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Abstract

Let G be a bridgeless connected undirected (b.c.u.) graph. The oriented diameter of G, OD(G),
is given by OD(G)=min{diam(H): H is an orientation of G}, where diam(H) is the maximum
length computed over the lengths of all the shortest directed paths in H . This work starts with
a result stating that, for every b.c.u. graph G, its oriented diameter OD(G) and its domination
number 
(G) are linearly related as follows: OD(G)6 9
(G) − 5.

Since—as shown by Corneil et al. (SIAM J. Discrete Math. 10 (1997) 399)— 
(G)6diam(G)
for every AT-free graph G, it follows that OD(G)6 9diam(G) − 5 for every b.c.u. AT-free
graph G. Our main result is the improvement of the previous linear upper bound. We show that
OD(G)6 2diam(G)+11 for every b.c.u. AT-free graph G. For some subclasses we obtain better
bounds: OD(G)6 3

2 diam(G)+ 25
2 for every interval b.c.u. graph G, and OD(G)6 5

4 diam(G)+
29
2 for every 2-connected interval b.c.u. graph G. We prove that, for the class of b.c.u. AT-free
graphs and its previously mentioned subclasses, all our bounds are optimal (up to additive
constants).
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1. Introduction

In this work we use standard notation as presented in [5]. An orientation of an undi-
rected graph G is a directed graph whose arcs correspond to assignments of directions
to the edges of G. An orientation H of G is strongly connected if every two vertices
in H are mutually reachable in H by directed paths. The oriented diameter of a graph
G is deHned as

OD(G) = min{diam(H): H an orientation of G}:
In 1939 Robbins [15] proved that every undirected graph G admits a strongly connected
orientation if and only if G is connected and bridgeless. Chung et al. [2] provided a
linear-time algorithm for testing whether a graph has a strongly connected orientation
and Hnding one if it does.

From now on G will always denote a bridgeless connected undirected graph. We
will refer to it simply as a graph.

1If a graph G is thought as the plan of the system of two-way streets, then the
orientations of G can be viewed as arrangements of one-way streets. Some variants
of one-way street assignments were studied in [17–20]. Applications also appear in
diIerent network routing, broadcasting and gossip problems. (See [1,6,9] for surveys.)

Chv*atal and Thomassen [3] initiated the study of OD(G). They focused on the
relation between OD(G) and diam(G) proving that OD(G)6 2(diam(G))2.

Later this problem was studied for various classes of graphs including cartesian
products of graphs, complete and complete bipartite graphs [8,10–13,21].

Our Hrst result, presented in Section 2, proves a linear upper bound for the ori-
ented diameter OD(G) in terms of the domination number 
(G) for an arbitrary graph
G: OD(G)6 9
(G) − 5.

This result motivates us to consider the class of bridgeless connected AT-free graphs
(AT-free from now on). In fact, in this class the domination number and the diameter
are linearly related [4]. Indeed, for every AT-free graph G it holds that 
(G)6diam(G).
This implies that OD(G)6 9diam(G) − 5.

In Section 3 we obtain better bounds for the class of AT-free graphs. More pre-
cisely, we prove that OD(G)6 2diam(G) + 11 for every AT-free graph G. We im-
prove previous bound for some subclasses. For bridgeless connected interval graphs
we obtain OD(G)6 3

2 diam(G) + 25
2 , and for 2-connected proper interval graphs we

get OD(G)6 5
4 diam(G) + 29

2 . Finally, we show that each previous bound is optimal
up to an additive constant.

2. Dominating sets

In this section we prove a linear relation between the oriented diameter of a graph
G and its domination number.

Lemma 1. Let G and GD be graphs with GD being a subgraph of G such that V (GD)
is a dominating set in G. Then, for every strongly connected orientation HD of GD,
there is an orientation H of G such that diam(H)6diam(HD) + 4.
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Proof. For every connected component Q of G \ V (GD) we direct some edges having
ends in Q as follows:

If Q consists of one vertex x then x is adjacent to at least two vertices of V (GD)
(because G is bridgeless). We direct one edge from x and the second edge towards x.
If there are more edges incident to x we direct them arbitrarily. Then, we have assured
the existence of vertices u; v∈V (GD) such that dH (x; v)6 1 and dH (u; x)6 1.

Suppose that there are at least two vertices in the connected component Q. Choose
a spanning tree T in this component rooted in a vertex v. We orient the edges of this
tree as follows. If a vertex x of the tree has an odd distance from v, then we orient
all the tree edges adjacent to x towards x. If x has an even distance from v then we
orient all the tree edges adjacent to x from x outwards. Also, for every such vertex x
we orient the edges between x and GD towards x if the distance from v in the tree is
even, and towards GD otherwise. The rest of the edges in the connected component Q
are oriented arbitrarily.

In such orientation H , for every x ∈V (Q) there are vertices u; v∈V (GD) such that
dH (x; v)6 2 and dH (u; x)6 2. Therefore, for every x; y ∈V (G) the distance between
x and y in H is at most diam(HD) + 4.

Theorem 2. For every graph G there exists a graph GD being a subgraph of G such
that V (GD) is a dominating set of G and |GD|6 9
(G) − 8.

Proof. The case 
(G) = 1 is direct. Let D be a dominating set with |D| = 
(G)¿ 2.
Iteratively, we construct a tree Tk for k = 1; : : : ; |D|. The tree T1 is composed by one
vertex x1 in D. Among all the paths S connecting D\V (Tk) with V (Tk) in G\V (Tk) and
with minimum |S ∩ (V (Tk) \ D)|, let Pk be the shortest one. Since D is a dominating
set, the length of Pk is less than or equal to 3. We deHne Tk+1 := Tk ∪ Pk . Then
T := T|D| is a tree which contains the set D and with |T |6 3|D| − 2.

Let xy ∈E(T ) and let Pxy be a shortest path in G − xy connecting the two subtrees
of T −xy. Since G is bridgeless such path exists. Since D is a dominating set the path
Pxy has length of at most 3. Clearly, in T + Pxy, the edge xy and the edges in Pxy

are not bridges.
For each edge xy in T we add the path Pxy to T in order to obtain a graph GD

being a subgraph of G. Since |Pxy|6 4 and two vertices of Pxy belong to V (T )
we deduce that the new vertices in GD are at most 2|E(T )|6 2(3|D| − 3). Finally,
|GD|6 3|D| − 2 + 6|D| − 6 = 9|D| − 8.

Corollary 3. For every graph G, OD(G)6 9
(G) − 5.

Proof. Since the graph GD of Theorem 2 has an orientation HD with diameter at most
|GD| − 16 9
(G) − 9, the result follows from Lemma 1.

3. AT-free graphs

The goal of this section is to prove that for every AT-free graph G, OD(G)6
2diam(G) + 11.
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An independent set of three vertices is called an asteroidal triple if every two of
them are connected by a path avoiding the neighborhood of the third. A graph is
AT-free if it does not contain an asteroidal triple. Asteroidal triples were introduced
to characterize interval graphs [14].

A pair of vertices x; y of a graph G form a dominating pair if the vertex set of every
path connecting x with y is a dominating set of G. In their fundamental paper, Corneil
et al. [4] showed that every AT-free graph G has a dominating pair. A dominating
pair of an AT-free graph can be detected by a simple linear time algorithm, called
2LexBFS [4].

Since a shortest path P between a dominating pair is a dominating set in an AT-free
graph G, it follows that 
(G)6 |P|6diam(G). From Corollary 3 we conclude that
OD(G)6 9diam(G) − 5. In this section our concern is to improve this linear upper
bound.

A chord of a cycle C is an edge joining two non-consecutive vertices of C. A
chordless cycle in G is a cycle of length more than three that has no chords. It is easy
to see that an AT-free graph does not contain chordless cycles of length more than 5.
We use this property several times in the following proofs.

Let u and v be two vertices of a graph G. For a (u; v)-path R and vertices x; y ∈V (R)
we denote by xRy the subpath of R between x and y. We also denote uRy by Ry and
xRv by xR.

Lemma 4. Let G be an AT-free graph. Let u; v be two vertices of G. Then there are
two edge-disjoint (u; v)-paths with one of them being a shortest path.

Proof. We call good a vertex x ∈V (G) if the following two conditions hold.

(1) The vertex x belongs to some shortest (u; v)-path P.
(2) There exists a (u; x)-path Su;x which is edge-disjoint with the path P.

Notice that dG(u; x)¡dG(u; v) for every good vertex x 	= v. We have to show that v
is good.

Let x be a good vertex having, among all the good vertices, maximum distance to
u. Let P be a shortest (u; v)-path to which x belongs. Let Su;x denote some (u; x)-path
edge-disjoint with P. We claim that x = v.

Let us assume x 	= v. We split P into Px and xP. Let s∈V (Su;x) be the neigh-
bor of x in the path Su;x and let y ∈V (P) be the neighbor of x in the path xP.
Since y is not a good vertex it is not adjacent to any vertex in the path Su;x. Let
us denote by Q a shortest (u; y)-path avoiding the edge xy. Let z be the last ver-
tex in Q which belongs to Px. Since y is not a good vertex, z 	= x. Let w de-
note the neighbor of z in zQ. The path P is a shortest path, therefore w 	= y. Since
V (wQ)∩V (yP) 	= ∅ and no vertex in yP is good, no vertex in zQ is adjacent to a vertex
in Su;x.

It follows that w is adjacent to y. Otherwise, the set {w; y; s} would be an asteroidal
triple. We conclude that z is the neighbor of x in the path Px because the path P is a
shortest (u; v)-path.
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The path P′ obtained from P by replacing the edges zx and xy by the path zQ is
also a shortest (u; v)-path. Moreover, y belongs to P′ and there exists an edge-disjoint
(u; y)-path S ′ obtained from S by adding the vertex y and the edge xy. Therefore, y
is a good vertex with dG(u; y)¿dG(u; x).

Let G be an AT-free graph and let u; v be a dominating pair. By Lemma 4 there
exist two edge-disjoint (u; v)-paths, P and S, such that P is a shortest (u; v)-path.
Without loss of generality we can assume that S is a shortest path among all the
(u; v)-paths edge-disjoint with P. Notice that the set of vertices of both paths P and S
are dominating sets. This property will be used in the rest of the paper without explicit
mention.

In order to prove the main theorem of this section we show Hrst that the paths
P and S are, roughly speaking, “close enough”, and that the length of the path S is
proportional to that of P.

Let p1 = u; p2; : : : ; plP+1 = v be the vertices of P and let s1 = u; s2; : : : ; slS+1 = v be
the vertices of S. We deHne, for all i ∈ {2; : : : ; lP + 1},

a(i) = min{j ∈ {1; 2; : : : ; lS + 1}: sj ∈ (N [pi−1] ∪ N [pi]) \ V (P)};

b(i) = max{j ∈ {1; 2; : : : ; lS + 1}: sj ∈ (N [pi−1] ∪ N [pi]) \ V (P)}:

Lemma 5. The indices a(i) and b(i) are well de;ned, for all i ∈ {2; : : : ; lP +1}. More-
over, a(2) = 2 and b(lP + 1) = lS .

Proof. We only have to show that #i := (V (S) \ V (P)) ∩ (N [pi−1] ∪ N [pi]) 	= ∅, for
every i=2; : : : ; lP+1. Since the vertices s2 and slS are not in V (P) neither #2 nor #lP+1

is empty. Clearly a(2)=2 and b(lP +1)= lS . For sake of contradiction, let 36 i6 lP
be such that #i = ∅. Since S and P are edge-disjoint (u; v)-paths there is a subpath
S ′ = s′

1; : : : ; s
′
r of S connecting {p1; : : : ; pi−2} with {pi+1; : : : ; plP+1}, which only meets

P in its end vertices. Let t6 i − 2 be the largest integer such that s′
2 is adjacent with

pt and let m¿ i + 1 be the smallest integer such that s′
r−1 is adjacent to pm. Then

S ′′ = pt; s′
2; : : : ; s

′
r−1; pm is a (pt; pm)-path edge-disjoint with P. Since P is a shortest

path the length of S ′′ is at least the length of the path ptPpm. Then C := S ′′ ∪ptPpm

is an induced cycle of length at least 2(m − t)¿ 2(i + 1 − (i − 2)) = 6. Therefore, C
contains an asteroidal triple which is a contradiction.

By the deHnition of a(i) and since at most one of any two consecutive vertices in
V (S) belongs to V (P), no vertex in {s2; : : : ; sa(i)} is equal to pi−1 or pi.

Lemma 6. Let G be an AT-free graph and let u; v be a dominating pair. Let P, S,
a(i) and b(i) be de;ned as above. Then,

(1) {s1; : : : ; sa(i)−1} ∩ N [{pi; : : : ; plP+1}] = ∅, for every i ∈ {3; : : : ; lP}.
(2) {sb(i)+1; : : : ; slS+1} ∩ N [{p1; : : : ; pi−1}] = ∅, for every i ∈ {2; : : : ; lP − 1}.
(3) a(i)6 b(i)6 a(i) + 6, for every i ∈ {2; : : : ; lP + 1}.
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Proof. (1) For sake of contradiction let us assume that the intersection is not empty
and let m¡a(i) be the smallest index for which sm is in the intersection. Since i¿ 3
and P is a shortest path sm 	= p1, then m¿ 2. We claim that neither sm nor sm−1

belong to V (P).
Since P is a dominating path and sm is the Hrst vertex adjacent to the set {pi; : : : ;

plP+1}, the vertex sm−1 is adjacent or equal to some vertex in {p1; : : : ; pi−1}. But
since sm−1 is not adjacent to pi, it cannot be equal to pi−1.

First, let us assume that sm−1 ∈V (P). Then it belongs to {p1; : : : ; pi−2}. In this
case sm 	∈ V (P). By the deHnitions of a(i) and m, it is adjacent to some vertex pt in
{pi+1; : : : ; plP+1}. That contradicts the fact that P is a shortest path. Hence, sm−1 	∈
V (P).

Now let us assume that sm =pk for some k ∈ {1; 2; : : : ; lP + 1}. Since sm is adjacent
to the set {pi; : : : ; plP+1}, we conclude k¿ i−1. Since sm−1 is not adjacent to this set,
we get k6 i − 1, thus k = i − 1. But since sm−1 is not in V (P), we get a contradiction
with m¡a(i).

Having proven the claim, let us deHne p′ to be the Hrst vertex in {pi; : : : ; plP+1}
adjacent to sm and p′′ to be the last vertex in {p1; : : : ; pi−1} adjacent to sm−1. Notice
that from the deHnition of a(i), p′ 	= pi and p′′ 	= pi−1.

Since the path (p′′; sm−1; sm; p′) has length three we deduce that p′′ =pi−2 and that
p′=pi+1. Since P is a shortest path and from the choice of m we deduce that the cycle
p′′; pi−1; pi; p′; sm; sm−1 of length 6 is chordless and it would contains an asteroidal
triple.

(2) It follows by symmetry from Part (1).
(3) Let us assume that b(i)¿ a(i) + 7. Then no vertex in {pi−1; pi} is adjacent to

both x := sa(i) and y := sb(i). Hence, x and y have diIerent neighbors in {pi−1; pi}. Let
us call st one of the vertices sa(i)+3 or sa(i)+4 which is not in V (P). Then t − a(i)¿ 3
and b(i) − t¿ 3 and then st has no neighbor in {pi−1; pi}. We get a contradiction by
proving that # := {x; st ; y} is an asteroidal triple. In fact, x; st ; y 	∈ V (P). Since S is a
shortest path # is an independent set. From the deHnition of a(i) and b(i) there is a
path of length at most three from x to y passing though the set {pi−1; pi}. Since st
has no neighbor in {pi−1; pi} we conclude that # is an asteroidal triple.

Lemma 7. Let G be an AT-free graph. Let u; v be a dominating pair. Let P, S, a(i)
and b(i) de;ned as before. For all 36 i6 lP the following properties hold:

(1) dS(u; sa(i))6 3dP(u; pi) − 4.
(2) dS(v; sb(i))6 3dP(v; pi−1) − 4.

Proof. (1) We just need to prove that a(i)−16 3(i−1)−4. From Lemma 6 we deduce
that the set {s1; : : : ; sa(i)−1} is dominated by the set {p1; : : : ; pi−1}. Since S is a shortest
(u; v)-path edge disjoint with P, the vertex p1 dominates exactly the vertices s1 = p1

and s2. By the same reason, every vertex pj, for j=2; : : : ; i−2, dominates at most three
vertices in {s1; : : : ; sa(i)−1}. Finally, the only vertex in {s1; : : : ; sa(i)−1} which could be
dominated by pi−1 is pi−2. But this vertex has already been considered. Therefore,
a(i) − 16 2 + 3(i − 3) = 3(i − 1) − 4.

(2) It follows by symmetry from the part (1).
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In the next lemma we prove that if we have a linear upper bound like those proved
in Lemma 7 then it is possible to obtain a linear upper bound for OD(G) in terms
of diam(G). Since in Section 4 we shall improve the bound of Lemma 7 for some
subclasses of AT-free graphs (Lemmas 11 and 13) we prove the lemma in a general
form.

Lemma 8. Let G be an AT-free graph. Let u; v be a dominating pair of G and let
P, S, a(i) and b(i) be de;ned as before. If there exist constants & and ' satisfying
for every 36 i6 lP

(1) dS(u; sa(i))6 &dP(u; pi) + ',
(2) dS(v; sb(i))6 &dP(v; pi−1) + ',

then G has an orientation H such that
diam(H)6 &+1

2 diam(G) + ' + 1−((&)
2 & + 29+((&)

2 ; where ((&) = �6=& − 1�.

Proof. Let i be an integer with 36 i6 lP . Let pt be a vertex in {pi−1; pi} adjacent
to sa(i). If pt 	∈ V (S) we denote by e the edge sa(i)pt . Otherwise e = ∅. We deHne an
orientation H in the subgraph G′ := G[P ∪ S] as follows. We orient Ppt from u to
pt and ptP from v to pt . We orient Ssa(i) from sa(i) to u and sa(i)S from sa(i) to v.
If sa(i)pt has not been already oriented (e 	= ∅), we orient it from pt to sa(i). All the
remaining edges in G′ are oriented from V (S) to V (P). Let us denote L := dP(u; v).

The distance in H from x 	= sa(i) to pt is equal to dH (x; pj) + dH (pj; pt) where pj

dominates x or it is equal to x. If e = sa(i)pt then dH (sa(i); pt) = 1 + dH (sa(i)−1; pt).
Then for all x ∈V (G′) we have that dH (x; pt)6max{1 + dP(u; pt); 1 + dP(pt; v)}.
Since dP(u; pt) = t − 1, dP(v; pt) = L − (t − 1) and t ∈ {i − 1; i} we get

dH (x; pt)6max{i; L − i + 3}: (1)

The distance in H from pt to x, dH (pt; x), satisHes:

dH (pt; x)6 1 + dS(sa(i); x) when x ∈V (S) \ V (P);

dH (pt; x)6 1 + dS(sa(i); sa( j)) + 2 when x = pj with j ¡ t;

dH (pt; x)6 1 + dS(sa(i); sa( j+1)) + 2 when x = pj with j ¿ t:

Then dH (pt; x)6max{3+dS(sa(i); u); 3+dS(sa(i); v)}. From the hypothesis and Lemma
6(3) we have

• dS(u; sa(i))6 &dP(u; pi) + ' = &(i − 1) + '.
• dS(sa(i); v)6dS(sb(i)−6; v)6 6 + &dP(pi−1; v) + ' = 6 + &(L − (i − 2)) + '.

Therefore,

dH (pt; x)6 3 + ' + max{&(i − 1); 6 + &(L − (i − 2))}: (2)

From inequalities (1) and (2) we deduce that for every x; y in G′,

dH (x; y)6 3 + ' − & + f(i);
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where

f(i) := max{i(& + 1) + d1;−i(& − 1) + d2; i(& − 1) + d3;−i(& + 1) + d4}
and d1=0; d2=6+&(L+3); d3=(L+3) and d4=L+9+&(L+3). Then f is a piecewise
linear function. We have that d1 ¡d3 ¡d2 ¡d4 and −(&+1)¡− (&− 1)¡ 0¡&−
1¡& + 1. Moreover, the solutions of the equations i(& + 1) + d1 = i(& − 1) + d3 and
−i(& − 1) + d2 = −i(& + 1) + d4 are the same: i13 = (L + 3)=2 and the solution of the
equation i(& + 1) + d1 = −i(& − 1) + d2 is (L + 3)=2 + 3=&¿ (L + 3)=2. Hence, f is
given by:

f(i) =




−i(& + 1) + d4; i ∈ [0; (L + 3)=2);

−i(& − 1) + d2; i ∈ [(L + 3)=2; (L + 3)=2 + 3=&);

i(& + 1) + d1; i ∈ [(L + 3)=2 + 3=&; L]:

Let ((&)=�6=&−1�. Then either i1 := (L+3+((&))=2 or i2 := (L+3+((&)+1)=2 is an
integer and both belong to the interval [(L+3)=2; (L+3)=2+3=&]. Since f(i2)6f(i1),
we get dH (x; y)6 3 + ' − & + f(i1). We Hnally obtain dH (x; y)6 [(& + 1)=2]L + ' +
(1 −((&))=2& + (21 +((&))=2. Since (u; v) is a dominating pair V (P) is a dominating
set in G. Moreover G′ contains V (P). Then from Lemma 1 we conclude that G has an
orientation with diameter at most (& + 1)=2L+ ' + (1 −((&))=2& + (29 +((&))=2.

Theorem 9. For every AT-free graph G, OD(G)6 2diam(G) + 11.

Proof. From Lemma 7 we know that dS(u; sa(i))6 3dP(u; pi)−4 and that dS(v; sb(i))6
3dP(v; pi−1) − 4. Then by taking & = 3 and ' = −4 in Lemma 8 we get that ((3) = 1.
Then OD(G)6 2diam(G) + 30

2 − 4 = 2diam(G) + 11.

4. Better upper bounds for classes of interval graphs

In this section we improve the upper bound of Theorem 9 for the following sub-
classes of AT-free graphs: interval, proper interval and 2-connected proper interval
graphs.

A graph G is an interval graph if it is the intersection graph of a Hnite family
{I1; : : : ; In} of intervals of the real line. An interval graph G is a proper interval graph
if in the family {I1; : : : ; In}, no two intervals Ii and Ij properly contain each other. An
interval graph G is a unit interval graph if in the family {I1; : : : ; In} each interval Ii
has unit length. A graph G is chordal if it has no induced cycles of length greater than
three. A claw is a tree with three leaves and four vertices. A graph G is claw-free if
it contains no induced claws.

Moreover, we have the following characterizations.

• A graph G is interval if and only if G is AT-free and chordal [14].
• A graph G is proper interval if and only if G is unit interval [16].
• A graph G is proper interval if and only if G is interval and claw-free [22].
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In the following the paths P and S, as well as a(i) and b(i), are deHned as in the
previous section.

A k-balloon G′ in G is a subgraph of G which consists of a cycle C of length
k and a vertex x 	∈ V (C) adjacent to a unique vertex vx in C. If G has an induced
k-balloon with k¿ 4 then the cycle C is an induced cycle of length greater than three
and the closed neighborhood of vx in G is a claw. Therefore, G is neither chordal nor
claw-free.

When we deHned a(i) and b(i) in Section 3 we already showed that in an AT-free
graph G, every pair of consecutive vertices of P has some neighbor in V (S) \ V (P).
If we add the property of being chordal or claw-free, each vertex of P has such a
neighbor. Moreover,

Lemma 10. Let G be an AT-free graph. Let P, S, a(i) and b(i) de;ned as before
and lP¿ 4. If G is chordal or claw-free then for all i = 3; : : : ; lP

(1) The vertex sa(i) is adjacent to pi−1.
(2) The vertex sb(i) is adjacent to pi.

Proof. (1) Let us assume that sa(i) is not adjacent to pi−1 for some i = 3; : : : ; lP . We
show that G has an induced k-balloon with k¿ 4 or an asteroidal triple. From the
deHnition of a(i) the vertex sa(i) is adjacent to pi.

Let us suppose that sa(i)−1 	∈ V (P). From the deHnition of a(i) the vertex sa(i)−1 is
not adjacent to pi−1. From Lemma 6 there exists t6 i−2 such that sa(i)−1 is adjacent
to pt . Let t be the largest index with this property. If pt; : : : ; pi−1; pi; sa(i); sa(i)−1; pi+1

is not an induced k-balloon then sa(i) is adjacent to pi+1. Since pt; sa(i)−1; sa(i); pi+1

is a path of length three and P is a shortest path we deduce that t = i − 2. But then
{pi−1; sa(i)−1; pi+1} is an asteroidal triple.

Then sa(i)−1 ∈V (P). From Lemma 6 sa(i)−1 = pt with t6 i − 2. Since P is a
shortest path the vertex sa(i) is not adjacent to {p1; : : : ; pi−3}. Then t = i − 2 and
{pi−2; pi−1; pi; pi+1; sa(i)} is an induced 4-balloon in G.

(2) It follows by symmetry from part (1).

Lemma 11. Let G be an AT-free graph. If G is chordal or claw-free then for all
36 i6 lP

(1) dS(u; sa(i))6 2dP(u; pi) − 2.
(2) dS(v; sb(i))6 2dP(v; pi−1) − 2.

Proof. (1) We prove the property by induction. We have to prove that a(i)−16 2(i−
1)−2, that is a(i)6 2(i−1)−1. We Hrst prove that a(3)6 3. For sake of contradiction
let us assume that a(3)¿ 3. Then the vertices s2 and s3 are adjacent neither to p2 nor
to p3. Hence they do not belong to V (P). From Lemma 6 we deduce that s3 is
adjacent to p1. Then we obtain a (u; v)-path shorter than S edge-disjoint with P which
is a contradiction.
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Let us assume that a(i)6 2(i − 1) − 1 for 36 i6 lP − 1. We prove that a(i +
1)6 2i− 1 by showing that a(i+1)6 a(i)+2. From Lemma 10 we know that sa(i+1)

is adjacent to pi and sa(i) is adjacent to pi−1. We assume that a(i + 1)¿a(i). From
the deHnition of a(i) the vertex sa(i) is not adjacent to pi. Now, if sa(i+1) is adjacent to
pi−1 or sa(i+1) is adjacent to sa(i) or sa(i+1)−1 is adjacent to sa(i) then a(i+1)6 a(i)+2.
We will obtain a contradiction by assuming that sa(i+1) is not adjacent to pi−1, sa(i+1)

is not adjacent to sa(i) and sa(i+1)−1 is not adjacent to sa(i). If sa(i+1)−1 is adjacent to
pi−1 then pi−1; pi; sa(i+1); sa(i+1)−1; sa(i) is an induced 4-balloon. Then sa(i+1)−1 is not
adjacent to pi−1. Thus {sa(i); sa(i+1)−1; pi} is an asteroidal triple.

(2) It follows by symmetry from part (1).

Theorem 12. Let G be an AT-free graph. If G is chordal or claw-free then OD(G)6
3
2 diam(G) + 25

2 .

Proof. From Lemma 11 we know that dS(u; sa(i))6 2dP(u; pi)−2 and that dS(v; sb(i))
6 2dP(v; pi−1) − 2 for all 36 i6 lP . Then by taking & = 2 and ' = −2 in Lemma 8
we get that ((2) = 2. Then OD(G)6 3

2 diam(G) − 2 − 1 + 31
2 = 3

2 diam(G) + 25
2 .

Lemma 13. Let G be an AT-free graph. If G is claw-free and 2-connected then for
all i ∈ {3; : : : ; lP}

(1) dS(u; pi)6 3
2 (dP(u; pi) + 1).

(2) dS(pi; v)6 3
2 (dP(v; pv−1) + 1).

Proof. (1) Let us denote G̃=G−E(P). For every 16 i6 lP−1 we prove the following
properties:

(a) dG̃(pi; pi+2)6 3.
(b) dG̃(pi; pi+3)6 6, i 	= lP − 1.

Let i be with 16 i6 lP − 1. Among all the paths connecting {p1; : : : ; pi} and
{pi+2; : : : ; plP+1} in G \pi+1 let Q={q1; : : : ; qr} be a shortest one. Then q2; : : : ; qr−1 ∈
V (G) \ V (P) and hence E(Q) ∩ E(P) = ∅.

(a) Since P is a shortest path if r = 3 then q1 = pi and q3 = pi+2 which proves the
statement. Let us assume that r¿ 4. Then q3 	∈ V (P). We shall prove that q3 is
adjacent to pi+2 and that q2 is adjacent to pi. Since Q is a shortest path the vertex
q3 is not dominated by {p1; : : : ; pi}. Let pt be the Hrst vertex in {pi+1; : : : ; plP+1}
which dominates q3. Since q3 is not adjacent to pi we deduce that pt+1 also
dominates q3 otherwise we get an induced claw {pt−1; pt ; pt+1; q3}. Since the path
q1; q2; q3; pt+1 has length 3 we deduce that i+16 t6 i+2 and then i+2 ∈ {t; t+1}
that is pi+2 is adjacent to q3. We now prove that q2 is adjacent to pi. Since P is
a shortest path the vertex q2 can not be adjacent to any pj with j ¡ i − 1. The
set {p1; : : : ; pi} dominates q2 then q2 is adjacent to pi or to pi−1. If q2 is not
adjacent to pi then it is adjacent to pi−1 and we get that {pi−2; pi−1; pi; q2} is
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an induced claw. Then (pi; q2; q3; pi+2) is a path of length three between pi and
pi+2 with no edges in E(P).

(b) Let 16 i ¡ lP − 1. Let Q be deHned as above. We already know that the vertex
q3 in Q is adjacent to pi+2. If q3 is adjacent to pi+3 then we obtain the conclu-
sion. Otherwise q3 is adjacent to pi+1. Therefore dG̃(pi; pi+1)6 3. Using the Hrst
property for i + 1 we obtain the conclusion.

From previous properties we deduce that dG̃(u; pi)6 3(i − 1)=2, for all odd integer
i ∈ {3; : : : ; lP} and that dG̃(u; pi)6dG̃(u; pi−3)+dG̃(pi−3; pi)6 3(i − 4)=2+66 3i=2,
for all even integer i ∈ {4; : : : ; lP}. Since S is a shortest (u; v)-path edge disjoint with
P we conclude the result.

(2) It follows by symmetry from (1).

Theorem 14. Let G be an AT-free graph. If G is claw-free and 2-connected then
OD(G)6 5

4 diam(G) + 29
2 .

Proof. From Lemma 13 we know that dS(u; sa(i))6 3
2dP(u; pi)+ 3

2 and that dS(v; sb(i))
6 3

2dP(v; pi−1)+ 3
2 . Then by taking &= 3

2 and '= 3
2 in Lemma 8 we get that (( 3

2 )=3.
Therefore, OD(G)6 5

4 diam(G) − 3 + 16 + 3
2 = 5

4 diam(G) + 29
2 .

Corollary 15. Let G be a graph.

• If G is an interval graph then OD(G)6 3
2 diam(G) + 25

2 .
• If G is a proper interval graph then OD(G)6 3

2 diam(G) + 25
2 .

• If G is a 2-connected proper interval graph then OD(G)6 5
4 diam(G) + 29

2 .

5. Tightness results

Here we show that all our upper bounds are tight up to additive constants. For this
purpose we exhibit families of graphs reaching the upper bounds. Moreover, in the
case of AT-free graphs the exhibited family belongs to the class of cocomparability
graphs (known to be a subclass of AT-free graphs [7]).

Theorem 16. For every d¿ 3 there is a

• Cocomparability graph G with diam(G) = d and OD(G)¿ 2diam(G) − 1.
• Proper interval graph G with diam(G) = d and OD(G)¿ 3

2 diam(G).
• 2-connected proper interval graph G with diam(G) = d and OD(G)¿ 5

4 diam(G).

Proof. See the constructions of Figs. 1–3.

The previous examples in Figs. 1 and 2 contain a lot of cut vertices, thus the
question whether the bounds could possibly be improved if we require the graph to be
k-connected for some k¿ 2 arises.
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S

P

Fig. 1. A cocomparability graph with OD(G)¿ 2 diam(G) − 1.

S

P

Fig. 2. A proper interval graph with OD(G)¿ 3
2 diam(G).

P

S

Fig. 3. A 2-connected proper interval graph with OD(G)¿ 5
4 diam(G).

We need the operation of replacing a vertex v by a complete graph Kk in a graph
G. This is done by deleting the vertex v, adding k new vertices v1; v2; : : : ; vk , adding
an edge between each pair vi; vj; i 	= j, and adding all edges viy for all neighbors y of
v in G and all 16 i6 k. Note that if G is a proper interval graph, or interval graph,
or cocomparability graph, or AT-free, then the graph obtained is also a proper inter-
val graph, or an interval graph, or a cocomparability graph, or AT-free, respectively.
Moreover, the diameter of the new graph equals that of G.

Let G be a graph and F ⊆ E(G). A partial F-orientation of G is a graph obtained
by orienting all the edges in F , and replacing every other edge by two antiparallel
arcs.

Lemma 17. Let G be a graph and W ⊆ V (G). Let us call G′ the graph resulting
from replacing each vertex w ∈W by a complete graph with at least two vertices.
Assume that each vertex w ∈W is replaced by a complete graph with at least two
vertices, the resulting graph is called G′. Let F be the set of those edges of G between
non members of W. Then the minimum diameter of a strongly connected orientation
of G′ is greater or equal to the minimum diameter of a strongly connected partial
F-orientation of G.

Proof. Let H ′ be an optimum orientation of G′. By orienting all the edges in F like
in H ′, we get a partial F-orientation H of G. The “projection” of every directed path
in H ′ is a directed path in H , whence diam(H)6diam(H ′).
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P

S

Fig. 4. A 2-connected cocomparability graph with OD(G)¿ 2 diam(G) − 1.

P

S

Fig. 5. A 2-connected interval graph with OD(G)¿ 3
2 diam(G).

Theorem 18. For every k and for every d¿ 3 there is a k-connected

(a) Cocomparability graph G with diam(G)¿d and OD(G)¿ 2diam(G) − 1.
(b) Interval graph G with diam(G)¿d and OD(G)¿ 3

2 diam(G).
(c) Proper interval graph G with diam(G)¿d and OD(G)¿ 5

4 diam(G).

Proof. The case k = 2 is shown in Figs. 3–5. The set of vertices of these graphs can
be divided in two sets: V (P) and V (S), where P is the shortest path between the
ends u and v and S is a (u; v)-path vertex-disjoint with P. For k¿ 3 we replace every
vertex in V (S) by a k-complete graph obtaining a k + 1 connected graph. The proof
is Hnished by taking F = E(P) and W = V (S) in Lemma 17.
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