many computers are infected.
Assuming the worst, we must suspect that all the network is infected and thus all the
nodes must be checked and cleaned. Suppose that it is impossible or inconvenient to
check all the nodes simultaneously; so the problem arises of developing the optimal
(with respect to some criterion) cleaning strategy.
In the “traditional” searching problem, we look for the program involving the least

number of pursuers. In this paper, we are interested in programs involving the least
total number of pursuers, obtained by summing over all the steps of the program. This
number will be called the searching expenditure.
One of the most important questions in the searching problems is that of repeated

cleaning (or monotonicity). It turns out [2,9] that for some searching problems with
the “traditional” optimality criterion the following fact holds: if k pursuers are enough
to clean the graph, then k pursuers can clean it so that the edges having been cleaned
are not polluted again.
In this paper, we +rst prove the monotonicity for searching programs of minimal

expenditure. The constructions used for this proof are close to those by Bienstock and
Seymour [2].
Then we use the monotonicity theorem to +nd out how computing the search ex-

penditure is related to the problem of extending to an interval graph with the least
number of edges, which is equivalent to the problem of the graph pro+le (see [7]).
The problem of computing the graph pro+le often arises in computational mathematics
when working with matrices.

2. The problem

In what follows, we work with loopless +nite non-directed graphs without multiple
edges. The set of vertices of a graph G is denoted by V (G), and the set of edges is
denoted by E(G).
A searching program � on a graph G is a sequence of pairs
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such that
(I) Aji ⊆ E(G) and Zji ⊆ V (G) for each i and j such that 06 i6 n and j = 1; 2;
(II) for each i and j such that 06 i6 n and j = 1; 2, every vertex incident with an

edge of Aji and an edge of E(G)− Aji belongs to Zji ;
(III) Aj0 = ∅, Ajn = E(G) for j = 1; 2;
(IV) (adding a pursuer) for each i, 16 i6 n, there exists a vertex v such that Z1i =

Z2i−1 ∪ {v} and A1i = A
2
i−1 ∪ Ev, where Ev is the set of all edges connecting v and

Z2i−1;
(V) (removing a pursuer) for each i, 16 i6 n, we have Z2i ⊆ Z1i , and A

2
i is the set

of all edges e∈A1i such that each path containing e and an edge from E(G)−A1i
has an interior vertex from Z2i .

It is convenient to interpret Z1i as the set of vertices occupied by pursuers after
adding a pursuer at the ith step, Z2i as the set of vertices occupied by pursuers just
before the (i + 1)st step, and A1i and A

2
i as the sets of cleaned edges.

In the known problem of +nding the vertex searching number [8], we must +nd the
program with the least max06i6n Z1i . This number can be interpreted as the largest
number of pursuers situated on the graph at the same time. We are interested in
another searching measure. Let us de+ne the expenditure of a searching program �
as

∑
06i6n |Z2i |. The expenditure of a searching program can be interpreted as the

total number of “person-steps” used for the search. The searching expenditure in the
graph G is the minimal expenditure of a searching program on it. We shall say that
the searching program (A10; Z
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n ) is monotone if for each i,

06 i6 n, we have A1i =A
2
i (after removing pursuers, the edges are not recontaminated).

The monotone searching expenditure in the graph G is the minimal expenditure of
a monotone searching program on it. The searching expenditure and the monotone
searching expenditure in G will be denoted by �(G) and �m(G), respectively.
Searching programs can also be de+ned for pseudographs. Additional multiple edges

and loops do not a3ect the searching expenditure.

3. Monotonicity and tangles in pseudographs

For a subset X ⊆ E(G) of edges of a graph G, we de+ne �(X ) as the set of vertices
incident simultaneously with edges of X and those of E(G) − X . The set of vertices
in the subgraph of G induced by the edges of X ⊆ E(G) will be denoted by V (X ).
The notion of a tangle is de+ned for pseudographs. Let the pseudograph G0 be

obtained from a graph G by adding a loop to each vertex. A tangle in G0 is a sequence
(X0; X1; : : : ; Xn) of edge subsets in G0 such that
(1) X0 = ∅ and Xn = E(G0);
(2) |V (Xi)− V (Xi−1)|6 1, 16 i6 n;
(3) if v∈V (Xi), 16 i6 n, then the loop at v also belongs to Xi.
We de+ne the measure of a tangle (X0; X1; : : : ; Xn) to be

∑
06i6n |�(Xi)|. The tangle

(X0; X1; : : : ; Xn) is called augmenting if X0 ⊆ X1 ⊆ · · · ⊆ Xn and |V (Xi)−V (Xi−1)|=1
for each i, 16 i6 n.
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Theorem 1. For each graph G and integer k¿ 0 the following statements are equiv-
alent:
(i) �(G)6 k;
(ii) if the pseudograph G0 is obtained from G by adding a loop to each vertex; then

G0 contains a tangle of measure at most k;
(iii) if the pseudograph G0 is obtained from G by adding a loop to each vertex; then

G0 contains an augmenting tangle of measure at most k;
(iv) �m(G)6 k.

Proof. (i) ⇒ (ii). As it has been mentioned; �(G) = �(G0). Let
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be a searching program in G0 of expenditure at most k. We shall prove that A20; A
2
1; : : : ;

A2n is a tangle of measure at most k in G0.
Due to Property III in the de+nition of a searching program, we have A20 = ∅, A2n =

E(G). Property II of that de+nition means that �(A2i ) ⊆ Z2i for each i, 06 i6 n. Thus,∑
16i6n |�(A2i )|6 k. Let us check that for each i, 16 i6 n, the inequality |V (A2i ) −

V (A2i−1)|6 1 holds. If there exist an index i, 16 i6 n, and distinct vertices u; v such
that u; v∈V (A2i ) − V (A2i−1), then the loops eu; ev added to these vertices belong to
A2i − A2i−1. Using the inclusion A1i ⊇ A2i (Property V in the de+nition of a searching
program), we obtain eu; ev ∈A1i − A2i−1, which contradicts Property IV in the de+nition
of a searching program.
(ii) ⇒ (iii). Let us choose a tangle (X0; X1; : : : ; Xn) in G such that the sum

∑

06i6n

|�(Xi)| (1)

is minimum and, under this condition, the sum
∑

06i6n

(|Xi|+ 1) (2)

is minimum.
First, we prove that for each j, 16 j6 n, the inclusion Xj−1 ⊆ Xj holds.
Since V (Xj−1 ∪ Xj) − V (Xj−1) = V (Xj) − V (Xj−1) and V (Xj+1) − V (Xj−1 ∪ Xj) ⊆

V (Xj+1) − V (Xj), it follows that (X0; X1; : : : ; Xj−1; Xj−1 ∪ Xj; Xj+1; : : : ; Xn) is a tangle.
Then (1) implies the inequality

|�(Xj−1 ∪ Xj)|¿ |�(Xj)|: (3)

It can be easily checked that |�| satis+es the inequality

|�(Xj−1 ∪ Xj)|+ |�(Xj−1 ∩ Xj)|6 |�(Xj−1)|+ |�(Xj)|: (4)

By (3) and (4), we conclude that

|�(Xj−1 ∩ Xj)|6 |�(Xj−1)|: (5)

If v belongs to the set V (Xj−1)∩V (Xj), then the incident loop belongs to Xj−1 ∩Xj.
Thus, v∈V (Xj−1 ∩ Xj). Consequently, V (Xj) − V (Xj−1 ∩ Xj) ⊆ V (Xj) − V (Xj−1).
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Then, V (Xj−1 ∩Xj)−V (Xj−2) ⊆ V (Xj−1)−V (Xj−2), and thus (X0; X1; : : : ; Xj−2; Xj−1 ∩
Xj; Xj; Xj+1; : : : ; Xn) is a tangle. It follows from (5), (1) and (2) that |Xj−1∩Xj|¿ |Xj−1|.
Thus, Xj−1 ⊆ Xj for each j, 16 j6 n.
If |V (Xj)−V (Xj−1)|=0, then (X0; X1; : : : ; Xj−1; Xj+1; : : : ; Xn) is a tangle, which con-

tradicts (2). Thus, (X0; X1; : : : ; Xn) is an augmenting tangle.
(iii) ⇒ (iv). Let (X0; X1; : : : ; Xn) be an augmenting tangle of measure at most k in

G0. Let us de+ne a searching program in G0 by putting Z10 = Z
2
0 = ∅ and Z1i = �(Xi)∪

{V (Xi) − V (Xi−1)}, Z2i = �(Xi) for each i, 16 i6 n. Suppose that at the jth step
the pursuers occupy the vertices of Z1j and that all edges of Xj are clean. Obviously,
these edges will not be recontaminated after removing the pursuers from the vertices
of Z1j − Z2j .
Let v=V (Xj+1)−V (Xj). Each edge from Xj+1 −Xj either is the loop incident with

v, or it is incident with v and a vertex from �(Xj)= Z2j . Then at the (j+1)st step the
pursuer occupying v cleans all the edges of Xj+1 − Xj. Finally, Z0 = X0, Xn = E(G),
and thus �m(G) = �m(G0)6 k.
The implication (iv) ⇒ (i) is obvious. Theorem 1 is proved.

4. Interval graphs

An interval graph is a graph whose set of vertices coincides with some set of
intervals on the real line, and two vertices are adjacent if and only if the corresponding
intervals meet. A given set of such intervals is called an interval realization of the
graph.
The following easy lemma is well known:

Lemma 1. Each interval graph has an interval realization in which the ends of inter-
vals are distinct integers 1; 2; : : : ; |V (G)|.

Such a realization will be called a canonical representation.
Let I = {Iv = (lv; rv)}v∈V (G), lv ¡ rv, be a canonical representation of an interval

graph G. The length of the representation I is the value
∑

v∈V 
rv − lv�. We de+ne
the length l(G) of an interval graph G to be the minimum length of its canonical
representation. For an arbitrary graph G, we denote by il(G) its interval length, which
is the minimum length of an interval graph containing G as a subgraph.
The following property of canonical representations of interval graphs having mini-

mum length will be used in the proof of Theorem 2.

Lemma 2. Let I be an interval graph on n vertices; and I = {Iv = (lv; rv)}v∈V (G);
lv ¡ rv; be its canonical representation of the minimum length. Then

∑

16i6n

|P(i)|=
∑

v∈V

rv − lv� = |E(I)|;
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where P(i); 16 i6 n; denotes the set of intervals Iv; v∈V (I); containing the
number i.

Proof. Since I is a canonical representation of minimum length; it follows that the
numbers rv (the right ends of intervals from I) cannot be integers and that they must
be at most n+ 1. Each interval Iv = (lv; rv); v∈V (I); contains 
rv − lv� integers. Each
number i∈ {1; : : : ; n} is contained in exactly |P(i)| intervals. Thus;

∑

16i6n

|P(i)|=
∑

v∈V

rv − lv�:

For each i; 16 i6 n; the degree of the vertex v(i = lv) in the graph I is equal to
|P(i)|+ 
rv − lv� (the number of intervals Iu; lu ¡ i¡ru; plus the number of intervals
Iw; i¡ lw ¡rv). As a result; we have

2|E(I)|=
∑

v∈V (I)
deg(v) =

∑

16i6n

|P(i)|+
∑

v∈V

rv − lv�;

where deg(v) is the degree of v. Lemma 2 is proved.

Theorem 2. For each graph G and integer k ¿ 0; the following statements are equiv-
alent:
(i) �(G)6 k;
(ii) il(G)6 k;
(iii) there exists an interval graph with at most k edges that contains G as a sub-

graph.

Proof. (i) ⇒ (ii). Let
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be a searching program in G with the expenditure at most k. According to Theorem
1; we suppose that this program is monotone. Then without loss of generality we may
also assume that n = |V (G)|. Let us choose �¡ 1; and to each vertex v of G assign
the interval (lv; rv + �); where lv is the number of step when a pursuer occurs at the
vertex for the +rst time; and rv is the number of step when the vertex is occupied by
a pursuer for the last time (i.e.; the largest i such that v∈Z1i ).
After the searching program is terminated, all the edges of G become clean. Hence

for each edge e in G there is a step when both ends of e are occupied by pursuers,
i.e., the moment of cleaning e. So, the interval graph I whose canonical representation
is I = {Iv = (lv; rv + �)}v∈V (G) contains G as a subgraph. Since

∑

v∈V

rv + �− lv� =

∑

v∈V

rv − lv� =

∑

06i6n

|Z2i |

(each vertex v is counted 
rv−lv� times in the right-hand side), we have il(G)6l(I)6k.
The implication (ii) ⇒ (iii) is a corollary of Lemma 2.
(iii) ⇒ (i). Let I = {Iv = (lv; rv)}v∈V (G), lv ¡ rv, be a canonical representation of

minimum length of an interval graph I containing G as a subgraph. We assume that
rv ¡n+ 1 for each v, where n= |V (I)|.
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Let us describe the following searching program on G:

• Z10 = ∅;
• for each i, 16 i6 n, de+ne Z1i = Z

2
i−1 ∪ {v}, where v is the vertex corresponding

to the interval with the left end i;
• Z2i = P(i + 1) for each i, 06 i6 n− 1;
• Z2n = ∅.

Since each path in the interval graph I (and thus in G) connecting a vertex w, lw ¿ i+
1, with a vertex u, lu ¡ i + 1, contains a vertex from P(i + 1), it follows that no
recontamination can happen. For each edge of I (and thus for each edge of G), there
exists a set of vertices Z1i such that both ends of this edge belong to it. So, after the
program is terminated, all the edges of the graph will be cleaned.
The expenditure of the searching program built is equal to

∑

06i6n

|Z2i |=
∑

16i6n

|P(i)|:

Due to Lemma 2, we have �(G)6 |E(I)|. Theorem 2 is proved.
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